IEEE C95.1 2005 KDB 447498 D01 V06 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

RF EXPOSURE REPORT

For

Wi-Fi (11a/b/g/n 2Tx2R)+BT (V4.2LE) USB Combo Module

Model: WCBN4513R

Trade Name: LITE-ON

Issued to Lite-On Technology Corp. Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: August 22, 2016

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	August 22, 2016	Initial Issue	ALL	Doris Chu
01	August 30, 2016	1. Added section 6.	P.9	Doris Chu

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	4
2.	LIMIT .	5
3.	EUT SPECIFICATION	5
4.	TEST RESULTS	7
5.	MAXIMUM PERMISSIBLE EXPOSU	JRE 8
6.	SIMULTANEOUS TRANSMISSION	SAR ANALYSIS

1. TEST RESULT CERTIFICATION

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
IEEE C95.1 2005 KDB 447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091	No non-compliance noted					

Approved by:

Miller Lee

Miller Lee Manager Compliance Certification Services Inc. Test by:

Dovis Chu

Doris Chu Report coordinator Compliance Certification Services Inc.

2. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

3. EUT SPECIFICATION

Product	Wi-Fi (11a/b/g/n 2Tx2R)+BT (V4.2LE) USB Combo Module			
Model Number	WCBN4513R			
Model Discrepancy	N/A			
Trade Name	LITE-ON			
Frequency band (Operating)	 Bluetooth 2.1 + EDR / 4.0: 2402 MHz ~ 2480 MHz 802.11b/g/n HT20: 2412MHz ~ 2462MHz 802.11n HT40: 2422MHz ~ 2452MHz 802.11a/n HT20: 5180MHz ~ 5700MHz / 5745MHz ~ 5825MHz 802.11n HT40: 5190MHz ~ 5670MHz / 5755MHz ~ 5795MHz Others 			
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others 			
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²) 			

Compliance Certification Services Inc. FCC ID: PPQ-WCBN4513R

Antenna Specification	BT 1. Walsin / RFMTA400530IMAB302 PIFA Antenna / Gain: 3.79dBi 2. Walsin / RFMTA400550IMAB301 PIFA Antenna / Gain: 3.79dBi 3. Hong Lin / 290-10311 PIFA Antenna / Gain: 3.79dBi 4. Hong Lin / 290-10289 PIFA Antenna / Gain: 3.79dBi 2.4G Walsin / RFMTA200700NNLB002 PIFA Antenna Ant0: Gain: 1.63dBi Ant1: Gain: 2.49dBi 5G Walsin / RFMTA200700NNLB002 PIFA Antenna Ant0: Gain: 2.62dBi Ant1: Gain: 3.22dBi BT: Antenna Gain : 3.79 dBi (Numeric gain: 2.39) Worst 2.4GHz: Antenna Gain : 3.22 dBi (Numeric gain: 2.10) Worst 5GHz: Antenna Gain : 3.22 dBi +10log (2) = 5.50 dBi (Numeric gain: 3.55) 5GHz: Directional gain = 3.22 dBi +10log (2) = 6.23 dBi (Numeric gain: 4.20)
Maximum Average output power	Bluetooth Mode :8.39 dBm(6.902 mW)IEEE 802.11b Mode:18.00 dBm(63.096 mW)IEEE 802.11g Mode:22.52 dBm(178.649 mW)IEEE 802.11n HT 20 Mode:22.46 dBm(176.198 mW)IEEE 802.11n HT 40 Mode:13.40 dBm(21.878 mW)IEEE 802.11a Mode:13.36 dBm(21.677 mW)IEEE 802.11n HT 20 Mode:18.48 dBm(70.469 mW)
Maximum Tune up Power	Bluetooth Mode : 9.50 dBm (8.913 mW) IEEE 802.11b Mode: 19.50 dBm (89.125 mW) IEEE 802.11g Mode: 24.00 dBm (251.189 mW) IEEE 802.11n HT 20 Mode: 23.50 dBm (223.872 mW) IEEE 802.11n HT 40 Mode: 14.50 dBm (28.184 mW) IEEE 802.11a Mode: 14.50 dBm (28.184 mW) IEEE 802.11n HT 20 Mode: 19.50 dBm (28.184 mW) IEEE 802.11n HT 40 Mode: 14.50 dBm (28.184 mW) IEEE 802.11n HT 20 Mode: 19.50 dBm (89.125 mW) IEEE 802.11n HT 40 Mode: 18.00 dBm (63.096 mW)
Evaluation applied	 MPE Evaluation* SAR Evaluation N/A

4. TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{377}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm P = Power in mW G = Numeric antenna gain S = Power density in mW / cm^2

5. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = *Numeric* antenna gain

 $S = Power density in mW / cm^2$

Bluetooth mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	79	2480	8.913	2.39	20	0.0042	1

IEEE 802.11b mode:

ſ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
	6	2437	89.125	1.77	20	0.0314	1

IEEE 802.11g mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	251.189	1.77	20	0.0885	1

IEEE 802.11n HT 20 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	6	2437	223.872	3.55	20	0.1582	1

IEEE 802.11n HT 40 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	6	2437	28.184	3.55	20	0.0199	1

IEEE 802.11a mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
44	5220	28.184	2.10	20	0.0118	1

IEEE 802.11n HT 20 mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
157	5785	89.125	4.20	20	0.0745	1

IEEE 802.11n HT 40 mode:

ſ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
	38	5190	63.096	4.20	20	0.0527	1

6. SIMULTANEOUS TRANSMISSION SAR ANALYSIS

Both of the BT and WLAN can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

BT+WIFI

Therefore, the worst-case situation is 0.0042 / 1 + 0.1582 / 1 = 0.1624, which is less than "1".