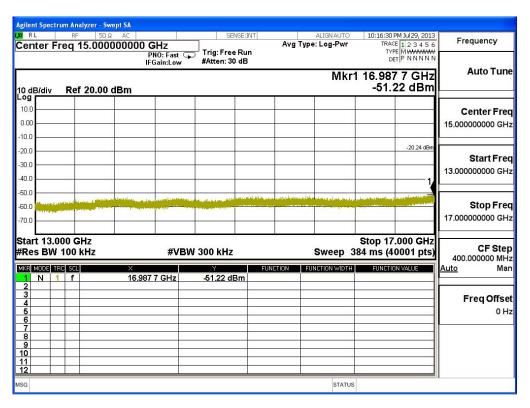
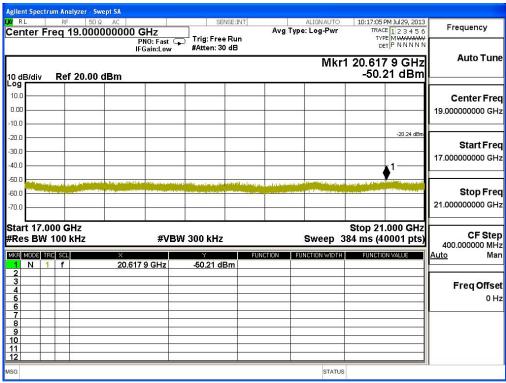
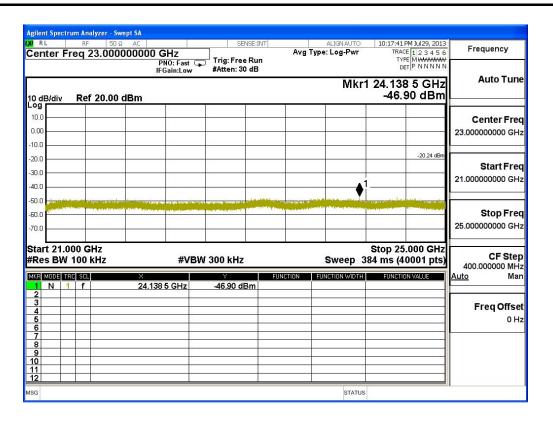

Channel 07 (2452MHz)





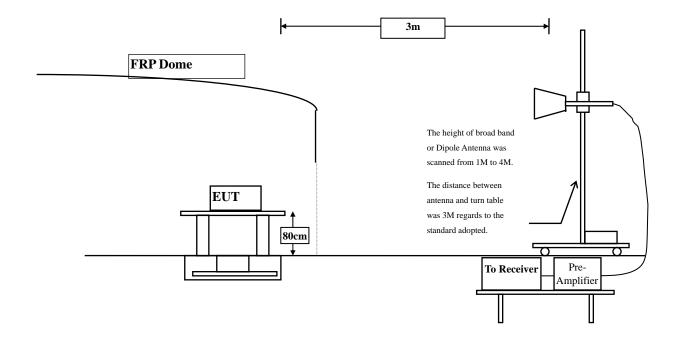


6. Band Edge

6.1. Test Equipment

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2013
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

- 1. All instruments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Radiated Measurement:

Page: 89 of 135

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.10: 2009 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10: 2009 on radiated measurement.

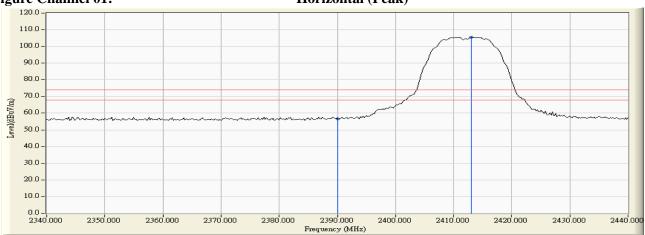
6.5. Uncertainty

- ± 3.9 dB above 1GHz
- + 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product : 802.11b/g/n 1T1R Wireless LAN USB Module

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	25.039	56.548	74.000	54.000	Pass
01 (Peak)	2413.000	31.646	74.004	105.650			
01 (Average)	2390.000	31.509	13.167	44.676	74.000	54.000	Pass
01 (Average)	2414.800	31.660	69.171	100.831			

Figure Channel 01:

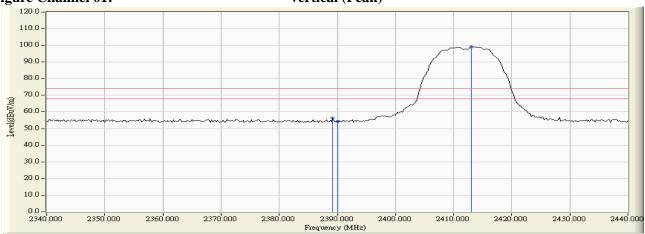
Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Chamilei No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2389.200	30.919	25.422	56.341	74.000	54.000	Pass
01 (Peak)	2390.000	30.915	23.488	54.403	74.000	54.000	Pass
01 (Peak)	2413.000	30.956	68.090	99.046			
01 (Average)	2390.000	30.915	12.332	43.247	74.000	54.000	Pass
01 (Average)	2414.800	30.968	63.480	94.448			

Figure Channel 01:

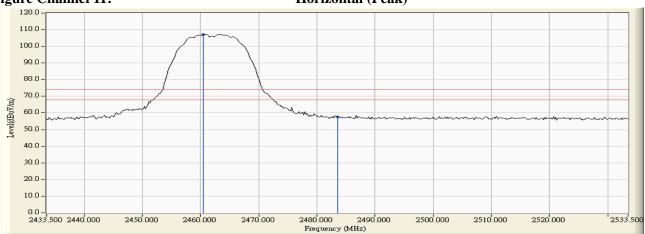
Vertical (Peak)

