

FCC DFS Test Report

FCC ID : PPQ-WCBN3516A

Equipment : 802.11 a/b/g/n 1x1 + BT5.0 + Zigbee(15.4) IoT Module

Brand Name : LITE-ON

Model Name : WCBN3516A

Applicant : LITE-ON Technology Corp.

Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City

23585, Taiwan, R.O.C

Manufacturer : LITE-ON TECHNOLOGY (Changzhou) CO., LTD

A9 Building,No.88 Yanghu Road, Wujin Hi-Tech Industrial Development Zone ,Changzhou City,Jiangsu Province

213100 China

Standard : 47 CFR FCC Part 15.407

The product was received on Jan. 31, 2019, and testing was started from Feb. 21, 2019 and completed on Mar. 05, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of United States government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

FCC ID: PPQ-WCBN3516A

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 23

FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Template No.: HE1-D2 Ver2.3 Report Version : 01

Table of Contents

HIST	ORY OF THIS TEST REPORT	3
SUM	MARY OF TEST RESULT	4
1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	
2	TEST CONFIGURATION OF EUT	8
2.1	Test Channel Frequencies Configuration	8
2.2	The Worst Case Measurement Configuration	8
2.3	Support Equipment	8
3	DYNAMIC FREQUENCY SELECTION (DFS) TEST RESULT	9
3.1	General DFS Information	9
3.2	Radar Test Waveform Calibration	12
3.3	In-service Monitoring	18
4	TEST EQUIPMENT AND CALIBRATION DATA	22
5	MEASUREMENT UNCERTAINTY	23
Appe	endix A. Test Photos	
Dhot	ographs of FUT V01	

Photographs of EUT V01

TEL: 886-3-327-3456 Page Number : 2 of 23 FAX: 886-3-327-0973 Issued Date

Report Template No.: HE1-D2 Ver2.3 FCC ID: PPQ-WCBN3516A

: Mar. 29, 2019 Report Version : 01

History of this test report

Report No. : FZ912411

Report No.	Version	Description	Issued Date
FZ912411	01	Initial issue of report	Mar. 29, 2019

TEL: 886-3-327-3456 Page Number : 3 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

Summary of Test Result

Report No. : FZ912411

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	CMT ≤ 10sec
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	CCTT ≤ 60 ms starting at CMT 200ms
3.3	KDB 905462 7.8.3	DFS: In-Service Monitoring for Non-Occupancy Period (NOP)	PASS	NOP ≥ 30 min

Note: Since the product is client without radar detection function, only Channel Move Time, ChannelClosing Transmission Time and Non-Occupancy Period are required to perform.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and explanations:

None

Reviewed by: Sam Tsai

Report Producer: Debby Hung

TEL: 886-3-327-3456 Page Number : 4 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report No. : FZ912411

1 General Description

1.1 Information

1.1.1 RF General Information

Specification Items	Description					
Product Type	WL	AN (1TX, 1RX)				
Radio Type	Inte	ntional Transceiver				
Power Type	From host system					
Modulation	IEEE 802.11a: OFDM (BPSK / QPSK / 16QAM / 64QAM)					
	IEEE 802.11n: see the below table					
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)					
	IEEE 802.11n: see the below table					
Channel Bandwidth	20 MHz operating channel bandwidth					
Operating Mode	☐ Master					
		Bridge				
	\boxtimes	Mesh				
		Client with radar detection				
	\boxtimes	Client without radar detection	n			
Communication Mode	\boxtimes	IP Based (Load Based)		Frame Based		
TPC Function						
Weather Band (5600~5650MHz)	☐ With 5600~5650MHz ☐ Without 5600~5650MHz					
Software / Firmware Version	2.0.1					
Note: EUT employ a TPC mechanism and TPC have the capability to operate at least 6 dB below highest RF output power.						

