RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 and IC RSS-247 issue 2
FCC ID	PPQ-WCBN3509A
ISED No.	4491A-WCBN3509A
Product name	802.11a/b/g/n/ac 2Tx2R+BT V4.1LE USB Combo Module
Brand Name	LITE-ON
Model	WCBN3509A
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Reviewed by:

ville

Eric Lee Engineer

Approved by:

tem Clearing

Sam Chuang Manager

Revision History

Rev.	Issue Date	Revisions	Revised By
00	December 5, 2017	Initial Issue	May Lin

Table of contents

1.	GENERAL INFORMATION
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY 6
1.5	FACILITIES AND TEST LOCATION
1.6	INSTRUMENT CALIBRATION
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT8
1.8	TEST METHODOLOGY AND APPLIED STANDARDS8
2.	TEST SUMMERY
3.	DESCRIPTION OF TEST MODES 10
3.1	THE WORST MODE OF OPERATING CONDITION 10
3.2	THE WORST MODE OF MEASUREMENT 11
3.3	EUT DUTY CYCLE 12
4.	TEST RESULT
4.1	AC POWER LINE CONDUCTED EMISSION
4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)
4.3	OUTPUT POWER MEASUREMENT 19
4.4	FREQUENCY SEPARATION
4.5	NUMBER OF HOPPING
4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION
4.7	TIME OF OCCUPANCY (DWELL TIME)
	RADIATION BANDEDGE AND SPURIOUS EMISSION

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	LITE-ON Technology Corp. Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C
Manufacturer	LITE-ON TECHNOLOGY (Changzhou) CO., LTD A9 Building,No.88 Yanghu Road, Wujin Hi-Tech Industrial Development Zone ,Changzhou City,Jiangsu Province 213100 China
Equipment	802.11a/b/g/n/ac 2Tx2R+BT V4.1LE USB Combo Module
Model No.	WCBN3509A
Model Discrepancy	N/A
Trade Name	LITE-ON
Received Date	November 28, 2017
Date of Test	November 30 ~ December 2, 2017
Output Power (W)	GFSK : 0.01449 8DPSK : 0.01549
Power Operation	Powered from host device: DC 5V
HW Version	V05
FW Version	V37.27

Compliance Certification Services Inc. FCC ID: PPQ-WCBN3509A ISED No.: 4491A-WCBN3509A

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	 PIFA PCB Dipole Coils 					
	Brand	P/N	Туре	Cable length	Peak Gain	Worst case
	HongBo	HongBo 290-10569 PIFA 300mm				V
Antenna Gain	2. Power De	rectional Gain: 3.74 ensity Directional Gain: 3.74 enna information:				
	Brand	P/N	Туре	Cable length	Peak Gair	n
	HongBo	290-10310	PIFA	500mm	3.60dBi	
	Walsin	RFMTA401032IMLB702	PIFA	320mm	2.6dBi	
	Walsin	RFMTA401080IMLB701	PIFA	800mm	1.72dBi	
	Walsin	RFMTA401082IMLB701	PIFA	820mm	1.62dBi	

Notes:

1. Power Directional Gain: 10LOG(((10^(Ant1/10)+10^(Ant2/10))/2))

2. Power Density Directional Gain: 10LOG(((10^(Ant1/10)+10^(Ant2/10))/2))+10log(NTX/NSS)

1.4 MEASUREMENT UNCERTAINTY

ΓΑΙΝΤΥ
2575
4003
1372
4003
0138
9483
5975
6112
7389
9683
3509
9869
9651
7807
6437
2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Eric Lee	
Radiation	Kevin Kuo	
RF Conducted	Kevin Kuo	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Power Meter	Anritsu	ML2495A	1033009	04/11/2017	04/10/2018	
Power Sensor	Anritsu	MA2411B	917072	07/03/2017	07/02/2018	
Spectrum Analyzer	R&S	FSV 40	101073	10/02/2017	10/01/2018	
Thermostatic/Hrgrosat ic Chamber	GWINSTEK	GTC-288MH-CC	TH160402	05/23/2017	05/22/2018	
		Wugu 966 Cl	namber A			
Name of Equipment	Manufacturer	Model	Serial Numbe	r Calibration Date	Calibration Due	
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018	
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018	
Horn Antenna	ETS LINDGREN	3116	00026370	01/12/2017	01/11/2018	
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	01/10/2017	01/09/2018	
K Type Cable	Huber+Suhner	SUCOFLEX 102	2 22470/2	01/10/2017	01/09/2018	
Pre-Amplifier	MITEQ	AMF-6F-260400 40-8P	985646	01/10/2017	01/09/2018	
Pre-Amplifier	EMCI	EMC 012635	980151	08/01/2017	07/31/2018	
Pre-Amplifier	EMEC	EM01M26G	60570	08/01/2017	07/31/2018	
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018	
Spectrum Analyzer	Agilent	E4446A	US42510252	11/27/2017	11/26/2018	
Loop Ant	COM-POWER	AL-130	121051	03/02/2017	03/01/2018	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Wideband Radio Communication Tester	R&S	CMW 500	116875	04/25/2017	04/24/2018	

Conducted Emission Room # B							
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration Due							
LISN	R&S	ENV216	101054	05/18/2017	05/17/2018		
LISN	SCHWARZBECK	NSLK 8127	8127-541	02/14/2017	02/13/2018		
EMI Test Receiver	R&S	ESCI	100064	05/17/2017	05/16/2018		

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No. Equipment Brand Model Series No. FCC ID							
	N/A						

	Support Equipment					
No.	No. Equipment Brand Model Series No. BSMI ID				BSMI ID	
1	NB(H)	Acer	Aspire 4320 series	N/A	QDS-BRCM1018	

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 4.

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.1)(a)	4.2	20 dB Bandwidth	-
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	-
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

FCC ID: PPQ-WCBN3509A

CESRE Compliance Certification Services Inc.