Figure Channel 01:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data Test Site : No.3 OATS


Test Mode : Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.500	32.008	75.119	107.127	-		-
11 (Peak)	2483.500	32.182	25.435	57.617	74.000	54.000	Pass
11 (Average)	2461.100	32.013	70.320	102.333			
11 (Average)	2483.500	32.182	13.811	45.993	74.000	54.000	Pass


Figure Channel 11:

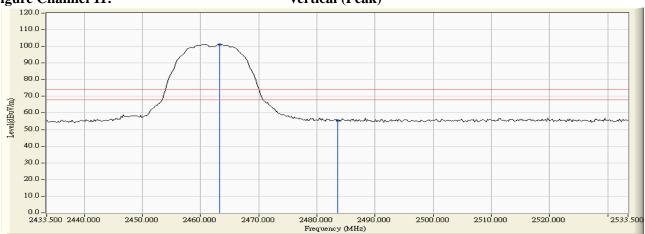
Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

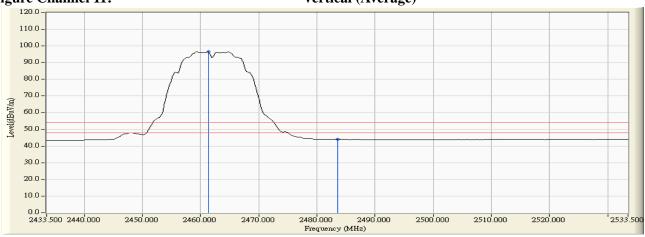
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2463.300	31.299	69.877	101.176	1		1
11 (Peak)	2483.500	31.435	24.029	55.464	74.000	54.000	Pass
11 (Average)	2461.300	31.286	65.216	96.502			
11 (Average)	2483.500	31.435	12.562	43.997	74.000	54.000	Pass



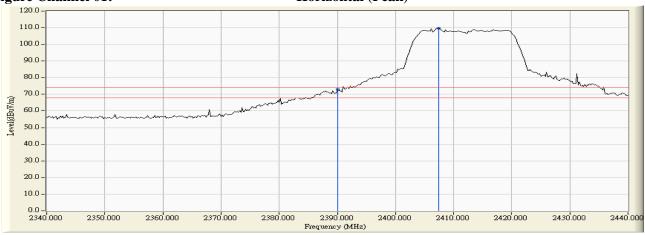
Vertical (Peak)

Figure Channel 11:

Vertical (Average)

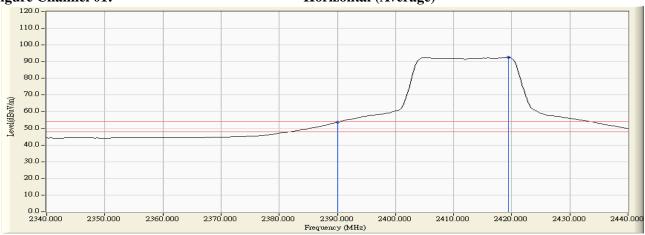
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Resuit
01 (Peak)	2390.000	31.509	41.667	73.176	74.000	54.000	Pass
01 (Peak)	2407.400	31.607	78.206	109.814			
01 (Average)	2390.000	31.509	22.345	53.854	74.000	54.000	Pass
01 (Average)	2419.400	31.695	60.888	92.583			


Figure Channel 01:

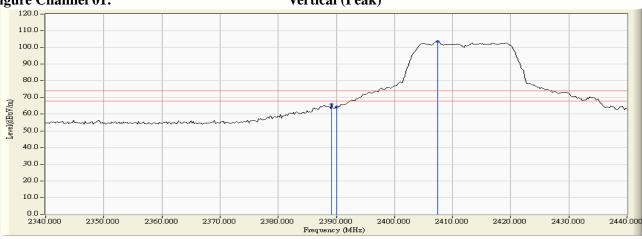
Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

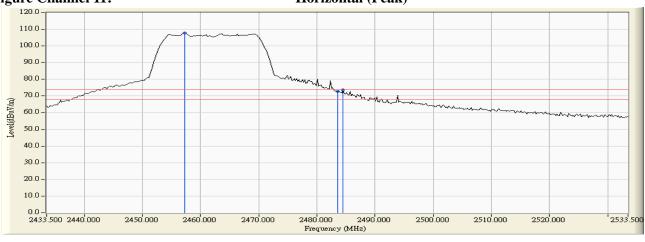
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Chainlei No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2389.200	30.919	34.891	65.810	74.000	54.000	Pass
01 (Peak)	2390.000	30.915	33.519	64.434	74.000	54.000	Pass
01 (Peak)	2407.400	30.932	72.778	103.710			
01 (Average)	2390.000	30.915	17.872	48.787	74.000	54.000	Pass
01 (Average)	2419.200	30.998	56.301	87.299			

Figure Channel 01:

Vertical (Average)