Antenna & Bandwidth

anomia a banawatii							
Antenna		One (TX)					
Band width Mode	20 MHz	40 MHz	80 MHz				
IEEE 802.11a	V	X	X				
IEEE 802.11n	V	X	X				
IEEE 802.11ac	V	X	X				

TEL: 886-3-327-3456 Page Number : 5 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Template No.: HE1-D2 Ver2.3 Report Version : 01

FCC ID: PPQ-WCBN3516A

FCC DFS Test Report

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS	
802.11n (HT20)	1	MCS 0-7	

Report No.: FZ912411

Note 1: IEEE Std. 802.11n modulation consists of HT20 (HT: High Throughput).

Then EUT support HT20.

Note 2: HT20 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Information

Ant.	Brand	Model Name	Antenna Type	Connector
1	LITE-ON	-	Printed Antenna	-
2	LITE-ON	-	Printed Antenna	-

Ant.	Port	Gain (dBi)						
Ant.	Port	2.4G	5G	Zigbee	ВТ			
1	1	4.6	4.3	-	-			
2	2	-	-	4.7	4.7			

For 2.4GHz function:

For IEEE 802.11 b/g/n mode (1TX/1RX)

Ant. 1 (port 1) could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11 a/n mode (1TX/1RX)

Ant. 1 (port 1) could transmit/receive simultaneously.

For Zigbee function:

For IEEE 802.11 Zigbee mode (1TX/1RX)

Ant. 2 (port 2) could transmit/receive simultaneously.

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX)

Only Ant. 2 (port 2) could transmit/receive simultaneously.

TEL: 886-3-327-3456 Page Number : 6 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 132, 136, 140.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5250~5350 MHz	52	5260 MHz	60	5300 MHz
U-NII-2A	56	5280 MHz	64	5320 MHz
	100	5500 MHz	132	5660 MHz
	104	5520 MHz	136	5680 MHz
5470~5725 MHz	106	5530 MHz	140	5700 MHz
U-NII-2C	108	5540 MHz	-	-
	112	5560 MHz	-	-
	116	5580 MHz	-	-

Report No.: FZ912411

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02
- KDB 905462 D03 Client Without DFS New Rules v01r02

1.3 Testing Location Information

	Testing Location										
\boxtimes	HWA YA	ADE)	:	No. 52, H	uaya 1st	Rd., Gu	isha	n [Dist., Taoyuan City, Taiwa	n (R.O.C.)
		TEL		:	886-3-327	7-3456	FA	X :		886-3-327-0973	
	Test site Designation No. TW1190 with FCC.										
	JHUBEI	ADE)	:	No.8, Lan	ie 724, B	o-ai St.,	Jhul	oei	City, HsinChu County 30	2, Taiwan, R.O.C.
		TEL		:	886-3-656	6-9065	FA	X :		886-3-656-9085	
	Test site Designation No. TW0006 with FCC.										
To	Test Condition Test Site No. Test Engineer Test Environment Test Date										
	DFS Site)FS							

TEL: 886-3-327-3456 Page Number : 7 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration					
IEEE Std. Test Channel Freq. (MHz)					
802.11a, 802.11n (HT20)	5500 MHz				

Report No. : FZ912411

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests					
Tests Item Dynamic Frequency Selection (DFS)					
Test Condition	Conducted measurement at transmit chains The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used.				
Modulation Mode	802.11a, 802.11n (HT20)				

2.3 Support Equipment

Support Equipment						
No.	Equipment	Brand Name	Model Name			
1	AP (Master)	EDIMAX	EW-7679WAC			
2	NoteBook	DELL	Latitude E5550			
3	Adapter for NB	DELL	FA90PSO-00			
4	NoteBook	DELL	Latitude E5540			
5	Adapter for NB	DELL	FA90PSO-00			

TEL: 886-3-327-3456 Page Number : 8 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values					
Parameter	Value				
Non-occupancy period	Minimum 30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds (Note 1).				
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).				
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).				

