FCC ID: PPQ-WN4642R

IEEE C95.1 2005 KDB 447498 D01 V06 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

Report No.: T170124W05-MF

RF EXPOSURE REPORT

For

802.11 b/g/n 2T2R Wireless LAN USB Module

Model: WN4642R

Trade Name: LITE-ON

Issued to

Lite-On Technology Corp.

Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan,
R.O.C

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: March 3, 2017

Report No.: T170124W05-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 3, 2017	Initial Issue	ALL	Angel Cheng
01	June 12, 2017	1. Remove notes.	P.6	Angel Cheng

TABLE OF CONTENTS

Report No.: T170124W05-MF

1.	TEST RESULT CERTIFICATION	4
2.	LIMIT	5
3.	EUT SPECIFICATION	
4.	TEST RESULTS	7
	MAXIMUM PERMISSIRI E EXPOSURE	9

1. TEST RESULT CERTIFICATION

We hereby certify that:

The equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirement of the applicable standards. The test record, data evaluation and Equipment under Test (EUT) configurations represented herein are true and accurate accounts of the measurement of the sample's RF characteristics under the conditions specified in this report.

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
IEEE C95.1 2005 KDB 447498 D03						
47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091	No non-compliance noted					

Approved by:

Sam Chuang Manager

Compliance Certification Services Inc.

Prepared by:

Angel Cheng Report coordinator

Compliance Certification Services Inc.

2. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

3. EUT SPECIFICATION

Product	802.11 b/g/n 2T2R Wireless LAN USB Module					
Model	WN4642R					
Brand name LITE-ON						
Model Discrepancy	N/A					
Frequency band (Operating)	 ⊠ 802.11b/g/n HT20: 2412MHz ~ 2462MHz 802.11n HT40: 2422MHz ~ 2452MHz ☐ Others 					
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others					
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) 					

Report No.: T170124W05-MF

Antenna Specification	2.4G Walsin / RFMTA200700NNLB002 Antenna 1: Gain: 1.53dBi Antenna 2: Gain: -0.29dBi Auden / T-0082 Antenna 1: Gain: 2.70dBi Antenna 2: Gain: 0.63dBi 2.4GHz: Antenna Gain: 2.70 dBi (Numeric gain: 1.86) Worst 2.4GHz: Directional gain = 2.70 dBi +10log (2) = 5.71 dBi (Numeric gain: 3.72)
Maximum Average output power	IEEE 802.11b Mode: 17.64 dBm (58.076 mW) IEEE 802.11g Mode: 17.89 dBm (61.518 mW) IEEE 802.11n HT 20 Mode: 18.73 dBm (74.645 mW) IEEE 802.11n HT 40 Mode: 18.66 dBm (73.451 mW)
Maximum Tune up Power	IEEE 802.11b Mode: 18.50 dBm (70.795 mW) IEEE 802.11g Mode: 19.00 dBm (79.433 mW) IEEE 802.11n HT 20 Mode: 19.50 dBm (89.125 mW) IEEE 802.11n HT 40 Mode: 19.50 dBm (89.125 mW)
Evaluation applied	✓ MPE Evaluation*☐ SAR Evaluation☐ N/A

4. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

5. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = *Numeric* antenna gain

 $S = Power density in mW / cm^2$

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
11	2462	70.795	1.86	20	0.0262	1

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	79.433	1.86	20	0.0294	1

IEEE 802.11n HT 20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	89.125	3.72	20	0.0660	1

IEEE 802.11n HT 40 mode:

	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	6	2437	89.125	3.72	20	0.0660	1