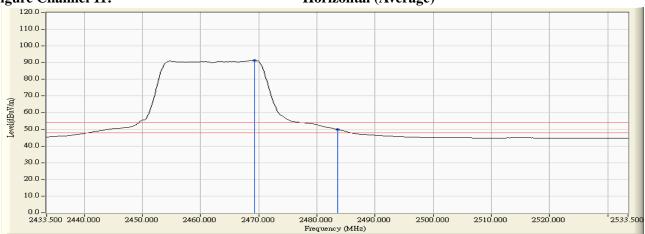
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2457.300	31.984	75.803	107.787	1	-	-
11 (Peak)	2483.500	32.182	40.429	72.611	74.000	54.000	Pass
11 (Peak)	2484.500	32.190	41.565	73.755	74.000	54.000	Pass
11 (Average)	2469.300	32.074	59.376	91.451	-		
11 (Average)	2483.500	32.182	17.765	49.947	74.000	54.000	Pass


Figure Channel 11:

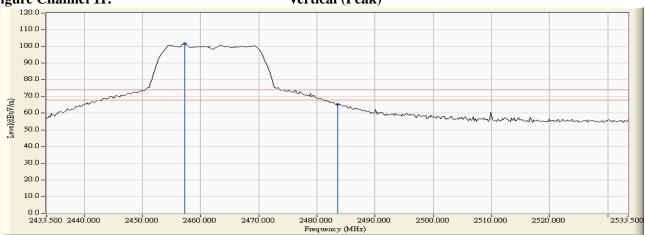
Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 2: Transmit (802.11g 6Mbps)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dagult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2457.300	31.259	70.399	101.657			
11 (Peak)	2483.500	31.435	33.838	65.273	74.000	54.000	Pass
11 (Average)	2454.900	31.242	54.286	85.528			
11 (Average)	2483.500	31.435	14.565	46.000	74.000	54.000	Pass

Figure Channel 11:

Vertical (Peak)

Figure Channel 11:

Vertical (Average)

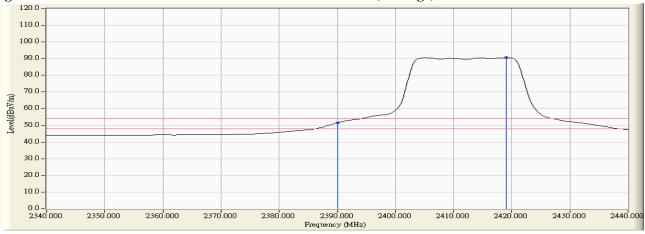
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

	1	, ,	1				
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	31.509	41.478	72.987	74.000	54.000	Pass
01 (Peak)	2418.600	31.689	75.699	107.388			
01 (Average)	2390.000	31.509	19.973	51.482	74.000	54.000	Pass
01 (Average)	2419.000	31.691	58.938	90.630			


Figure Channel 01:

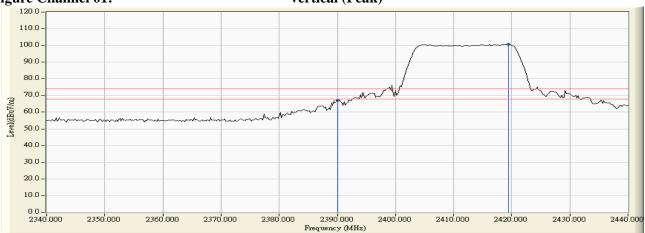
Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

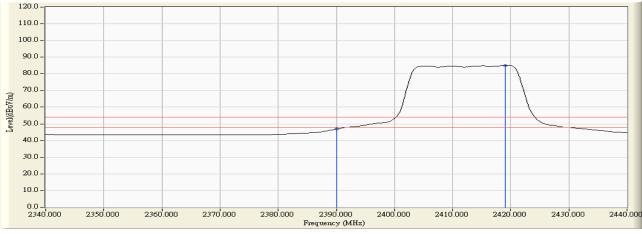
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	36.201	67.116	74.000	54.000	Pass
01 (Peak)	2419.400	30.999	69.594	100.594	-		
01 (Average)	2390.000	30.915	15.928	46.843	74.000	54.000	Pass
01 (Average)	2419.000	30.996	54.059	85.056			


Figure Channel 01:

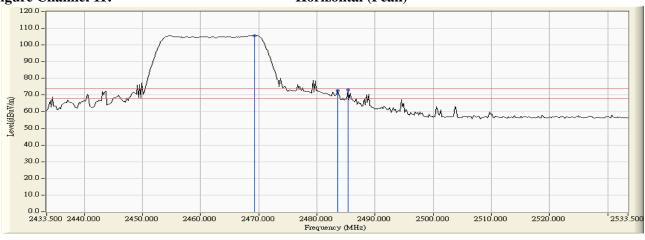
Vertical (Peak)

Figure Channel 01:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dagult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2469.300	32.074	73.502	105.577	1		
11 (Peak)	2483.500	32.182	40.382	72.564	74.000	54.000	Pass
11 (Peak)	2485.300	32.196	40.896	73.092	74.000	54.000	Pass
11 (Average)	2469.100	32.073	57.526	89.599			
11 (Average)	2483.500	32.182	15.243	47.425	74.000	54.000	Pass

Figure Channel 11:

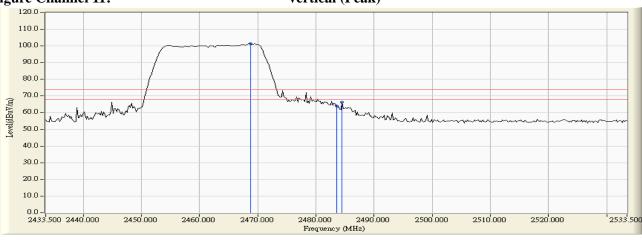
Horizontal (Peak)

Figure Channel 11:

Horizontal (Average)