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) π/4-DQPSK for EDR-2Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz π/4-DQPSK for EDR-2Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2402MHz 3.Highest Channel : 2402MHz 3.Highest Channel : 2480MHz

ISED No.: 4491A-WCBN3509A

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

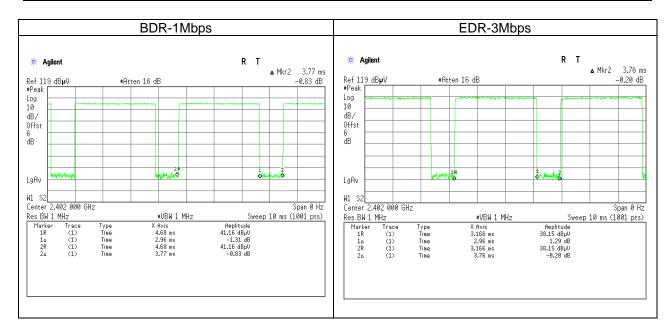
3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission			
Test Condition AC Power line conducted emission for line and neutral			
Voltage/Hz DC 5V			
Test Mode Mode 1: EUT power by Host System.			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz DC 5V				
Test Mode Mode 1: EUT power by host system.				
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			

Radiated Emission Measurement Above 1G			
Test Condition	Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz DC 5V			
Test Mode Mode 1: EUT power by Host System			
Worst Mode I Mode 1 Mode 2 Mode 3 Mode 4			
Worst PositionImage: Worst PositionImage: Placed in fixed position at X-Plane (E2-Plane)Image: Placed in fixed position at Y-Plane (E1-Plane)Image: Placed in fixed position at Y-Plane (H-Plane)Image: Placed in fixed position at Z-Plane (H-Plane)			
Worst Polarity	Horizontal 🛛 Vertical		

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (Z-Plane and Vertical) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

3.3 EUT DUTY CYCLE

Duty Cycle					
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)	
BDR-1Mbps	2.9600	3.7700	78.51%	1.05	
EDR-3Mbps	2.9600	3.7600	78.72%	1.04	

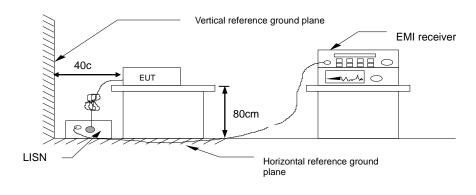
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

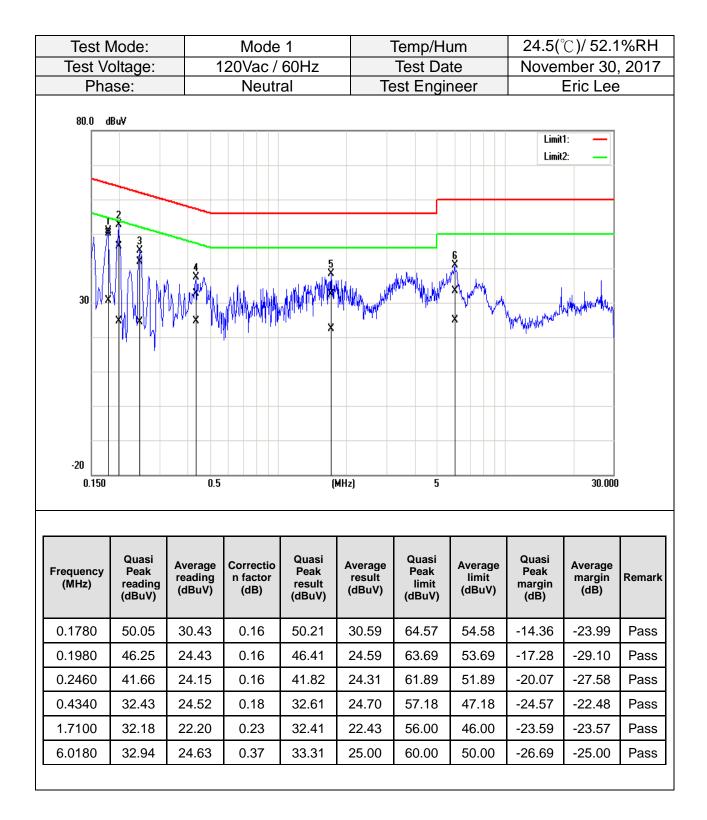
According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result PASS

Test M	ode:		Mode		-	Temp/Hu			°C)/ 52.1	
Test Voltage:		1	20Vac /			Test Date		November 30		
Phas	se:		Line	;	Te	est Engir	neer		Eric Lee	
80.0 dB	uV									
								Limit Limit		
2										
1 X	2									
¥)	n Å Å	4		F		6				
	1 Î I I M	, Jak		, waakii		NUMA ULL				
30 / *		A A W	MANAN		WWW WWW	· · × · · ·	N. M.	WALL	Introduction Marking	
* "	*	N N Y	N T	* *		×		. V W.W.	<u> </u>	
-20										
0.150		0.5		()	(Hz)	5			30.000	
Frequency (MHz)		Average reading (dBuV)	Correctio n factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remark
0.1500	46.67	24.58	0.08	46.75	24.66	66.00	56.00	-19.25	-31.34	Pass
0.1820	50.67	31.37	0.09	50.76	31.46	64.39	54.39	-13.63	-22.93	Pass
0.2300	39.89	22.89	0.09	39.98	22.98	62.45	52.45	-22.47	-29.47	Pass
0.4740	35.26	28.39	0.10	35.36	28.49	56.44	46.44	-21.08	-17.95	Pass
	31.86	22.27	0.16	32.02	22.43	56.00	46.00	-23.98	-23.57	Pass
1.7700	01.00		00							

4.220DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.6,

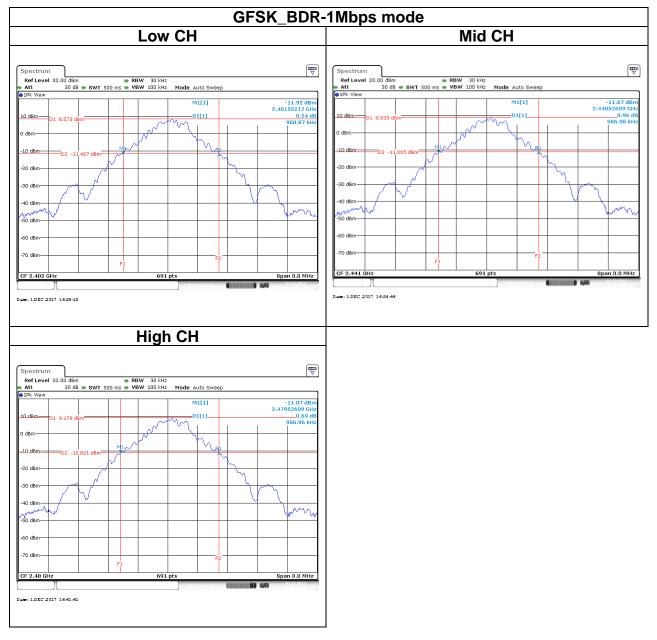
20 dB Bandwidth : For reporting purposes only.