Report No.: FZ912411

: 01

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values					
Maximum Transmit Power	Value (see note)				
EIRP≥ 200 mW	-64 dBm				
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm				
EIRP < 200 mW and PSD ≥ 10dBm/MHz	-64 dBm				

- Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.
- Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911.

TEL: 886-3-327-3456 Page Number : 9 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
Non-Occupancy Period	Yes	Not required (See the note)	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Report No.: FZ912411

Note:

According to KDB 905462 D03 Client Without DFS New Rules v01r02 (b) 6."An analyzer plot that contains a single 30-minute sweep on the original channel "

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

TEL: 886-3-327-3456 Page Number : 10 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

FCC DFS Test Report

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.
\boxtimes	Software to ping the client is permitted to simulate data transfer with random ping intervals.
\boxtimes	Minimum channel loading of approximately 17%.
	Unicast protocol has been used.

Report No.: FZ912411

TEL: 886-3-327-3456 Page Number : 11 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

Report No. : FZ912411

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	((1) (19×10 ⁶))	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$Roundup \left\{ \left(\frac{1}{360} \right) \times \left(\frac{19 \times 10^6}{PRI} \right) \right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	l-20 200-500 12-16	60%	30	
Aggrega	ate (Radar Type	s 1-4)	80%	120	

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

- The transmission period for the Long Pulse Radar test signal is 12 seconds.
- There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.
- Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.
- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each
 pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse
 widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and

TEL: 886-3-327-3456 Page Number : 12 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

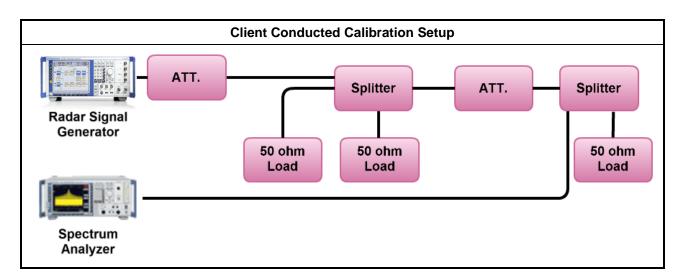
FCC DFS Test Report

- ends at 5310 MHz.
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.

Report No.: FZ912411

The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) – (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

3.2.3 Frequency Hopping Radar Test Waveform

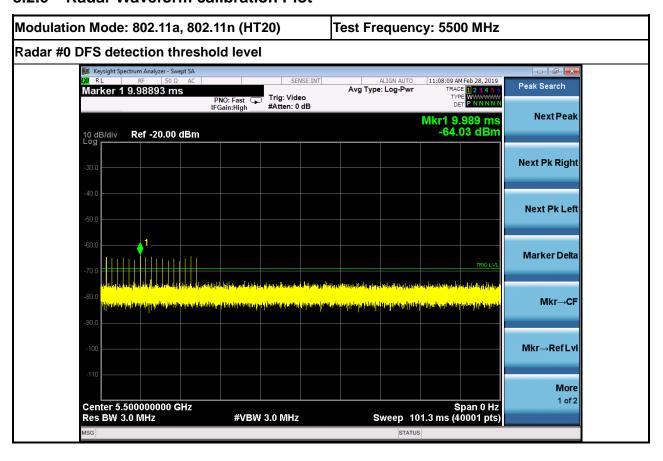

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

3.2.4 DFS Threshold Level

DFS Threshold Level						
DFS Threshold level:	-63	dBm	\boxtimes	at the antenna connector		
				in front of the antenna		
The Interference Radar Detection Threshold Level is $-64 dBm + 0 [dBi] + 1 dB = -63 dBm$. That had been taken into account the output power range and antenna gain.						