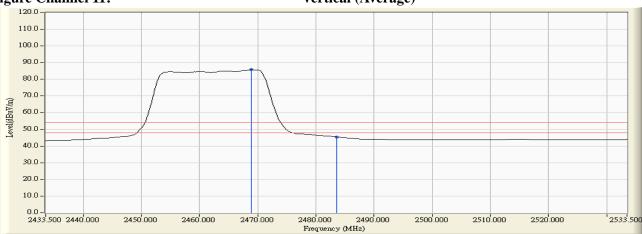
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dagult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2468.700	31.336	70.117	101.452	-	-	
11 (Peak)	2483.500	31.435	32.563	63.998	74.000	54.000	Pass
11 (Peak)	2484.500	31.442	34.686	66.128	74.000	54.000	Pass
11 (Average)	2468.900	31.337	54.410	85.747			
11 (Average)	2483.500	31.435	14.049	45.484	74.000	54.000	Pass



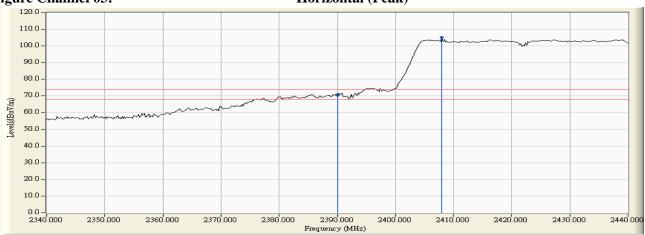
Vertical (Peak)

Figure Channel 11:

Vertical (Average)

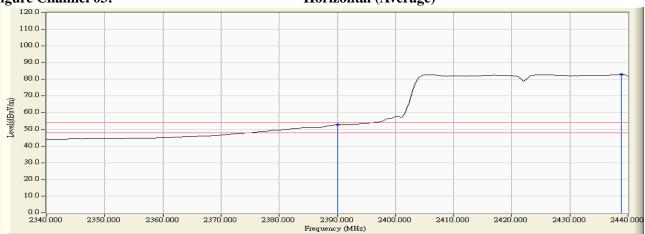
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

RF Radiated Measurement (Horizontal):

	1	, ,	1				
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	31.509	38.930	70.439	74.000	54.000	Pass
03 (Peak)	2408.000	31.611	73.459	105.071			
03 (Average)	2390.000	31.509	21.301	52.810	74.000	54.000	Pass
03 (Average)	2438.800	31.844	51.036	82.879			


Figure Channel 03:

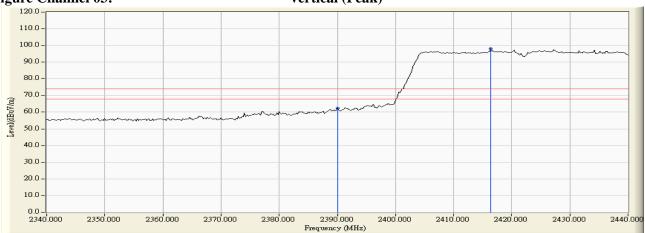
Horizontal (Peak)

Figure Channel 03:

Horizontal (Average)

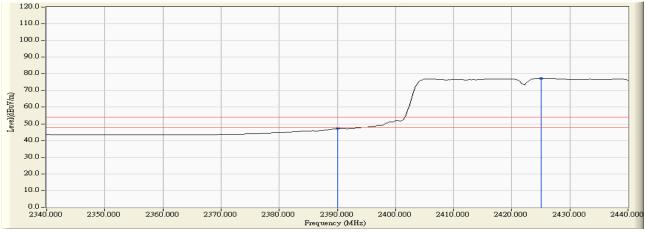
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2390.000	30.915	31.538	62.453	74.000	54.000	Pass
03 (Peak)	2416.400	30.979	67.195	98.174			
03 (Average)	2390.000	30.915	16.220	47.135	74.000	54.000	Pass
03 (Average)	2425.000	31.037	46.168	77.206			


Figure Channel 03:

Vertical (Peak)

Figure Channel 03:

Vertical (Average)

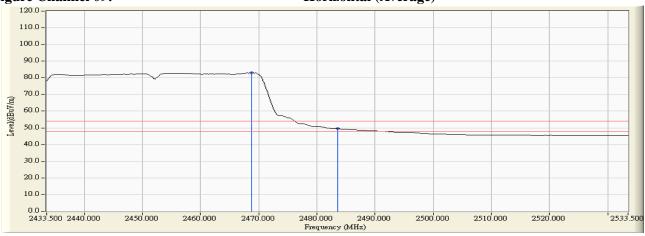
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2456.500	31.977	72.082	104.060	-		
09 (Peak)	2483.500	32.182	37.901	70.083	74.000	54.000	Pass
09 (Average)	2468.700	32.070	50.959	83.029			
09 (Average)	2483.500	32.182	17.279	49.461	74.000	54.000	Pass


Figure Channel 09:

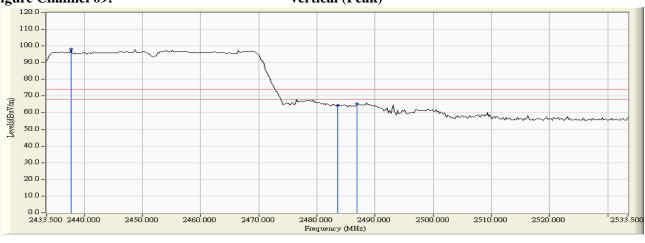
Horizontal (Peak)

Figure Channel 09:

Horizontal (Average)