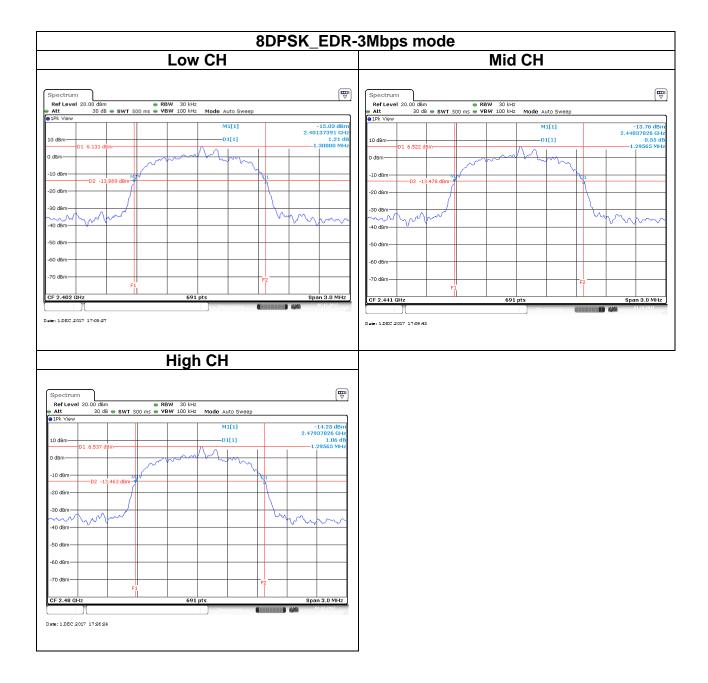

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 11.8.1,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.


4.2.3 Test Setup



4.2.4 Test Result

Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	2402	0.9117	0.9608		
Mid	2441	0.9160	0.9869		
High	2480	0.9160	0.9869		

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)		
Low	2402	1.1852	1.3000		
Mid	2441	1.1852	1.2956		
High	2480	1.1895	1.2956		

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.4(b)

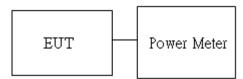
Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

<u>IC</u>

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


	Antenna not exceed 6 dBi : 21dBm
Limit	Antenna with DG greater than 6 dBi : 21dBm
	[Limit = 30 - (DG - 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

For GFSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	11.35	0.01365		PASS
Mid	2441	11.61	*0.01449	0.125	PASS
High	2480	11.54	0.01426		PASS

For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	11.68	0.01472		PASS
Mid	2441	11.90	*0.01549	0.125	PASS
High	2480	11.86	0.01535		PASS

Average output power :

For GFSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	EIRP Power (dBm)	EIRP Power (W)
Low	2402	10.64	0.01159	15.44	0.03499
Mid	2441	10.95	0.01245	15.75	0.03758
High	2480	10.87	0.01222	15.67	0.03690

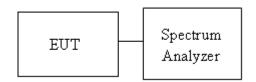
For 8DPSK / DH5

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	EIRP Power (dBm)	EIRP Power (W)
Low	2402	8.27	0.00671	14.30	0.02692
Mid	2441	8.56	0.00718	14.59	0.02877
High	2480	8.46	0.00701	14.49	0.02812

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)

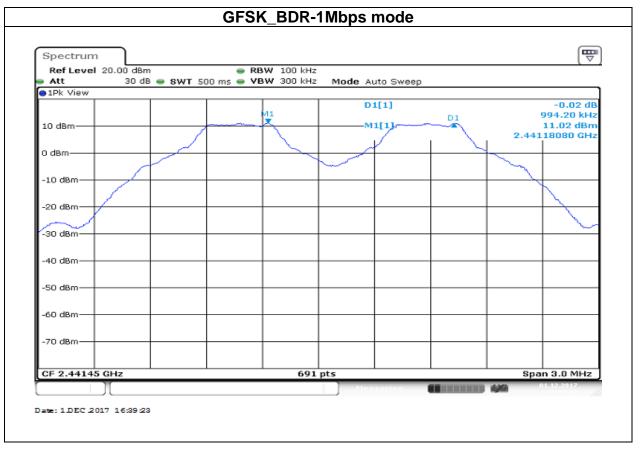

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth
-------	-------------------------------------

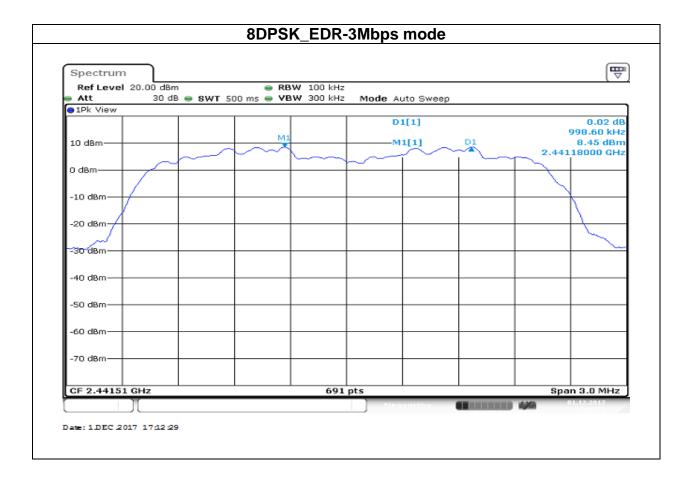
4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup



4.4.4 Test Result

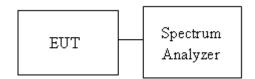

Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result
Low	2402	0.9942	0.641	PASS
Mid	2441	0.9942	0.658	PASS
High	2480	0.9942	0.658	PASS

	Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	0.9986	0.867	PASS	
Mid	2441	0.9986	0.840	PASS	
High	2480	0.9986	0.840	PASS	

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)


Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW
- =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup

4.5.4 Test Result

Number of Hopping					
Mode Frequency Channel (MHz) Number		Hopping Channel Number Limits	Result		
BDR-1Mbps	2402-2480	79	15	Deee	
EDR-3Mbps	2402-2480	79	15	- Pass	

REMARK:

The frequency spectrum was broken up in to two sub-range to clearly show all of the hopping frequencies. In the AFH mode, this device operation was using 20 channels, so the requirement for minimum number of hopping channels is satisfied

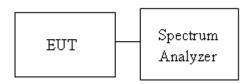
Number	of Hopping
GFSK_BDR-1Mbps mode	8DPSK_EDR-3Mbps mode
Spectrum Image: Constraint of the second secon	Spectrum Ref Level 20.00 dbm RBW 100 HHz Mode Auto Sweep Att 30 db = SWT 1 s = VBW 300 HHz Mode Auto Sweep 0.00 dbm D2K View M2[1] 2.400 HB0 GH 0.00 dbm 0 dbm M1[1] 0.00 dbm 0.00 dbm 10 dbm M0[1] 0.00 dbm 0.0

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

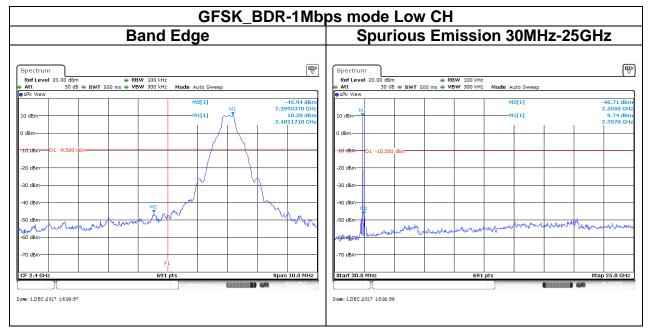
4.6.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

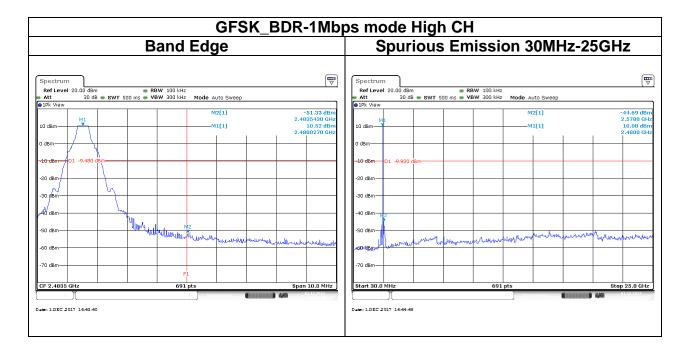
Limit	
	-20 dbc

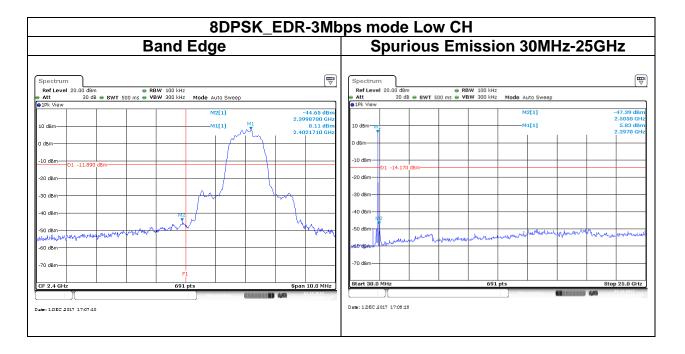

4.6.2 Test Procedure

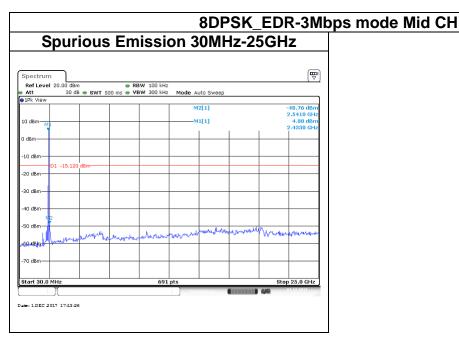
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

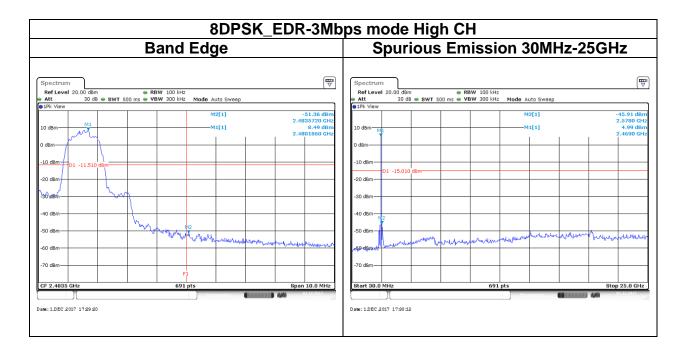

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.


4.6.3 Test Setup


4.6.4 Test Result



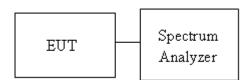


GFSK_BDR-1Mb	ps Hopping mode		
Low Band Edge	High Band Edge		
Spectrum Image: Constraint of the second secon	Inigit Datiu Luge Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colsp		
70 dbm F1 F2.4 GHz 691 pts Span 83.5 MHz	-70 dBm - F1 - CF 2.4835 GHz 691 pts Span 83.5 MHz		

8DPSK_EDR-3Mb	ps Hopping mode		
Low Band Edge	High Band Edge		
Spectrum Imp Ref Level 20.00 dBm • RBW 100 HHz Att 30 dB = SWT 1 s = VBW 300 HHz • IPk View Mode Auto Sweep	Spectrum (The section of the section of t		
10.48m 01 8.620 dam 01 8.620 dam 00 8.620 dam	10.d8m 01 9.620 d8m 22.512140 GHz		
-10 dBm02 -11 380 dBm	-10 dBm02 -11.380 dBm		
-30 d8m	-30 dBm		
40 and 10 Milling Willing with	-50 dBm		
-60 d8m	-60 dBm		
F1 F2 CF 2.4 GHz 691 pts Span 83.5 MHz	F1 F1 CF 2.4835 GHz 691 pts Span 83.5 MHz		
Dame: 1.DEC 2017 17:00:12	Dame: 1DEC 2017 17:01:27		

