IEEE C95.1 KDB447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

RF EXPOSURE REPORT

For

802.11a/b/g/n/ac 2T2R + BT4.1LE USB Combo Module

Model: WCBN4502B

Trade Name: LITE-ON

Issued to

Lite-On Technology Corp.
Bldg. C, 90, Chien 1 Road, Chung
Ho, New Taipei City 23585,
Taiwan, R.O.C

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: July 14, 2015

Report No.: T150528W06-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 14, 2015	Initial Issue	ALL	Doris Chu

TABLE OF CONTENTS

1.	LIMIT	4
2.	EUT SPECIFICATION	4
3.	TEST RESULTS	7
4.	MAXIMUM PERMISSIBLE EXPOSURE	8

1. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Report No.: T150528W06-MF

2. EUT SPECIFICATION

EUT	802.11a/b/g/n/ac 2T2R + BT4.1LE USB Combo Module
Model	WCBN4502B
Trade Name	LITE-ON
Frequency band (Operating)	 ☑ Bluetooth 2.1 + EDR / 4.0: 2402 ~ 2480 MHz 802.11b/g/n HT20: 2.412GHz ~ 2.462GHz 802.11n HT40: 2.422GHz ~ 2.452GHz 802.11a/n HT20: 5.180GHz ~ 5.320GHz / 5.500 ~ 5.825GHz 802.11n HT40: 5.190GHz ~ 5.310GHz / 5.510 ~ 5.795GHz 802.11ac VHT80: 5.210GHz ~ 5.290GHz / 5.530 ~ 5.775GHz ☑ Others
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others
Exposure classification	 ☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)

Antenna Specification	BT 1. Walsin / RFMTA400550IMAB301 PIFA Antenna Gain: 3.79 dBi 2. Walsin / RFMTA400536IMAB301 PIFA Antenna Gain: 3.79 dBi 2.4G 1. HONGLIN / 290-10031 PIFA Antenna Ant_1: Gain: 2.2 dBi Ant_2: Gain: 1.1 dBi 2. Walsin / RFMTA200700NNLB002 PIFA Antenna ANTO: Gain: 1.38 dBi ANT2: Gain: 2.49 dBi 5G 1. HONGLIN / 290-10031 PIFA Antenna Ant_1: Gain: 4.6 dBi Ant_2: Gain: 4.7 dBi 2. Walsin / RFMTA200700NNLB002 PIFA Antenna Ant_1: Gain: 4.8 dBi Ant_2: Gain: 4.7 dBi 2. Walsin / RFMTA200700NNLB002 PIFA Antenna ANTO: Gain: 2.48 dBi ANT2: Gain: 3.22 dBi BT: Antenna Gain: 3.79 dBi (Numeric gain: 2.39) Worst 2.4GHz: Antenna Gain: 4.70 dBi (Numeric gain: 2.95) Worst
Maximum Average output power	Bluetooth Mode: 10.16 dBm (10.375 mW) IEEE 802.11b Mode: 19.40 dBm (87.096 mW) IEEE 802.11g Mode: 18.32 dBm (67.920 mW) IEEE 802.11n HT 20 Mode: 20.48 dBm (111.686 mW) IEEE 802.11n HT 40 Mode: 16.14 dBm (41.115 mW) IEEE 802.11a Mode: 18.86 dBm (76.913 mW) IEEE 802.11n HT20 Mode: 19.56 dBm (90.365 mW) IEEE 802.11n HT40 Mode: 19.43 dBm (87.700 mW) IEEE 802.11ac VHT80 Mode: 18.47 dBm (70.307 mW)

Maximum Tune up Power	Bluetooth Mode: IEEE 802.11b Mode: IEEE 802.11g Mode: IEEE 802.11n HT 20 Mode: IEEE 802.11n HT 40 Mode: IEEE 802.11a Mode: IEEE 802.11n HT20 Mode: IEEE 802.11n HT40 Mode: IEEE 802.11n HT40 Mode: IEEE 802.11ac VHT80 Mode:	12.00 dBm 21.00 dBm 20.00 dBm 22.00 dBm 18.00 dBm 20.50 dBm 21.50 dBm 21.00 dBm 20.50 dBm	(15.849 mW) (125.893 mW) (100.000 mW) (158.489 mW) (63.096 mW) (112.202 mW) (141.254 mW) (125.893 mW) (112.202 mW)
Evaluation applied	MPE Evaluation*SAR EvaluationN/A		

Report No.: T150528W06-MF

3. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

4. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Bluetooth mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
	1	2402	15.849	2.39	20	0.0075	1

IEEE 802.11b mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
6	2437	125.893	1.77	20	0.0443	1

IEEE 802.11g mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	6	2437	100	1.77	20	0.0352	1

IEEE 802.11n HT20 mode:

	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	6	2437	158.489	1.77	20	0.0558	1

IEEE 802.11n HT40 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)		Power density in mW / cm ²	Limit (mW/cm2)
ĺ	6	2437	63.096	1.77	20	0.0222	1

IEEE 802.11a mode:

Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
157	5785	112.202	2.95	20	0.0659	1

IEEE 802.11a HT20 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	44	5220	141.254	2.95	20	0.0829	1

IEEE 802.11a HT40 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
	151	5755	125.893	2.95	20	0.0739	1

IEEE 802.11ac VHT80 mode:

ĺ	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ĺ	138	5690	112.202	2.95	20	0.0659	1