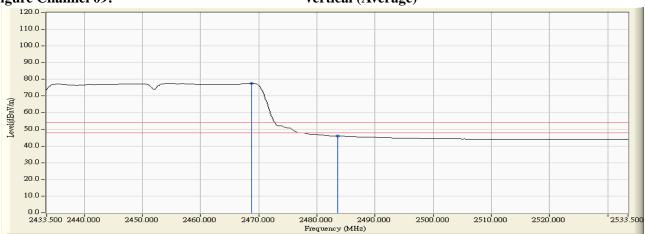
- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Test Item : Band Edge Data
Test Site : No.3 OATS


Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Dagult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2437.700	31.124	66.957	98.081	1	-	
09 (Peak)	2483.500	31.435	33.005	64.440	74.000	54.000	Pass
09 (Peak)	2486.900	31.459	33.882	65.340	74.000	54.000	Pass
09 (Average)	2468.700	31.336	46.306	77.641	-		
09 (Average)	2483.500	31.435	14.529	45.964	74.000	54.000	Pass


Figure Channel 09:

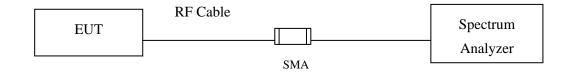
Vertical (Peak)

Figure Channel 09:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

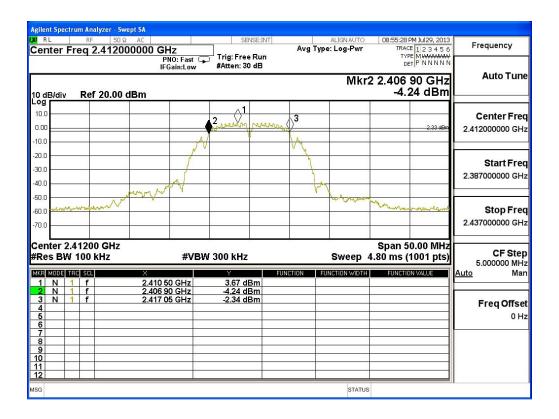
The EUT was setup according to ANSI C63.10: 2009; tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements.

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product : 802.11b/g/n 1T1R Wireless LAN USB Module

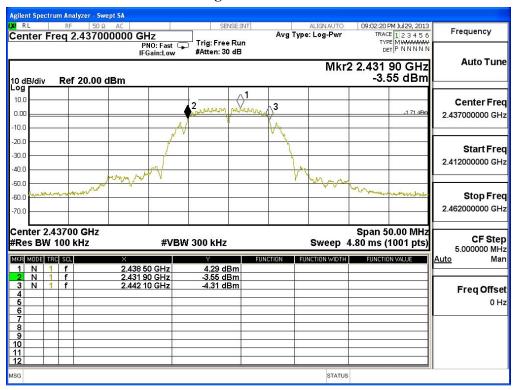

Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	10150	>500	Pass

Figure Channel 1:


Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	10200	>500	Pass

Figure Channel 6:

Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

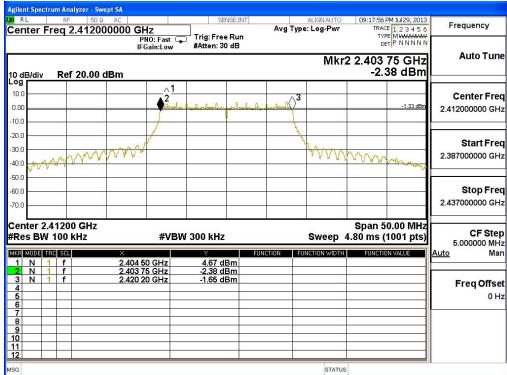
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	10200	>500	Pass

Figure Channel 11: Agilent Spectrum Analyzer - Swept SA 09:08:35 PM Jul 29, 2013 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N Center Freq 2.462000000 GHz Frequency Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast 🖵 **Auto Tune** Mkr2 2.456 90 GHz -1.96 dBm Ref 20.00 dBm Center Freq 0.06 dB 0.00 2.462000000 GHz -10.0 Start Freq -30.0 2.437000000 GHz -40.C -50.0 Stop Freq 2.487000000 GHz Center 2.46200 GHz Span 50.00 MHz **CF Step** 5.000000 MHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 4.80 ms (1001 pts) MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f <u>Auto</u> Man 6.06 dBm -1.96 dBm -2.61 dBm 2.463 50 GHz 2.456 90 GHz 2.467 10 GHz Freq Offset 0 Hz

STATUS

Page: 110 of 135

802.11b/g/n 1T1R Wireless LAN USB Module Product

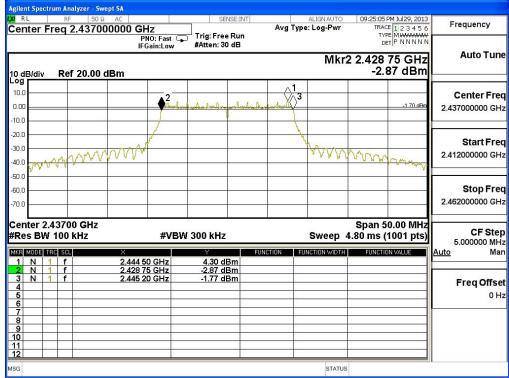

Test Item Occupied Bandwidth Data

Test Site No.3 OATS

Test Mode Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	16450	>500	Pass

Figure Channel 1:


Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	16450	>500	Pass

Figure Channel 6:

Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

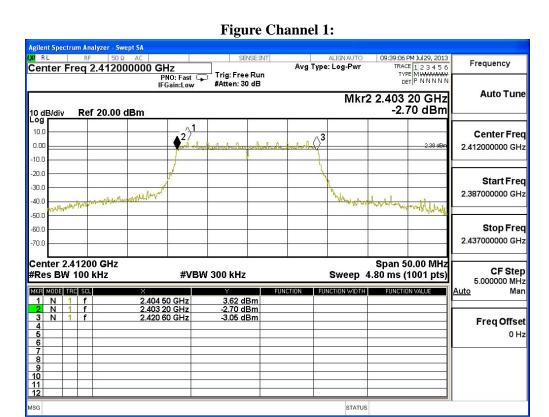
Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	16450	>500	Pass

Figure Channel 11: Agilent Spectrum Analyzer - Swept SA 09:32:06 PM Jul 29, 2013 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N Center Freq 2.462000000 GHz Frequency Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast 🖵 **Auto Tune** Mkr2 2.453 75 GHz -3.76 dBm Ref 20.00 dBm Center Freq 0.00 2.462000000 GHz -10.0 Start Freq -30.0 2.437000000 GHz -40.C -50.0 -60.0 Stop Freq 2.487000000 GHz Center 2.46200 GHz Span 50.00 MHz **CF Step** 5.000000 MHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 4.80 ms (1001 pts) MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f <u>Auto</u> Man 3.36 dBm -3.76 dBm -2.84 dBm Freq Offset 0 Hz

STATUS

Page: 113 of 135



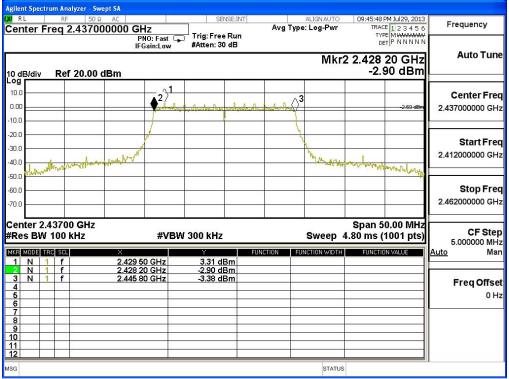
Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	17400	>500	Pass

Page: 114 of 135


Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	17600	>500	Pass

Figure Channel 6:

Frequency

Auto Tune

Product : 802.11b/g/n 1T1R Wireless LAN USB Module

Test Item : Occupied Bandwidth Data

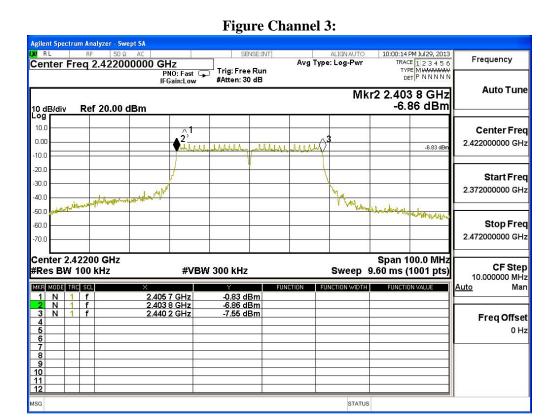
Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	1		Result
11	2462	17400	>500	Pass

Figure Channel 11:

1	N	1	f	2.469 50 GHz				1	
2	N	1	f	2.453 20 GHz					
3	N	1	f	2.470 60 GHz	-5.05 dBm				Erog Offcot
4				55 S (Harris Metroved IX 1894 S (1804					Frequise
5									Freq Offset
6									
7									
8									
9									
10						ĵ.			
11									
12									
MSG							STATUS		
								la contraction of the contractio	



Test Item : Occupied Bandwidth Data

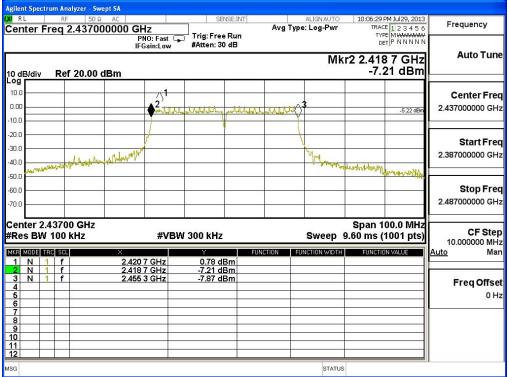
Test Site : No.3 OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	1	
3	2422	36400	>500	Pass

Page: 117 of 135

802.11b/g/n 1T1R Wireless LAN USB Module Product


Occupied Bandwidth Data Test Item

Test Site No.3 OATS

Test Mode Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	36600	>500	Pass

Figure Channel 6:

Test Item : Occupied Bandwidth Data

Test Site : No.3 OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

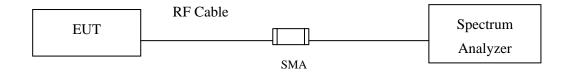
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
9	2452	36500	>500	Pass

Figure Channel 9: Agilent Spectrum Analyzer - Swept SA 10:13:02 PM Jul 29, 2013 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P N N N N N Frequency Center Freq 2.452000000 GHz Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast 🖵 **Auto Tune** Mkr2 2.433 7 GHz -9.13 dBm Ref 20.00 dBm Center Freq 0.00 mun. 2.452000000 GHz alphalalaphala. -6.28 dE -10.0 Start Freq -30.0 2.402000000 GHz Traffin from a procession / land of land of the -40.C -50.0 Stop Freq 2.502000000 GHz Center 2.45200 GHz Span 100.0 MHz **CF Step** 10.000000 MHz #Res BW 100 kHz **#VBW** 300 kHz Sweep 9.60 ms (1001 pts) MKF MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f Man -0.28 dBm -9.13 dBm -6.40 dBm 2.435 7 GHz 2.433 7 GHz 2.470 2 GHz Freq Offset 0 Hz

STATUS

Page: 119 of 135

8. Power Density


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2013
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2013
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

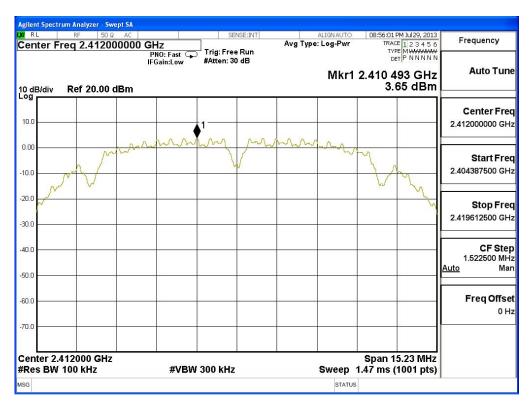
The EUT was setup according to ANSI C63.10, 2009; tested according to DTS test procedure of KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

The maximum power spectral density using KDB 558074 section 10.2 PKPSD (peak PSD) method.

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

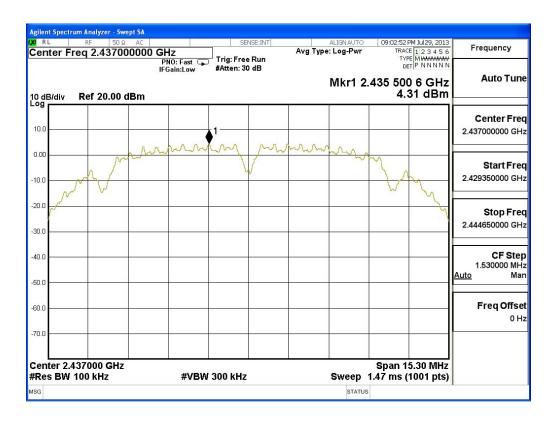

Product : 802.11b/g/n 1T1R Wireless LAN USB Module

Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	3.65	< 8dBm	Pass

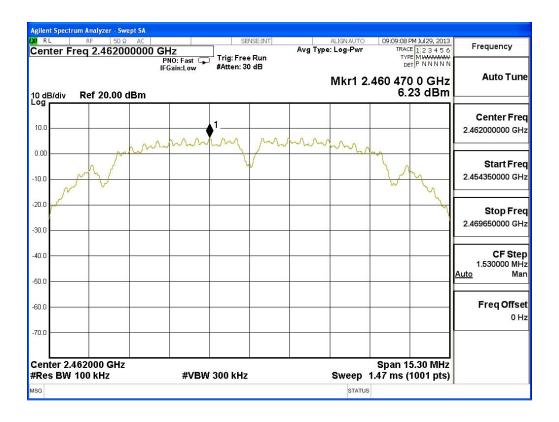


Test Item : Power Density Data

Test Site : No.3OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	4.31	< 8dBm	Pass