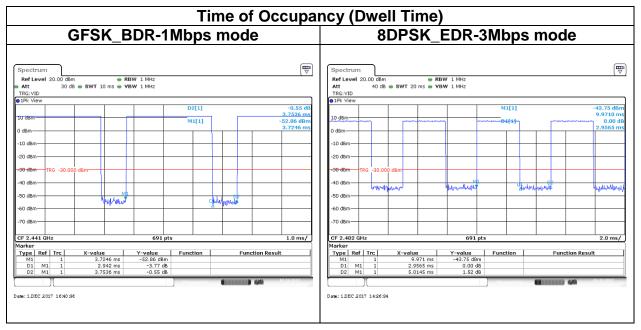
4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit


According to §15.247(a)(1)(iii)and RSS-247 section 5.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure


- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup

4.7.4 Test Result

Time of Occupancy (Dwell Time)							
Mode	Frequency (MHz)	Pulse Time Per Hopping (ms)	Minimum Number of Hopping Freq.	Number of pulse in	pulse in IN		Result
				(0.4 * N sec)	(0.4 * N sec)	Limits (s)	
BDR-1Mbps	2441	2.942	79	106.67	0.3138	0.4	Pass
EDR-3Mbps	2441	2.9565	79	106.67	0.3154	0.4	Fa55
Non-AFH: DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6							
AFH: DH5 Packet permit maximum 800/ 20 / 6 = 6.666 hops per second in each channel (5 time slots RX,							
1 time slot TX). So, the dwell time is the time duration of the pulse times $6.666*0.4*20 = 53.33$							

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Frequency Field Strength (microvolts/m)		Measurement Distance (metres)	
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300	
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30	
1.705-30 MHz	30	N/A	30	

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters	Receivers		
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

4.8.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

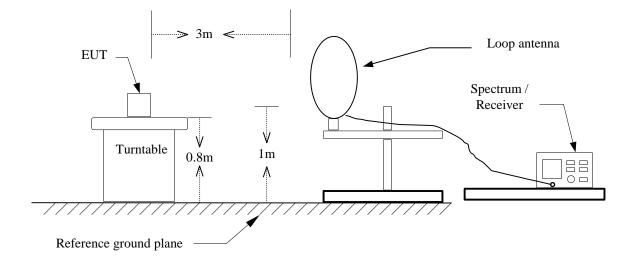
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

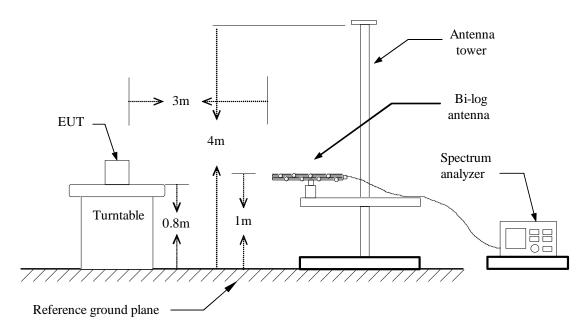
4. For harmonic, the worst case of output power was BDR-1Mbps. Therefore only BDR-1Mbps record in the report.

5. The SA setting following :

- (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
- (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

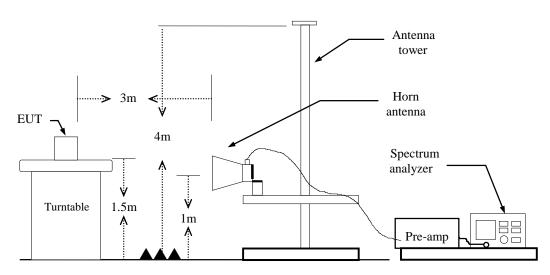

If Duty Cycle \geq 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW≥1/T.


Configuration	Duty Cycle (%)	T(ms)	1/T (Hz)	VBW setting
GFSK_BDR-1Mbps	79%	2.9600	0.338	360Hz
8DPSK_EDR-3Mbps	79%	2.9600	0.338	360Hz

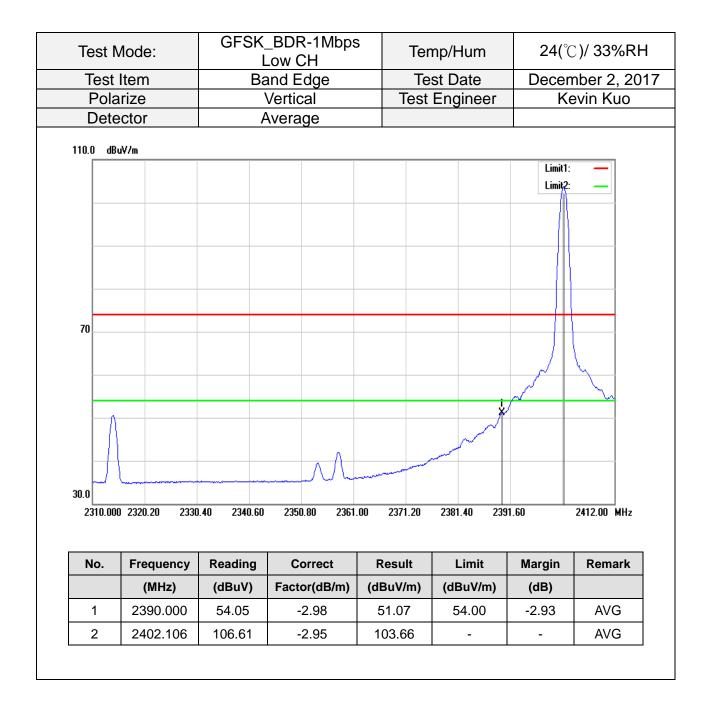
4.8.3 Test Setup

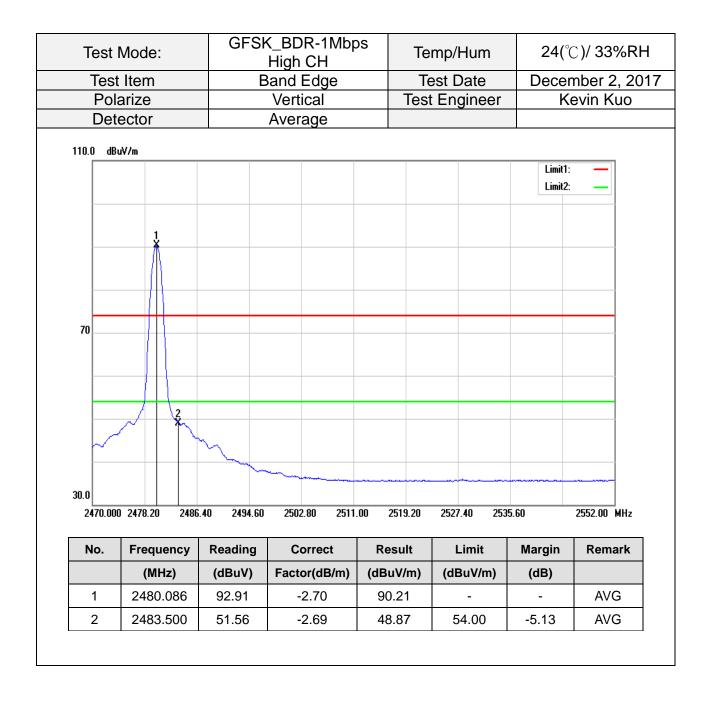
<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