3.2.5 Calibration Setup

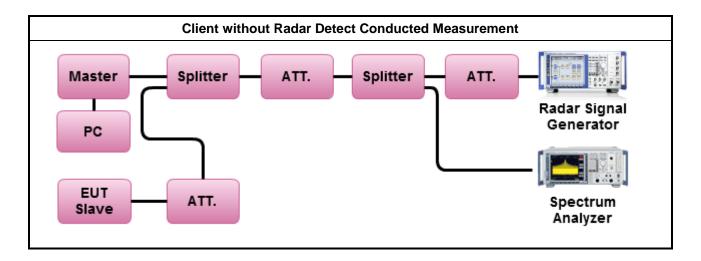

TEL: 886-3-327-3456 Page Number : 13 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

3.2.6 Radar Waveform calibration Plot

Report No. : FZ912411


TEL: 886-3-327-3456 Page Number : 14 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

3.2.7 Test Setup

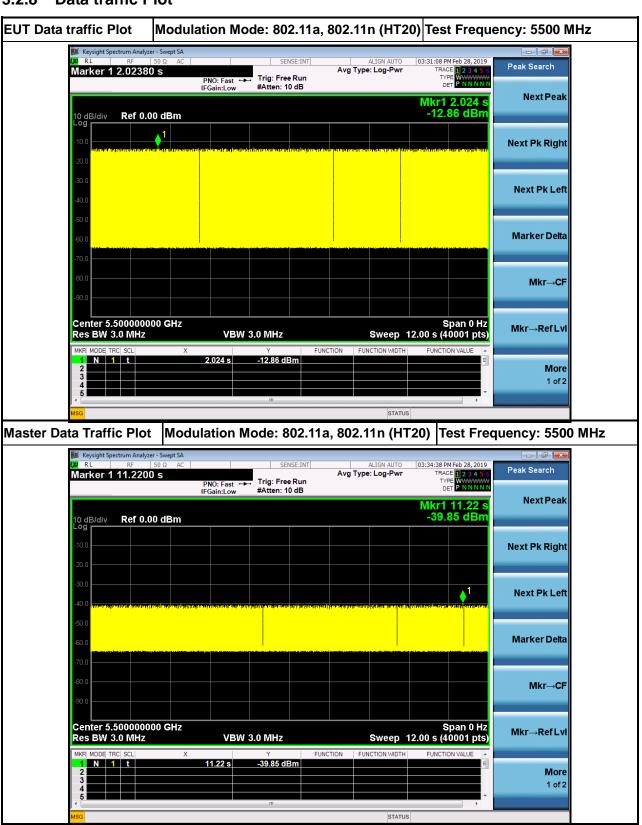
A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.

Report No. : FZ912411

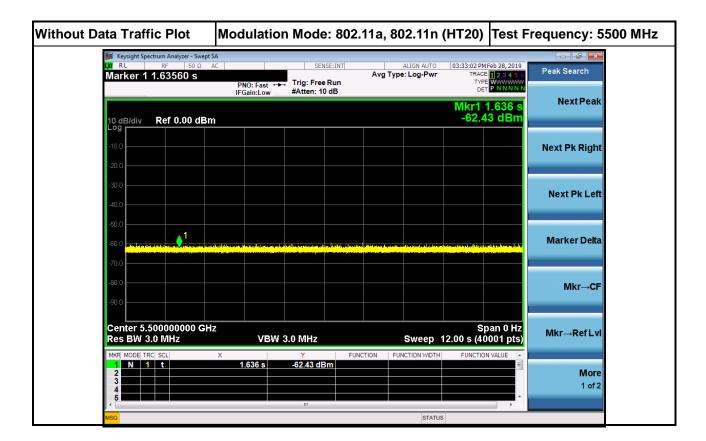
TEL: 886-3-327-3456 Page Number : 15 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01


FCC ID: PPQ-WCBN3516A

Report Template No.: HE1-D2 Ver2.3


Report No.: FZ912411

3.2.8 **Data traffic Plot**

TEL: 886-3-327-3456 Page Number : 16 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

: 01

Report No. : FZ912411

TEL: 886-3-327-3456 Page Number : 17 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

3.3 In-service Monitoring

3.3.1 In-service Monitoring Limit

In-service Monitoring Limit					
Channel Move Time	10 sec				
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.				
Non-occupancy period	Minimum 30 minutes				

Report No.: FZ912411

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

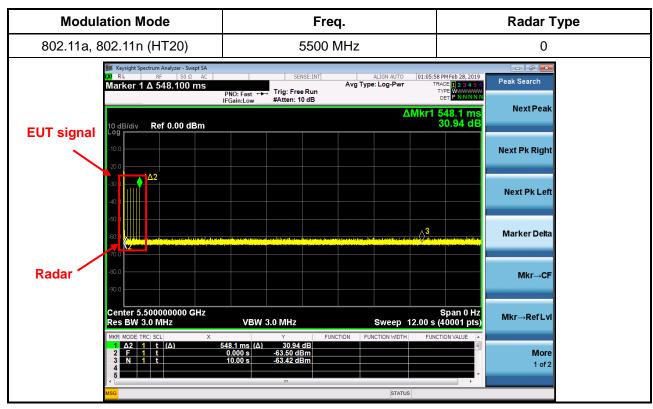
3.3.3 Test Procedures

Test Method

- ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
- ✓ Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.
- ✓ Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

TEL: 886-3-327-3456 Page Number : 18 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

3.3.4 Test Result of In-service Monitoring


Modulation Mode: 802.11a, 802.11n (HT20)

Devemates	Test F	1 : :-		
Parameter	Type 0	Type 5	Limit	
Test Channel (MHz)	5500 MHz	5500 MHz	-	
Channel Move Time (sec.)	0.5481	0	< 10s	
Channel Closing Transmission Time (ms) (Note)	15.600	0	< 60ms	
Non-Occupancy Period (min.)	≥30	-	≥ 30 min	

Report No.: FZ912411

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

3.3.5 Test Plot of In-Service Monitoring for Channel Move Time

TEL: 886-3-327-3456 Page Number : 19 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

3.3.6 Test Plot of In-Service Monitoring for Channel Closing Transmission Time

Modulation Mode	Freq.	Radar Type
802.11a, 802.11n (HT20)	5500 MHz	0

Report No. : FZ912411

Channel Closing Transmission Time is comprised of 200 ms starting at the beginning of the Channel Move Time plus 60ms additional intermittent control signals

TEL: 886-3-327-3456 Page Number : 20 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

3.3.7 Test Plot of In-Service Monitoring for Non-Occupancy Period

Modulation Mode	Freq.	
802.11a, 802.11n (HT20)	5500 MHz	

Report No.: FZ912411

Non-Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

TEL: 886-3-327-3456 Page Number : 21 of 23
FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	Keysight	N9010A	MY55150165	9kHz~7GHz	15/ Nov/2018	14/ Nov/2019
Vector Signal Generator	Keysight	N5182B	MY53051912	9kHz ~ 6GHz	4/Dec/2017	3/Dec/2018
RF cable 0.2m	HUBER+SUHN ER	SUCOFLEX 104	MY22999/2	25 MHz ~ 26.5 GHz	01/Nov/2018	31/Oct/2019
RF cable 0.5m	HUBER+SUHN ER	SUCOFLEX 104	MY22999/3	25 MHz ~ 26.5 GHz	01/Nov/2018	31/Oct/2019
RF cable 1m	HUBER+SUHN ER	SUCOFLEX 104	MY22999/4	25 MHz ~ 26.5 GHz	01/Nov/2018	31/Oct/2019
RF cable 0.5m	MTJ Cooperation	000000-MT18A- 200	D5105	1 GHz ~ 40 GHz	01/Nov/2018	31/Oct/2019

Report No.: FZ912411

TEL: 886-3-327-3456 Page Number : 22 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

Report No.: FZ912411

TEL: 886-3-327-3456 Page Number : 23 of 23 FAX: 886-3-327-0973 Issued Date : Mar. 29, 2019

Report Version

: 01