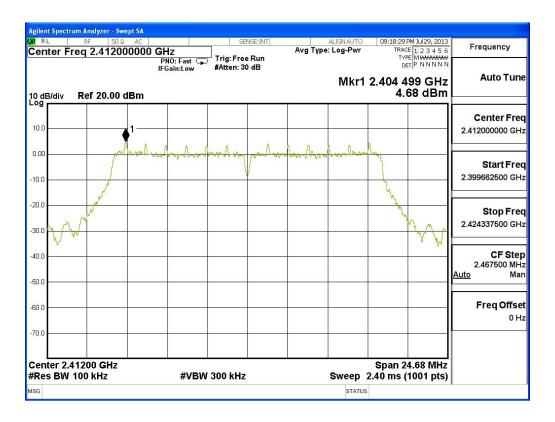


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	6.23	< 8dBm	Pass

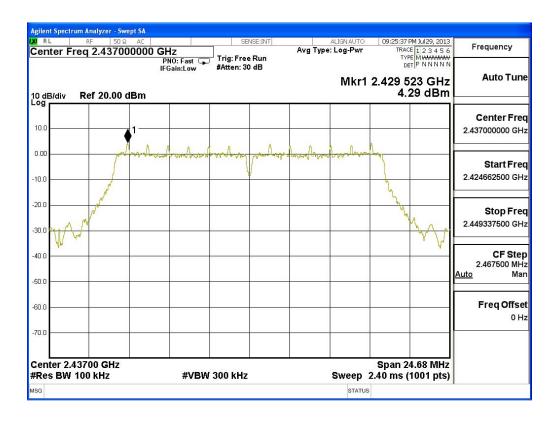


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	4.68	< 8dBm	Pass

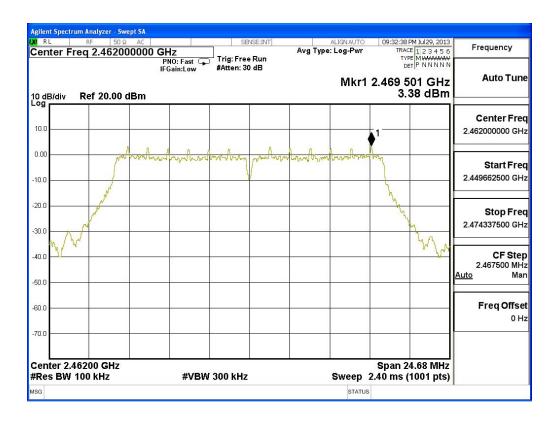


Test Item : Power Density Data

Test Site : No.3OATS

Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	4.29	< 8dBm	Pass

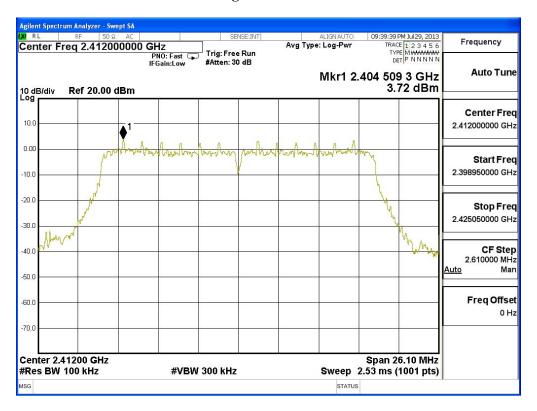


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	3.38	< 8dBm	Pass

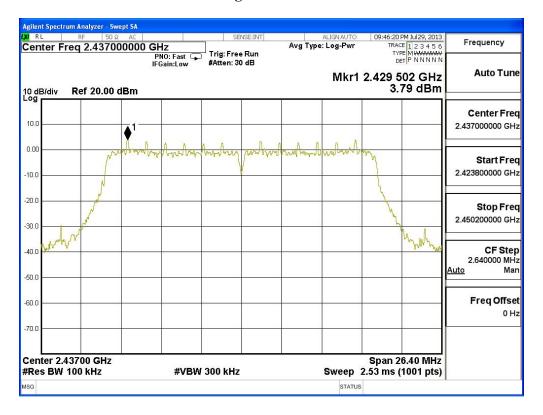


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	3.72	< 8dBm	Pass

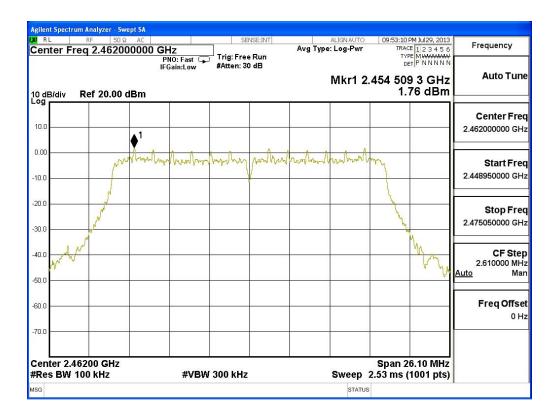


Test Item : Power Density Data

Test Site : No.3OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	3.79	< 8dBm	Pass

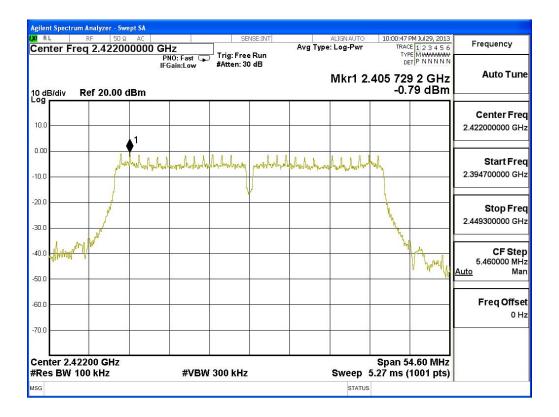


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	1.76	< 8dBm	Pass

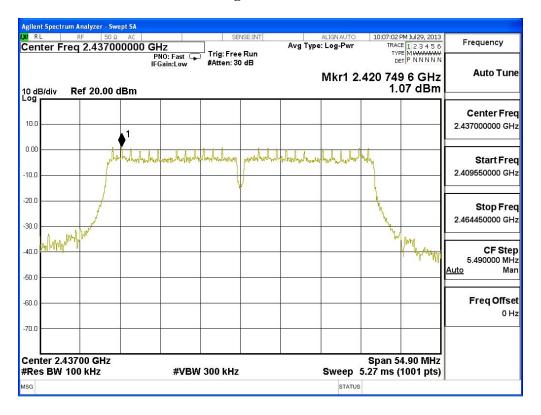


Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
3	2422	-0.79	< 8dBm	Pass

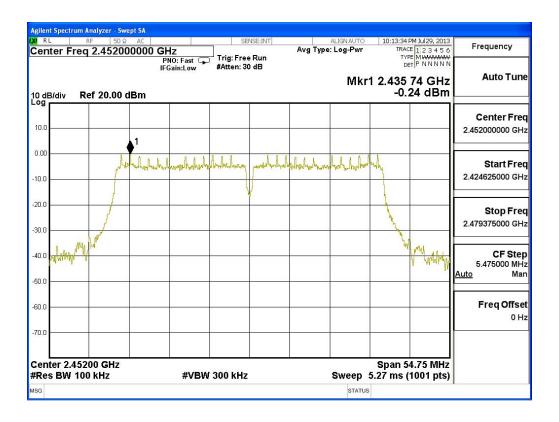


Test Item : Power Density Data

Test Site : No.3OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	1.07	< 8dBm	Pass



Test Item : Power Density Data

Test Site : No.3 OATS

Test Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
9	2452	-0.24	< 8dBm	Pass

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Page: 133 of 135

Attachment 1: EUT Test Photographs

Page: 134 of 135

Attachment 2: EUT Detailed Photographs

Page: 135 of 135