CESRE Compliance Certification Services Inc. ISED No.: 4491A-WCBN3509A

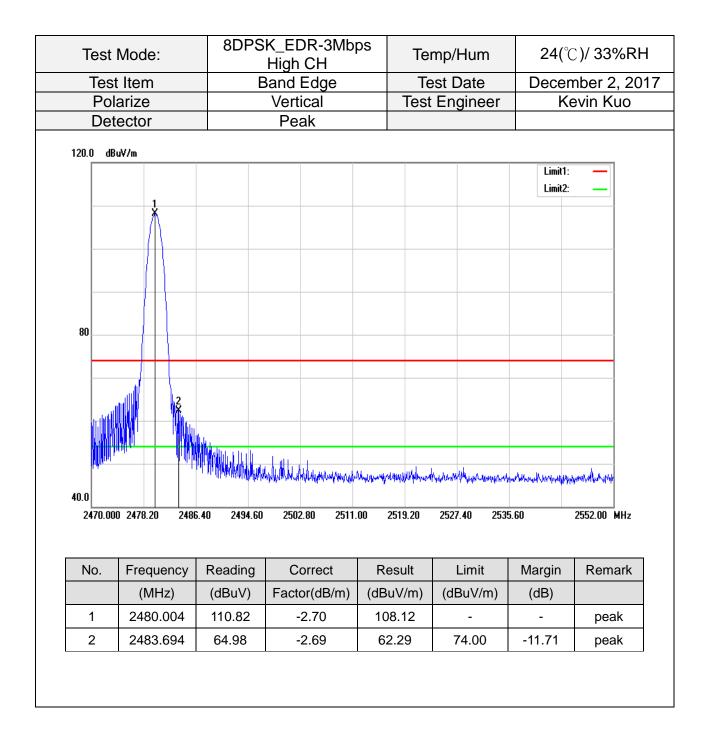
Above 1 GHz


FCC ID: PPQ-WCBN3509A

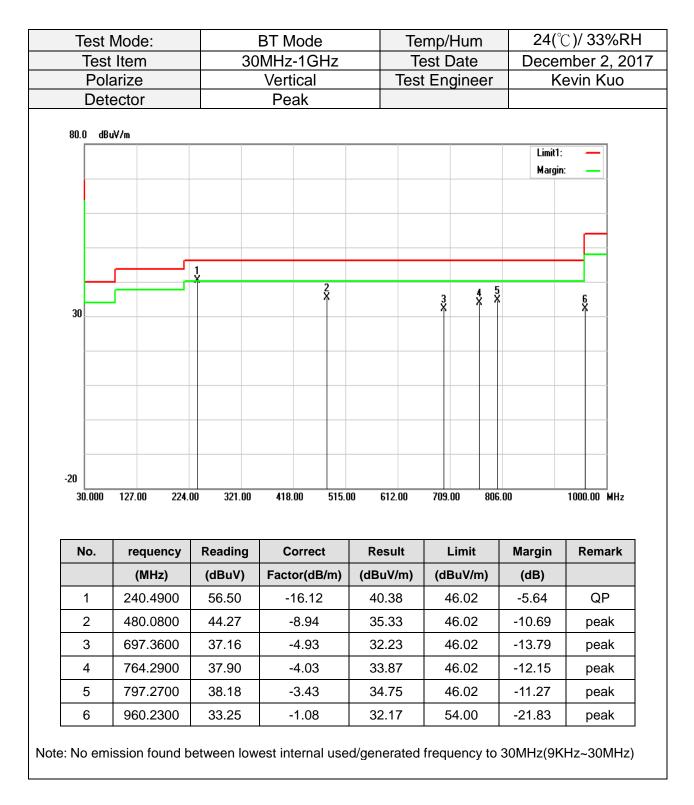

4.8.4 Test Result

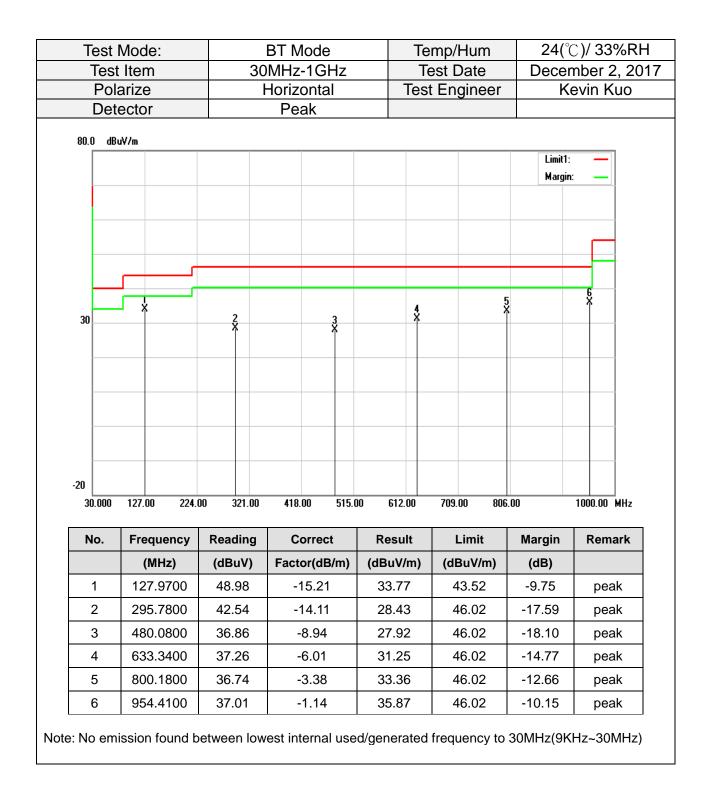
Band Edge Test Data

Test N	Mode:		_BDR-1Mbps .ow CH	³ Ter	mp/Hum	24(°C	C)/ 33%RH
	Item		and Edge		est Date		nber 2, 2017
	arize	· · · · ·	Vertical	Test	Engineer	Ke	evin Kuo
Dete	ector		Peak				
120.0 dB	uV/m			1			
						Limit1: Limit2:	_
80					1	2 A A A A A A	
40.0	0 2320.20 2330		phymythytenall ¹ /mythytenall ¹ /myt		2381.40 2391		2412.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	66.25	-2.98	63.27	74.00	-10.73	peak
2	2402.004	107.46	-2.95	104.51	-	-	peak
۷	2702.004	107.40	-2.33	104.01			реак



	Mode:		K_BDR-1Mbp High CH	Ie	emp/Hum	· ·	C)/ 33%RH
	t Item	E	Band Edge		est Date		nber 2, 201
	larize		Vertical	Tes	t Engineer	Ke	evin Kuo
Det	tector		Peak				
120.0 dB	8u¥/m						
						Limit1: Limit2:	_
	1						
80							
~~^	m m	Aur Lun					
40.0			the have no seen and respectively and				
2470.00	0 2478.20 2486		2502.80 2511		2527.40 253		2552.00 MHz
	Frequenc	R ading	Correct	Result	Limit	Margin	Remark
No.				(dBuV/m)	(dBuV/m)	(dB)	
	(MHz)	(dBuV)	Factor(dB/m)				
No.	(MHz) 2480.004 2483.612	(dBuV) 93.82 63.02	-2.70 -2.69	91.12 60.33	- 74.00	-13.67	peak peak


	Mode:		K_EDR-3Mb Low CH	ps	Temp/Hum		C)/ 33%RH
	t Item	E	and Edge		Test Date		mber 2, 20′
	arize		Vertical	Т	est Engineer	K	evin Kuo
Det	ector		Peak				
120.0 dB	uV/m						
80							
	And with my terms to with a day	eraty of high particulations	rologialanicherricitatilith	anddydd			
40.0	0 2320.20 2330	40 2340.60	2350.80 2361	.00 2371.	20 2381.40 23	91.60	2412.00 MHz
2310.00	0 2320.20 2330	2010.00	2330.00 2301.	.00 2511.	20 2301.40 23	31.00	2412.00 MHZ
No.	Frequency	Reading	Correct	Resul	t Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/r	n) (dBuV/m)	(dB)	
1	2386.500	61.15	-2.99	58.16	74.00	-15.84	peak
2	2402.004	112.10	-2.95	109.1	5 -	-	peak
						•	


	Mode:		K_EDR-3Mbp Low CH	le	mp/Hum		C)/ 33%RH
	t Item	E	Band Edge		est Date		nber 2, 201
	larize		Vertical	Test	Engineer	Ke	evin Kuo
De	tector		Average				
110.0 dl	3u¥/m						
						Limit1: Limit2:	_
70							
					1		
30.0							
2310.00	00 2320.20 2330.	40 2340.60	2350.80 2361.1	00 2371.20	2381.40 2391	.60	2412.00 MHz
No.	Freque cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	40.09	-2.98	37.11	54.00	-16.89	AVG
2	2402.106	108.13	-2.95	105.18	-	-	AVG

Test	Mode:	8DPS	K_EDR-3Mb High CH	ps	Te	mp/Hum	24(°(C)/ 33%RH
Test	t Item	E	Band Edge			est Date		nber 2, 2017
Pol	arize		Vertical		Test	Engineer	Ke	evin Kuo
Det	ector		Average					
110.0 dB	uV/m							
70							Limit2:	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
30.0								
2470.00	0 2478.20 2486	.40 2494.60	2502.80 2511	.00 2	2519.20	2527.40 253	5.60	2552.00 MHz
No.	Frequency	Reading	Correct	Re	esult	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dB	uV/m)	(dBuV/m)	(dB)	
1	2480.004	106.89	-2.70		4.19	-	-	AVG
2	2483.500	43.15	-2.69	40	).46	54.00	-13.54	AVG
	· · · · ·							·

### Below 1G Test Data





### Above 1G Test Data

Test	Mode:		GFS	SK_BD Low	R-1Mb CH	ps	Terr	np/Hum	24 <b>(</b> °(	C)/ 33%RH
Test	Item			Harm			Tes	st Date	Decer	nber 2, 20 ⁻
	arize			Vert				Engineer		evin Kuo
Det	ector		Pea	ak and	Averag	je				
110.0 dB	JV/m									
									Limit1: Limit2:	
70										
	>	l K								
30.0										
1000.000	) 3550.00	6100.0	DO 8650.1	UU 112	00.00 137	50.00	16300.00	18850.00 21400	J.UU	26500.00 MHz
No.	Freque	ncy	Reading	g (	Correct	I	Result	Limit	Margin	Remark
	(MHz	z)	(dBuV)	Fac	tor(dB/m	) (d	BuV/m)	(dBuV/m)	(dB)	
1	4806.0	000	42.26		4.35		46.61	74.00	-27.39	peak

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

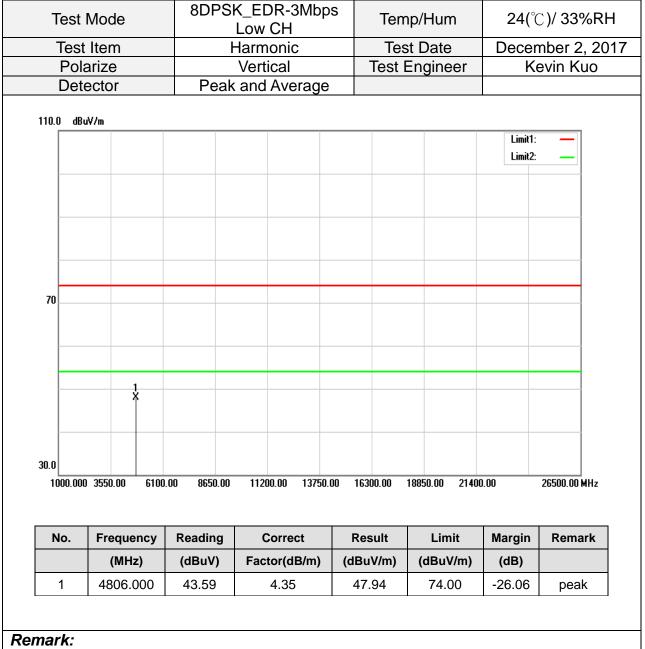
	Mode:		GF	Low		s		np/Hum		C)/ 33%RH
	t Item			Harm				st Date		nber 2, 201
	arize		_	Horiz			Test	Engineer	K	evin Kuo
Det	tector		Pe	eak and	Average	e				
110.0 dB	uV/m									
									Limit1:	
									Limit2:	
70										
		1 X								
30.0										
1000.00	0 3550.00	6100	.00 8650	.00 112	00.00 1375	0.00 16	300.00	18850.00 2140	0.00	26500.00 MHz
No.	Frequ	ency	Readin	g (	Correct	Re	sult	Limit	Margin	Remark
	(MH	lz)	(dBuV	) Fac	tor(dB/m)	(dB	uV/m)	(dBuV/m)	(dB)	
1	4806.	.000	41.32		4.35	45	5.67	74.00	-28.33	peak
								-	•	
mark:										
	Measur									

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	Mode:		C_BDR-1Mbps Mid CH	Terr	np/Hum		C)/ 33%RH
	t Item	ŀ	Harmonic		st Date		nber 2, 201
	arize		Vertical		Engineer	Ke	evin Kuo
Det	ector	Peak	and Average				
110.0 dB	uV/m						
						Limit1: Limit2:	_
70							
	1 ¥						
30.0							
1000.00	0 3550.00 6100.	00 8650.00	11200.00 13750.	00 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4883.000	42.41	4.49	46.90	74.00	-27.10	peak
emark:			s from 1 GHz				

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	Mode:		C_BDR-1Mbps Mid CH	Ten	np/Hum		C) <b>/ 33%RH</b>
	Item		Harmonic		st Date		nber 2, 201
	arize		lorizontal	Test	Engineer	Ke	evin Kuo
Det	ector	Peak	and Average				
110.0 dBu	uV/m						
						Limit1: Limit2:	_
70							
	1						
	×						
30.0							
1000.000	) 3550.00 6100	.00 8650.00	11200.00 13750.0	0 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	4882.000	41.87	4.49	46.36	74.00	-27.64	peak


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	Mode:		(_BDR-1Mbp High CH	Ten	np/Hum		C)/ 33%RH
	Item	ŀ	Harmonic		st Date		nber 2, 201
	arize		Vertical		Engineer	Ke	evin Kuo
Det	ector	Peak	and Average				
110.0 dBu	uV/m						
						Limit1: Limit2:	_
70							
	1 X						
30.0							
1000.000	0 3550.00 6100	.00 8650.00	11200.00 13750.	00 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	37.68	4.61	42.29	74.00	-31.71	peak
	· · · · · · · · · · · · · · · · · · ·						
emark:							

- fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

mber 2, 201 Cevin Kuo
Cevin Kuo
1: <u>—</u> 2: <u>—</u>
26500.00 MHz
Remark
peak

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode		K_EDR-3Mbp Low CH	Ten	np/Hum		C)/ 33%RI
	t Item		Harmonic		Test Date		nber 2, 20
	arize		lorizontal	Test	Engineer	Ke	evin Kuo
Det	ector	Peak	and Average				
110.0 dB	uV/m						
						Limit1: Limit2:	_
70							
	X						
30.0							
1000.000	0 3550.00 6100	.00 8650.00	11200.00 13750.0	0 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4806.000	43.59	4.35	47.94	74.00	-26.06	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode	8DPS	S Terr	Temp/Hum		24(℃)/ 33%RH	
	Item	ł	Harmonic		Test Date		nber 2, 201
	arize		Vertical	Test	Engineer	Ke	evin Kuo
Dete	ector	Peak	and Average				
110.0 dBu	i¥/m						
						Limit1: Limit2:	
70							
	×						
30.0							
1000.000	) 3550.00 6100	.00 8650.00	11200.00 13750.0	0 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4883.000	43.18	4.49	47.67	74.00	-26.33	peak

- fundamental frequency.2. For above 1GHz, the EUT peak value was under average limit, therefore the
  - Average value compliance with the average limit

Test	Mode		8DP	SK_EI Mid	DR-3Mb CH	ps		np/Hum	24(°(	C) <b>/ 33%R</b> H
	Item			Harm	Harmonic T			st Date	December 2, 20	
	arize			Horiz			Test Engineer		Ke	evin Kuo
Det	ector		Pea	ak and	Averag	е				
110.0 dB	ıV/m									
									Limit1: Limit2:	_
70										
	1	4								
30.0										
	) 3550.00	6100.0	0 8650.0	0 1120	00.00 1375	0.00 ·	16300.00	18850.00 2140	D.00	26500.00 MHz
No.	Freque	ncy	Reading	0	Correct	F	Result	Limit	Margin	Remark
	(MHz	:)	(dBuV)	Fac	tor(dB/m)	(d	BuV/m)	(dBuV/m)	(dB)	
1	4883.0	00	43.04		4.49	4	47.53	74.00	-26.47	peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode		K_EDR-3Mbp High CH	s Terr	Temp/Hum		24(℃)/ 33%RH	
	t Item		Harmonic		Test Date		nber 2, 201	
	arize		Vertical	Test I	Engineer	Ke	evin Kuo	
Det	ector	Peak	and Average					
110.0 dB	uV/m							
						Limit1: Limit2:	_	
70								
30.0								
	0 3550.00 6100.	00 8650.00	11200.00 13750.0	00 16300.00	18850.00 21400	).00	26500.00 MHz	
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	4960.000	43.60	4.61	48.21	74.00	-25.79	peak	
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test	Mode		K_EDR-3Mbp: High CH	³ Ten	np/Hum	<b>24(</b> °(	c)/ 33%RH
Tes	t Item		Harmonic	Tes	st Date	Decen	nber 2, 201
Pol	arize	F	lorizontal	Test	Engineer	Ke	evin Kuo
Det	ector	Peak	and Average				
110.0 dB	uV/m						
						Limit1: Limit2:	_
70							
30.0	0 3550.00 6100	.00 8650.00	11200.00 13750.0	0 16300.00	18850.00 21400	).00	26500.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
NO.	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Keillark
1	4960.000	43.87	4.61	48.48	74.00	-25.52	peak
L	1				1	I	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit