ISED No: 4491A-WCBN3507R

**CELER** Compliance Certification Services Inc.

FCC ID: PPQ-WCBN3507R

| Test Standard | FCC Part 15.247 + IC RSS-247 issue 2              |
|---------------|---------------------------------------------------|
| FCC ID        | PPQ-WCBN3507R                                     |
| ISED No.      | 4491A-WCBN3507R                                   |
| Brand name    | LITE-ON                                           |
| Product name  | 802.11a/b/g/n/ac 2Tx2R+BT V4.2LE USB Combo Module |
| Model No.     | WCBN3507R                                         |
| Test Result   | Pass                                              |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory).





Approved by:

Hem Cleang

Sam Chuang Manager

Tested by:

erry Chiang

Jerry Chuang Engineer



# **Revision History**

| Rev. | Issue Date        | Revisions     | Revised By |
|------|-------------------|---------------|------------|
| 00   | December 18, 2017 | Initial Issue | May Lin    |

# **Table of contents**

| 1.  | GENERAL INFORMATION4                        |
|-----|---------------------------------------------|
| 1.1 | EUT INFORMATION4                            |
| 1.2 | EUT CHANNEL INFORMATION5                    |
| 1.3 | ANTENNA INFORMATION5                        |
| 1.4 | MEASUREMENT UNCERTAINTY6                    |
| 1.5 | FACILITIES AND TEST LOCATION7               |
| 1.6 | INSTRUMENT CALIBRATION7                     |
| 1.7 | SUPPORT AND EUT ACCESSORIES EQUIPMENT8      |
| 1.8 | TEST METHODOLOGY AND APPLIED STANDARDS8     |
| 2.  | TEST SUMMERY9                               |
| 3.  | DESCRIPTION OF TEST MODES10                 |
| 3.1 | THE WORST MODE OF OPERATING CONDITION10     |
| 3.2 | THE WORST MODE OF MEASUREMENT11             |
| 4.  | EUT DUTY CYCLE                              |
| 5.  | TEST RESULT13                               |
| 5.1 | AC POWER LINE CONDUCTED EMISSION            |
| 5.2 | 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)16 |
| 5.3 | OUTPUT POWER MEASUREMENT24                  |
| 5.4 | POWER SPECTRAL DENSITY                      |
| 5.5 | CONDUCTED BANDEDGE AND SPURIOUS EMISSION    |
| 5.6 | RADIATION BANDEDGE AND SPURIOUS EMISSION54  |
|     | APPENDIX 1 - PHOTOGRAPHS OF EUT             |

### 1. GENERAL INFORMATION

### **1.1 EUT INFORMATION**

| Applicant         | LITE-ON Technology Corp.<br>Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585,<br>Taiwan, R.O.C                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer      | LITE-ON TECHNOLOGY (Changzhou) CO., LTD<br>A9 Building, No.88 Yanghu Road, Wujin Hi-Tech Industrial<br>Development Zone, Changzhou City, Jiangsu Province 213100<br>China                        |
| Equipment         | 802.11a/b/g/n/ac 2Tx2R+BT V4.2LE USB Combo Module                                                                                                                                                |
| Model Name        | WCBN3507R                                                                                                                                                                                        |
| Model Discrepancy | N/A                                                                                                                                                                                              |
| Received Date     | November 29, 2017                                                                                                                                                                                |
| Date of Test      | November 30 ~ December 14, 2017                                                                                                                                                                  |
| Output Power(W)   | IEEE 802.11b mode: 0.0914 (EIRP: 0.2163)<br>IEEE 802.11g mode: 0.2600 (EIRP: 0.6152)<br>IEEE 802.11n HT 20 MHz mode: 0.1524 (EIRP: 0.3606)<br>IEEE 802.11n HT 40 MHz mode: 0.1327 (EIRP: 0.3141) |
| Power Supply      | Powered from host device: DC 5V                                                                                                                                                                  |
| HW Version        | V01                                                                                                                                                                                              |
| FW Version        | JEDI.MT76x2                                                                                                                                                                                      |

### **1.2 EUT CHANNEL INFORMATION**

| Frequency Range | 802.11b/g/n HT 20: 2412MHz ~ 2462MHz<br>802.11n HT 40: 2422MHz ~ 2452MHz                                                                                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modulation Type | <ol> <li>IEEE 802.11b mode: CCK</li> <li>IEEE 802.11g mode: OFDM</li> <li>IEEE 802.11n HT 20 MHz mode : OFDM</li> <li>IEEE 802.11n HT 40 MHz mode : OFDM</li> </ol>                             |
| Bandwidth       | <ol> <li>IEEE 802.11b mode: 11 Channels</li> <li>IEEE 802.11g mode: 11 Channels</li> <li>IEEE 802.11n HT 20 MHz mode : 11 Channels</li> <li>IEEE 802.11n HT 40 MHz mode : 7 Channels</li> </ol> |

#### Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

| Number of frequencies to be tested                                                                 |   |                                              |  |  |
|----------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|
| Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation |   |                                              |  |  |
| ☐ 1 MHz or less                                                                                    | 1 | Middle                                       |  |  |
| 1 MHz to 10 MHz                                                                                    | 2 | 1 near top and 1 near bottom                 |  |  |
| 🛛 More than 10 MHz                                                                                 | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |

### **1.3 ANTENNA INFORMATION**

| Antenna Type | ☑ PIFA □ PCB □ Dipole □ Coils              |                                                           |      |                 |           |   |  |
|--------------|--------------------------------------------|-----------------------------------------------------------|------|-----------------|-----------|---|--|
|              | Brand P/N Type Cable length Peak Gain case |                                                           |      |                 |           |   |  |
|              | HongBo                                     | 290-10569                                                 | PIFA | 300mm           | 3.74dBi   | V |  |
| Antenna Gain |                                            | nsity Directional Gain: 3.74<br>tenna information:<br>P/N | Туре | Cable<br>length | Peak Gain |   |  |
|              | HongBo                                     | 290-10310                                                 | PIFA | 500mm           | 3.60dBi   |   |  |
|              | Walsin                                     | RFMTA401032IMLB702                                        | PIFA | 320mm           | 2.6dBi    |   |  |
|              | Walsin                                     | RFMTA401080IMLB701                                        | PIFA | 800mm           | 1.72dBi   |   |  |
|              | 1.62dBi                                    |                                                           |      |                 |           |   |  |
|              |                                            |                                                           |      |                 |           |   |  |

Notes:

1. Power Directional Gain: 10LOG(((10^(Ant1/10)+10^(Ant2/10))/2))

2. Power Density Directional Gain: 10LOG(((10^(Ant1/10)+10^(Ant2/10))/2))+10log(NTX/NSS)

### **1.4 MEASUREMENT UNCERTAINTY**

| PARAMETER                                                                    | UNCERTAINTY |
|------------------------------------------------------------------------------|-------------|
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 30 to 1000 MHz | +/- 3.97    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 1 to 18GHz     | +/- 3.58    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 18 to 26 GHz   | +/- 3.59    |
| Semi Anechoic Chamber (966 Chamber_B) /<br>Radiated Emission, 26 to 40 GHz   | +/- 3.81    |
| Conducted Emission (Mains Terminals),<br>9kHz to 30MHz                       | +/- 2.48    |

#### Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

# **1.5 FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

| Test site          | Test Engineer | Remark |
|--------------------|---------------|--------|
| AC Conduction Room | Eric Lee      | -      |
| Radiation          | Jerry Chuang  | -      |
| RF Conducted       | Jerry Chuang  | -      |

**Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

### **1.6 INSTRUMENT CALIBRATION**

| RF Conducted Test Site              |                       |                    |            |            |            |  |  |
|-------------------------------------|-----------------------|--------------------|------------|------------|------------|--|--|
| Equipment                           | Manufacturer          | Model              | S/N        | Cal Date   | Cal Due    |  |  |
| Power Meter                         | Anritsu               | ML2495A            | 1033009    | 04/11/2017 | 04/10/2018 |  |  |
| Power Sensor                        | Anritsu               | MA2411B            | 917072     | 07/03/2017 | 07/02/2018 |  |  |
| Spectrum Analyzer                   | R&S                   | FSV 40             | 101073     | 10/02/2017 | 10/01/2018 |  |  |
| Thermostatic/Hrgro<br>satic Chamber | GWINSTEK              | GTC-288MH-CC       | TH160402   | 05/23/2017 | 05/22/2018 |  |  |
| Directional Coupler                 | Agilent               | 87301D             | MY44350252 | 07/25/2017 | 07/24/2018 |  |  |
| SUCOFLEX Cable                      | HUBER SUHNER          | SUCOFLEX<br>104PEA | 25157      | 07/31/2017 | 07/30/2018 |  |  |
| Divider                             | Solvang<br>Technology | 2-18GHz 4Way       | STI08-0015 | 07/26/2017 | 07/25/2018 |  |  |
|                                     | 3                     | M 966 Chamber 1    | Fest Site  |            |            |  |  |
| Equipment                           | Manufacturer          | Model              | S/N        | Cal Date   | Cal Due    |  |  |
| Bilog Antenna                       | Sunol Sciences        | JB3                | A030105    | 06/20/2017 | 06/19/2018 |  |  |
| Horn Antenna                        | EMCO                  | 3117               | 00055165   | 02/20/2017 | 02/19/2018 |  |  |
| Pre-Amplifier                       | EMCI                  | EMC 012635         | 980151     | 08/01/2017 | 07/31/2018 |  |  |
| Pre-Amplifier                       | EMEC                  | EM330              | 060609     | 06/07/2017 | 06/06/2018 |  |  |
| Spectrum Analyzer                   | Agilent               | E4446A             | US42510252 | 11/26/2017 | 11/25/2018 |  |  |
| Antenna Tower                       | CCS                   | CC-A-1F            | N/A        | N.C.R      | N.C.R      |  |  |
| Controller                          | CCS                   | CC-C-1F            | N/A        | N.C.R      | N.C.R      |  |  |
| Turn Table                          | CCS                   | CC-T-1F            | N/A        | N.C.R      | N.C.R      |  |  |
| AC Conducted Emissions Test Site    |                       |                    |            |            |            |  |  |
| Equipment                           | Manufacturer          | Model              | S/N        | Cal Date   | Cal Due    |  |  |
| LISN                                | R&S                   | ENV216             | 101054     | 05/18/2017 | 05/17/2018 |  |  |
| LISN                                | SCHWARZBECK           | NSLK 8127          | 8127-541   | 02/14/2017 | 02/13/2018 |  |  |
| EMI Test Receiver                   | R&S                   | ESCI               | 100064     | 05/17/2017 | 05/16/2018 |  |  |

Remark: Each piece of equipment is scheduled for calibration once a year.



### **1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT**

| EUT Accessories Equipment |                                             |  |  |  |  |  |  |
|---------------------------|---------------------------------------------|--|--|--|--|--|--|
| No.                       | No. Equipment Brand Model Series No. FCC ID |  |  |  |  |  |  |
|                           | N/A                                         |  |  |  |  |  |  |

| Support Equipment                                                                   |       |      |                    |     |              |  |
|-------------------------------------------------------------------------------------|-------|------|--------------------|-----|--------------|--|
| No.         Equipment         Brand         Model         Series No.         FCC ID |       |      |                    |     |              |  |
| 1                                                                                   | NB(H) | Acer | Aspire 4320 series | N/A | QDS-BRCM1018 |  |

### **1.8 TEST METHODOLOGY AND APPLIED STANDARDS**

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 662911 D01 v02 r01, KDB 558074 D01 V04, RSS-247 Issue 2 and RSS-GEN Issue 4.

### 2. TEST SUMMERY

| FCC<br>Standard<br>Section | IC Standard<br>Section | Report<br>Section | Test Item                   | Result |
|----------------------------|------------------------|-------------------|-----------------------------|--------|
| 15.203                     | -                      | 1.2               | Antenna Requirement         | Pass   |
| 15.207(a)                  | RSS-GEN 8.8            | 4.1               | AC Conducted Emission       | Pass   |
| 15.247(a)(2)               | RSS-247(5.2)(a)        | 4.2               | 6 dB Bandwidth              | Pass   |
| -                          | RSS-GEN 6.6            | 4.2               | Occupied Bandwidth (99%)    | Pass   |
| 15.247(b)                  | RSS-247(5.4)(d)        | 4.3               | Output Power Measurement    | Pass   |
| 15.247(e)                  | RSS-247(5.2)(b)        | 4.4               | Power Spectral Density      | Pass   |
| 15.247(d)                  | RSS-247(5.5)           | 4.5               | Conducted Band Edge         | Pass   |
| 15.247(d)                  | RSS-247(5.5)           | 4.5               | Conducted Emission          | Pass   |
| 15.247(d)                  | RSS-GEN 8.9,<br>8.10   | 4.6               | Radiation Band Edge         | Pass   |
| 15.247(d)                  | RSS-GEN 8.9,<br>8.10   | 4.6               | Radiation Spurious Emission | Pass   |

# 3. DESCRIPTION OF TEST MODES

FCC ID: PPQ-WCBN3507R

**CESRE** Compliance Certification Services Inc.

### **3.1 THE WORST MODE OF OPERATING CONDITION**

| Operation mode           | IEEE 802.11b mode :1Mbps<br>IEEE 802.11g mode :6Mbps<br>IEEE 802.11n HT20 mode :MCS0<br>IEEE 802.11n HT40 mode :MCS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Channel Frequencies | IEEE 802.11b mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11g mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11n HT20 mode :<br>1. Lowest Channel : 2412MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2462MHz<br>IEEE 802.11n HT40 mode :<br>1. Lowest Channel : 2422MHz<br>2. Middle Channel : 2437MHz<br>3. Highest Channel : 2437MHz<br>3. Highest Channel : 2437MHz<br>4. Middle Channel : 2437MHz<br>4. M |
| Operation Transmitter    | IEEE 802.11b mode :1T1R<br>IEEE 802.11g mode :1T1R<br>IEEE 802.11n HT20 mode : 2T2R<br>IEEE 802.11n HT40 mode : 2T2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

ISED No: 4491A-WCBN3507R

#### Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

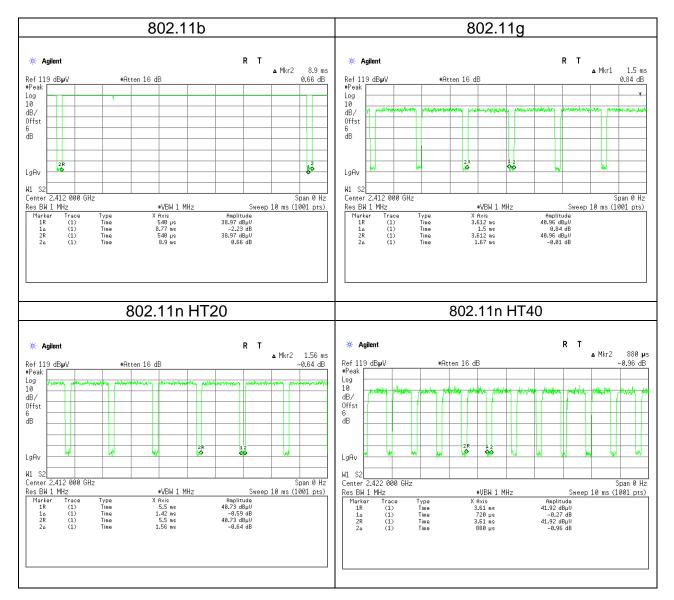
### **3.2 THE WORST MODE OF MEASUREMENT**

| AC Power Line Conducted Emission            |                                                       |  |  |  |
|---------------------------------------------|-------------------------------------------------------|--|--|--|
| Test Condition                              | AC Power line conducted emission for line and neutral |  |  |  |
| Voltage/Hz DC 5V                            |                                                       |  |  |  |
| Test Mode Mode 1: EUT power by Host System. |                                                       |  |  |  |
| Worst Mode                                  | 🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4                   |  |  |  |

| Radiated Emission Measurement Above 1G |                                                                                                                                                                                                                      |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Condition                         | DN Band edge, Emission for Unwanted and Fundamental                                                                                                                                                                  |  |  |
| Voltage/Hz                             | DC 5V                                                                                                                                                                                                                |  |  |
| Test Mode                              | Mode 1: EUT power by Host System.                                                                                                                                                                                    |  |  |
| Worst Mode                             | 🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4                                                                                                                                                                                  |  |  |
| Worst Position                         | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |
| Worst Polarity                         | Horizontal 🛛 Vertical                                                                                                                                                                                                |  |  |

|                                             | Radiated Emission Measurement Below 1G |  |  |  |  |
|---------------------------------------------|----------------------------------------|--|--|--|--|
| Test Condition                              | Radiated Emission Below 1G             |  |  |  |  |
| Voltage/Hz DC 5V                            |                                        |  |  |  |  |
| Test Mode Mode 1: EUT power by Host System. |                                        |  |  |  |  |
| Worst Mode  Mode 1 Mode 2 Mode 3 Mode 4     |                                        |  |  |  |  |

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis, X, Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case (Z-Plane and Vertical) were recorded in this report

3. For below 1G, AC power line conducted emission and radiation emission were performed the EUT transmit at the highest output power channel as worse case.

### 4. EUT DUTY CYCLE

| Duty Cycle    |            |             |                |                 |  |  |
|---------------|------------|-------------|----------------|-----------------|--|--|
| Configuration | TX ON (ms) | TX ALL (ms) | Duty Cycle (%) | Duty Factor(dB) |  |  |
| 802.11b       | 8.7700     | 8.9000      | 98.54%         | 0.06            |  |  |
| 802.11g       | 1.5000     | 1.6700      | 89.82%         | 0.47            |  |  |
| 802.11n HT20  | 1.4200     | 1.5600      | 91.03%         | 0.41            |  |  |
| 802.11n HT40  | 0.7200     | 0.8800      | 81.82%         | 0.87            |  |  |



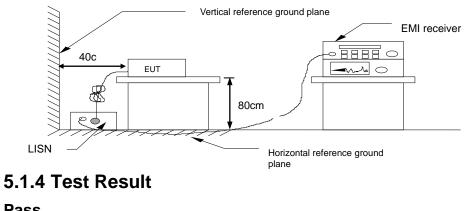
# 5. TEST RESULT

## **5.1 AC POWER LINE CONDUCTED EMISSION**

### 5.1.1 Test Limit

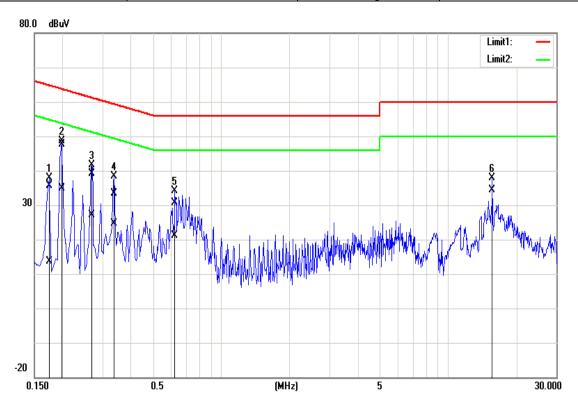
According to §15.207(a)(2) and RSS-GEN section 8.8,

| Frequency Range | Limits(dBµV) |           |  |  |
|-----------------|--------------|-----------|--|--|
| (MHz)           | Quasi-peak   | Average   |  |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |  |
| 0.50 to 5       | 56           | 46        |  |  |
| 5 to 30         | 60           | 50        |  |  |


\* Decreases with the logarithm of the frequency.

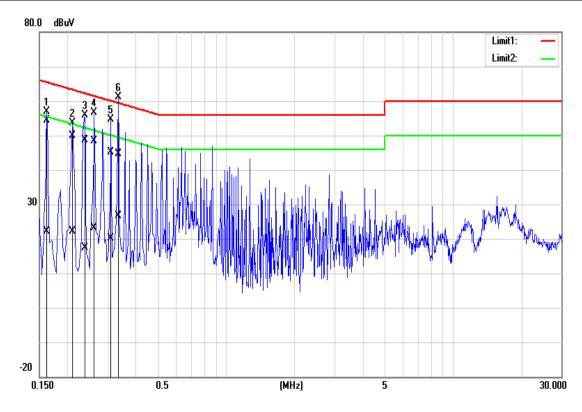
#### 5.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Recorded Line for Neutral and Line. 5.

### 5.1.3 Test Setup




### <u>Test Data</u>

| Test Mode:    | Mode 1        | Temp/Hum      | 24(°C)/ 50%RH |
|---------------|---------------|---------------|---------------|
| Test Voltage: | 120Vac / 60Hz | Test Date     | 2017/12/01    |
| Phase:        | Line          | Test Engineer | Eric Lee      |



| No. | Frequency | QuasiPeak<br>reading | Average<br>reading | Correction<br>factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average<br>margin | Remark |
|-----|-----------|----------------------|--------------------|----------------------|---------------------|-------------------|--------------------|------------------|---------------------|-------------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)             | (dB)                 | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | (dB)                | (dB)              |        |
| 1   | 0.1740    | 35.69                | 13.64              | 0.05                 | 35.74               | 13.69             | 64.77              | 54.77            | -29.03              | -41.08            | Pass   |
| 2   | 0.1980    | 47.55                | 34.77              | 0.05                 | 47.60               | 34.82             | 63.69              | 53.69            | -16.09              | -18.87            | Pass   |
| 3   | 0.2700    | 39.17                | 26.98              | 0.05                 | 39.22               | 27.03             | 61.12              | 51.12            | -21.90              | -24.09            | Pass   |
| 4   | 0.3380    | 33.35                | 24.53              | 0.05                 | 33.40               | 24.58             | 59.25              | 49.25            | -25.85              | -24.67            | Pass   |
| 5   | 0.6260    | 30.52                | 21.14              | 0.06                 | 30.58               | 21.20             | 56.00              | 46.00            | -25.42              | -24.80            | Pass   |
| 6   | 15.7100   | 37.66                | 34.16              | 0.24                 | 37.90               | 34.40             | 60.00              | 50.00            | -22.10              | -15.60            | Pass   |

| Test Mode:    | Mode 1        | Temp/Hum      | 24(°C)/ 50%RH |  |  |
|---------------|---------------|---------------|---------------|--|--|
| Test Voltage: | 120Vac / 60Hz | Test Date     | 2017/12/01    |  |  |
| Phase:        | Neutral       | Test Engineer | Eric Lee      |  |  |



| No. | Frequency | QuasiPeak<br>reading | Average<br>reading | Correction factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average<br>margin | Remark |
|-----|-----------|----------------------|--------------------|-------------------|---------------------|-------------------|--------------------|------------------|---------------------|-------------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)             | (dB)              | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | (dB)                | (dB)              |        |
| 1   | 0.1620    | 54.20                | 21.98              | 0.12              | 54.32               | 22.10             | 65.36              | 55.36            | -11.04              | -33.26            | Pass   |
| 2   | 0.2100    | 49.73                | 22.12              | 0.12              | 49.85               | 22.24             | 63.21              | 53.21            | -13.36              | -30.97            | Pass   |
| 3   | 0.2380    | 48.47                | 17.15              | 0.12              | 48.59               | 17.27             | 62.17              | 52.17            | -13.58              | -34.90            | Pass   |
| 4   | 0.2620    | 48.27                | 23.03              | 0.12              | 48.39               | 23.15             | 61.37              | 51.37            | -12.98              | -28.22            | Pass   |
| 5   | 0.3100    | 45.10                | 19.92              | 0.13              | 45.23               | 20.05             | 59.97              | 49.97            | -14.74              | -29.92            | Pass   |
| 6   | 0.3340    | 44.47                | 26.57              | 0.13              | 44.60               | 26.70             | 59.35              | 49.35            | -14.75              | -22.65            | Pass   |

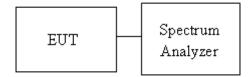
### 5.2 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

### 5.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a),

#### 6 dB Bandwidth :

| Limit | Shall be at least 500kHz |
|-------|--------------------------|
|-------|--------------------------|


**Occupied Bandwidth(99%)** : For reporting purposes only.

#### 5.2.2 Test Procedure

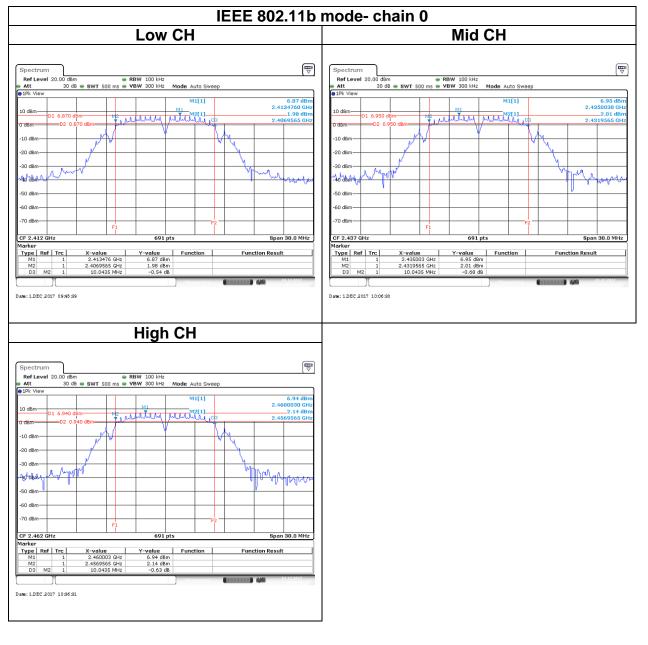
Test method Refer as KDB 558074 D01 V04, Section 8.1 and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

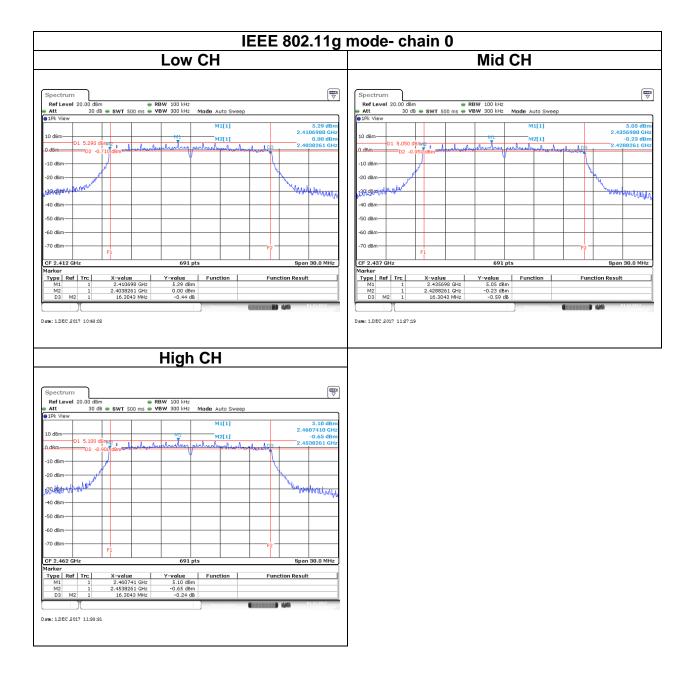
#### 5.2.3 Test Setup

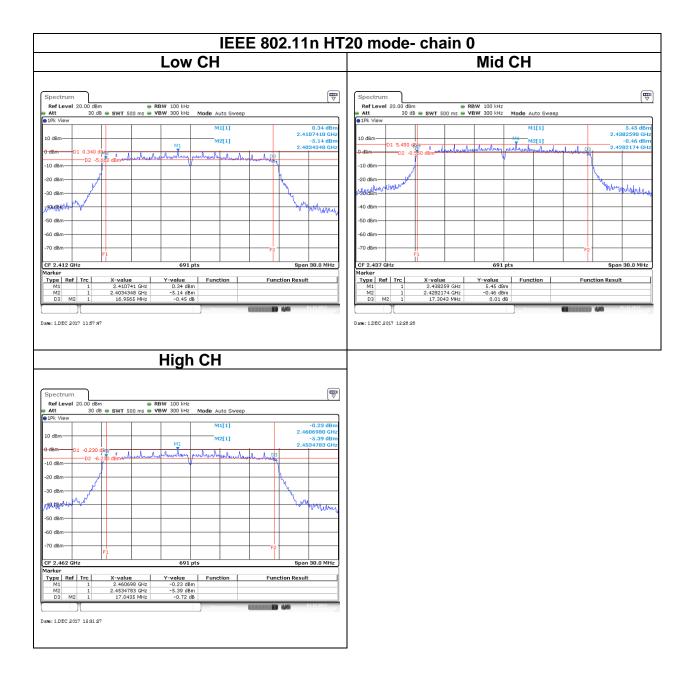


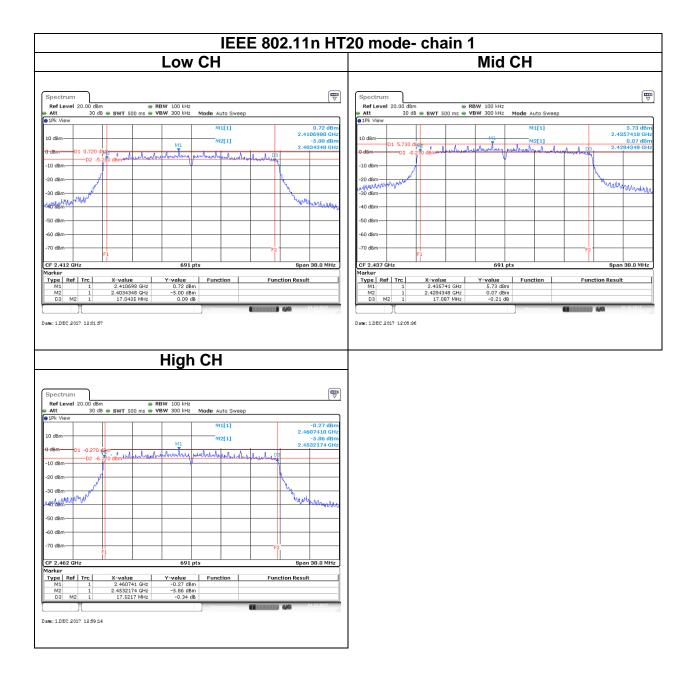
#### 5.2.4 Test Result

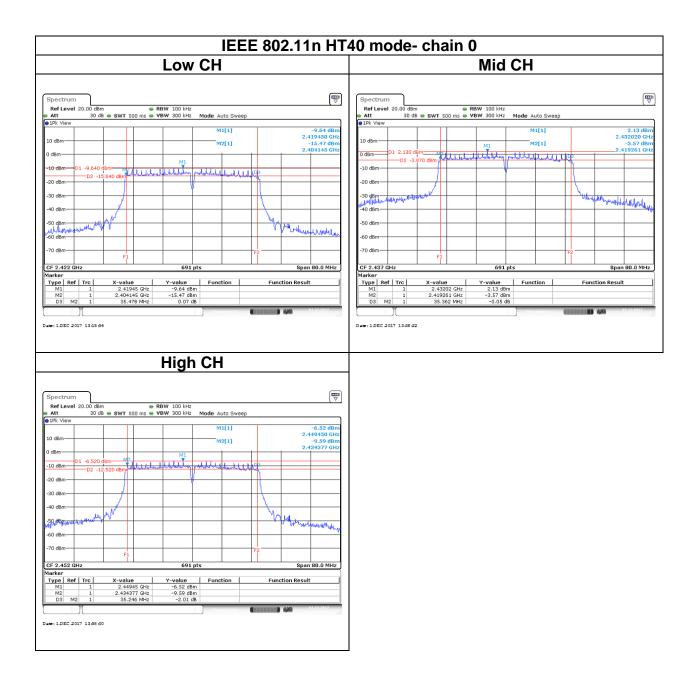

|         | Test mode: IEEE 802.11b mode / 2412-2462 MHz                                                                    |         |   |         |   |      |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------|---------|---|---------|---|------|--|--|--|--|--|
| Channel | H Frequency<br>(MHz) Chain 0 Chain 1 Chain 0 Chain 1<br>OBW(99%)<br>(MHz) (MHz) (MHz) 6dB BW (MHz) 6dB BW (KHz) |         |   |         |   |      |  |  |  |  |  |
| Low     | 2412                                                                                                            | 12.2431 | - | 10.0435 | - |      |  |  |  |  |  |
| Mid     | 2437                                                                                                            | 12.2431 | - | 10.0435 | - | ≥500 |  |  |  |  |  |
| High    | 2462                                                                                                            | 12.1562 | - | 10.0435 | - |      |  |  |  |  |  |

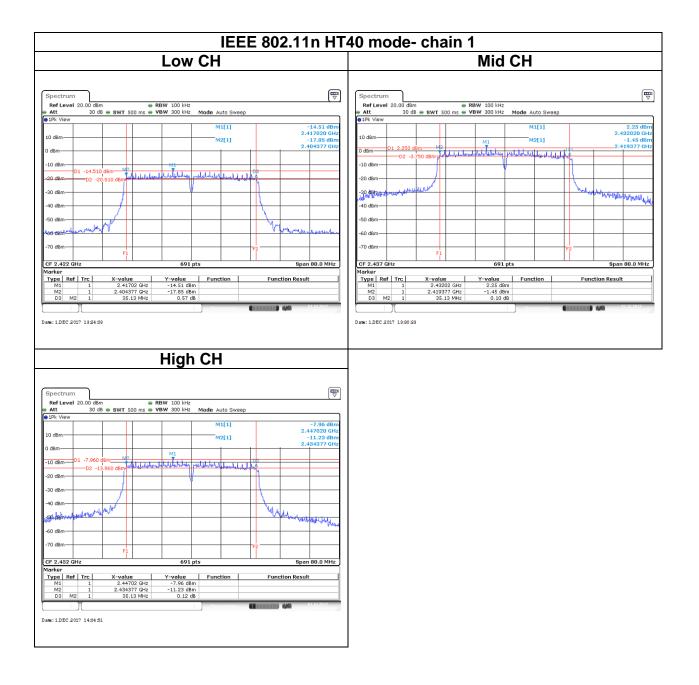
|         | Test mode: IEEE 802.11g mode / 2412-2462 MHz                                                                                             |         |   |         |   |      |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---------|---|------|--|--|--|--|--|
| Channel | Frequency<br>(MHz)Chain 0<br>OBW(99%)Chain 1<br>OBW(99%)Chain 0<br>6dB BW<br>(MHz)Chain 1<br>6dB BW<br>(MHz)6dB limit<br>6dB BW<br>(MHz) |         |   |         |   |      |  |  |  |  |  |
| Low     | 2412                                                                                                                                     | 16.5846 | - | 16.3043 | - |      |  |  |  |  |  |
| Mid     | 2437                                                                                                                                     | 16.5846 | - | 16.3043 | - | ≥500 |  |  |  |  |  |
| High    | 2462                                                                                                                                     | 16.5846 | - | 16.3043 | - |      |  |  |  |  |  |


|         | Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz                                                                                                  |         |         |         |         |      |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|------|--|--|--|--|--|
| Channel | Frequency<br>(MHz)Chain 0<br>OBW(99%)<br>(MHz)Chain 1<br>OBW(99%)<br>(MHz)Chain 0<br>6dB BW<br>(MHz)Chain 1<br>6dB BW<br>(MHz)6dB In<br>6dB BW<br>(MHz) |         |         |         |         |      |  |  |  |  |  |
| Low     | 2412                                                                                                                                                    | 17.5832 | 17.5832 | 16.9565 | 17.0435 |      |  |  |  |  |  |
| Mid     | 2437                                                                                                                                                    | 17.6266 | 17.6700 | 17.0343 | 17.0870 | ≥500 |  |  |  |  |  |
| High    | 2462                                                                                                                                                    | 17.6266 | 17.5832 | 17.0435 | 17.5217 |      |  |  |  |  |  |


|         | Test mode: IEEE 802.11n HT 40 MHz mode / 2422-2452 MHz                                                                                                  |         |         |        |       |      |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------|-------|------|--|--|--|--|--|
| Channel | Frequency<br>(MHz)Chain 0<br>OBW(99%)<br>(MHz)Chain 1<br>OBW(99%)<br>(MHz)Chain 0<br>6dB BW<br>(MHz)Chain 1<br>6dB BW<br>(MHz)6dB Im<br>6dB BW<br>(MHz) |         |         |        |       |      |  |  |  |  |  |
| Low     | 2422                                                                                                                                                    | 36.2373 | 36.0057 | 35.478 | 35.13 |      |  |  |  |  |  |
| Mid     | 2437                                                                                                                                                    | 36.2373 | 36.1215 | 35.362 | 35.13 | >500 |  |  |  |  |  |
| High    | 2452                                                                                                                                                    | 36.2373 | 36.1215 | 35.246 | 35.13 |      |  |  |  |  |  |


### **Test Data**














### **5.3 OUTPUT POWER MEASUREMENT**

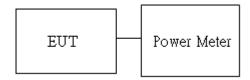
#### 5.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(d),

#### Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm) and the e.i.r.p. shall not exceed 4Watt(36 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

| Lincit | <ul> <li>Antenna not exceed 6 dBi : 30dBm</li> <li>Antenna with DG greater than 6 dBi :</li> </ul> |
|--------|----------------------------------------------------------------------------------------------------|
| Limit  | [Limit = 30 – (DG – 6)]                                                                            |


Average output power : For reporting purposes only.

#### **5.3.2 Test Procedure**

Test method Refer as KDB 558074 D01 V04, Section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

#### 5.3.3 Test Setup



#### 5.3.4 Test Result

#### Peak output power :

|                       | Wifi 2.4G |       |        |        |        |         |                   |                   |                  |                  |       |       |               |
|-----------------------|-----------|-------|--------|--------|--------|---------|-------------------|-------------------|------------------|------------------|-------|-------|---------------|
| Config CH             | СН        | Freq. | powe   | er set | PK Pow | er(dBm) | PK Total<br>Power | PK Total<br>Power | EIRP PK<br>Total | EIRP PK<br>Total | DG    | Limit | EIRP<br>Limit |
| Comig                 | on        | (MHz) | chain0 | chain1 | chain0 | chain1  | (dBm)             | (W)               | Power<br>(dBm)   | Power<br>(W)     | (dBi) | (dBm) | (dBm)         |
| IEEE                  | Low       | 2412  | 20     | -      | 19.61  | -       | 19.61             | 0.0914            | 23.35            | 0.2163           |       |       |               |
| 802.11b<br>Data rate: | Mid       | 2437  | 1F     | -      | 19.24  | -       | 19.24             | 0.0839            | 22.98            | 0.1986           |       |       |               |
| 1Mbps                 | High      | 2462  | 1F     | -      | 19.22  | -       | 19.22             | 0.0836            | 22.96            | 0.1977           |       |       |               |
| IEEE                  | Low       | 2412  | 20     | -      | 24.14  | -       | 24.14             | 0.2594            | 27.88            | 0.6138           |       |       |               |
| 802.11g<br>Data rate: | Mid       | 2437  | 20     | -      | 24.12  | -       | 24.12             | 0.2582            | 27.86            | 0.6109           |       |       |               |
| 6Mbps                 | High      | 2462  | 20     | -      | 24.15  | -       | 24.15             | 0.2600            | 27.89            | 0.6152           | 3.74  | 30    | 36            |
| IEEE<br>802.11n       | Low       | 2412  | 1D     | 1D     | 17.64  | 17.27   | 20.47             | 0.1114            | 24.21            | 0.2636           | 3.74  | 30    | 30            |
| HT20                  | Mid       | 2437  | 20     | 20     | 19.01  | 18.62   | 21.83             | 0.1524            | 25.57            | 0.3606           |       |       |               |
| Data rate:<br>MCS0    | High      | 2462  | 1E     | 1E     | 18.20  | 18.12   | 21.17             | 0.1309            | 24.91            | 0.3097           |       |       |               |
| IEEE<br>802.11n       | Low       | 2422  | 19     | 19     | 15.03  | 14.36   | 17.72             | 0.0592            | 21.46            | 0.1400           |       |       |               |
| HT40                  | Mid       | 2437  | 21     | 21     | 18.26  | 18.17   | 21.23             | 0.1327            | 24.97            | 0.3141           |       |       |               |
| Data rate:<br>MCS0    | High      | 2452  | 18     | 18     | 13.58  | 13.46   | 16.53             | 0.0450            | 20.27            | 0.1064           |       |       |               |

#### Average output power :

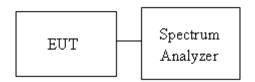
|                       |      | Wi    | fi 2.4G |         |                   |  |
|-----------------------|------|-------|---------|---------|-------------------|--|
| Config                | СН   | Freq. | AV Pow  | er(dBm) | AV Total<br>Power |  |
| comg                  |      | (MHz) | chain0  | chain1  | (dBm)             |  |
| IEEE                  | Low  | 2412  | 16.94   | -       | 16.94             |  |
| 802.11b<br>Data rate: | Mid  | 2437  | 16.76   | -       | 16.76             |  |
| 1Mbps                 | High | 2462  | 16.73   | -       | 16.73             |  |
| IEEE                  | Low  | 2412  | 15.93   | -       | 15.93             |  |
| 802.11g<br>Data rate: | Mid  | 2437  | 15.85   | -       | 15.85             |  |
| 6Mbps                 | High | 2462  | 15.91   | -       | 15.91             |  |
| IEEE<br>802.11n       | Low  | 2412  | 14.33   | 14.08   | 17.22             |  |
| HT20                  | Mid  | 2437  | 15.77   | 15.30   | 18.55             |  |
| Data rate:<br>MCS0    | High | 2462  | 14.63   | 14.57   | 17.61             |  |
| IEEE<br>802.11n       | Low  | 2422  | 11.82   | 11.45   | 14.65             |  |
| HT40                  | Mid  | 2437  | 15.14   | 15.03   | 18.10             |  |
| Data rate:<br>MCS0    | High | 2452  | 10.75   | 10.69   | 13.73             |  |

# **5.4 POWER SPECTRAL DENSITY**

### 5.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(b),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


|       | Antenna not exceed 6 dBi : 8dBm      |
|-------|--------------------------------------|
| Limit | Antenna with DG greater than 6 dBi : |
|       | [Limit = $8 - (DG - 6)$ ]            |
|       | Point-to-point operation :           |

#### 5.4.2 Test Procedure

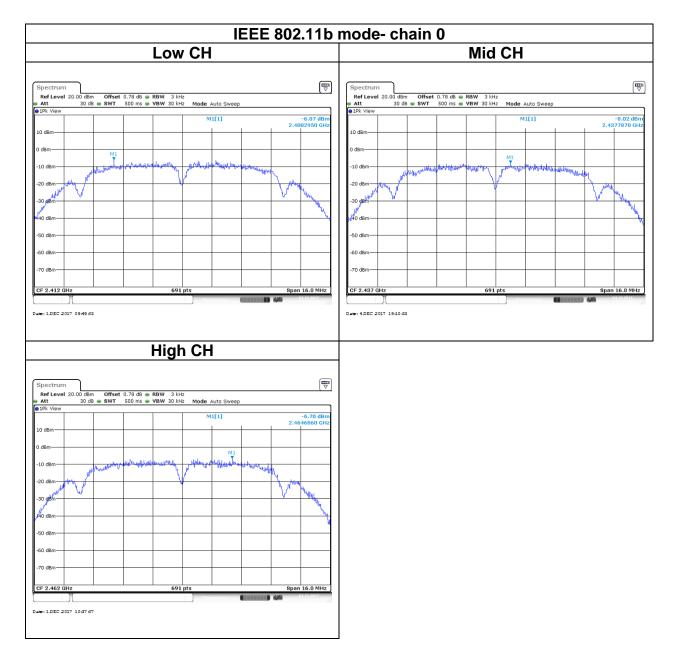
Test method Refer as KDB 558074 D01 V04, Section 10.2

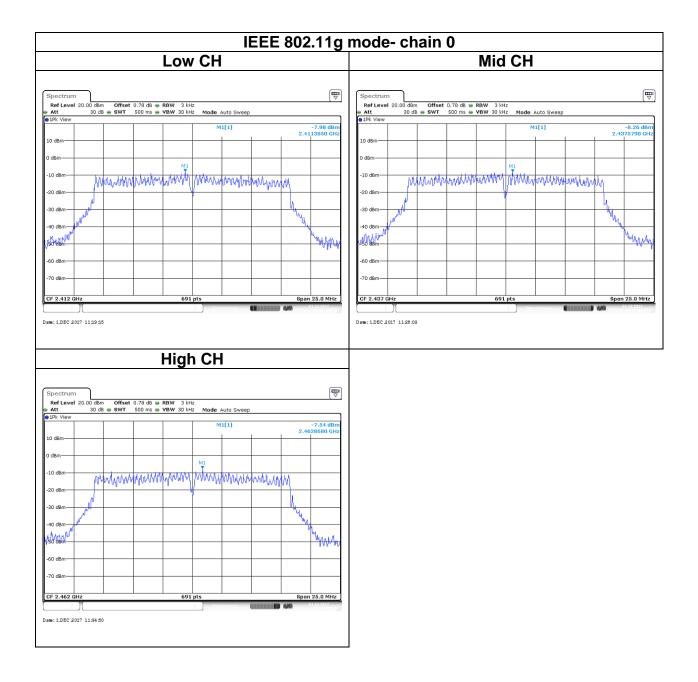
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

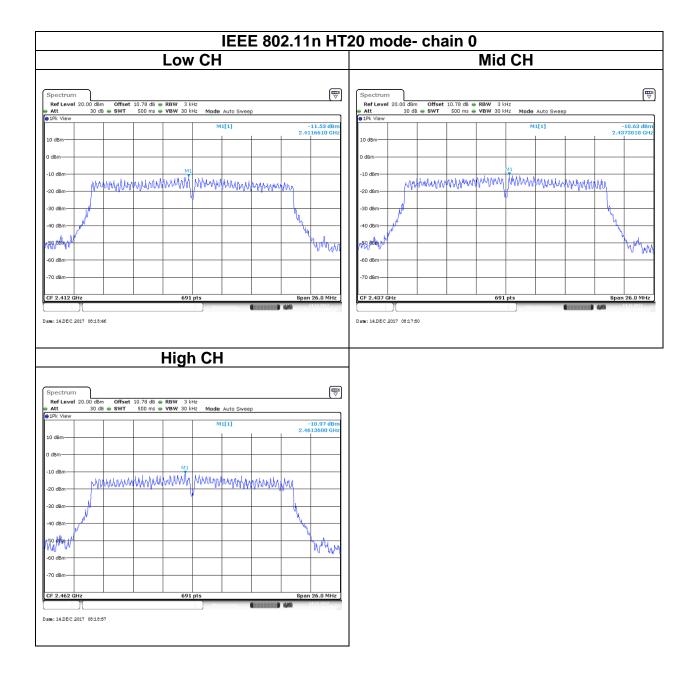
#### 5.4.3 Test Setup

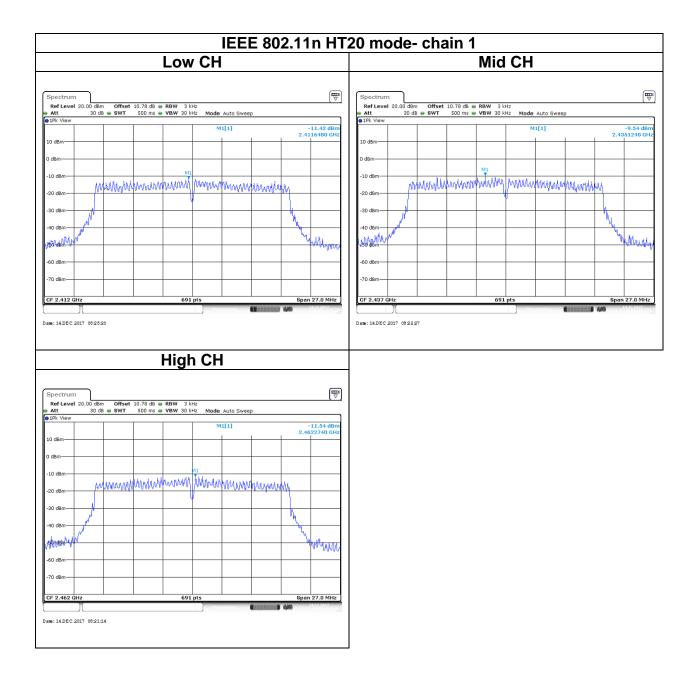


#### 5.4.4 Test Result


|                                                                                                               | Test mode: IEEE 802.11b mode / 2412-2462 MHz |       |   |       |   |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|---|-------|---|--|--|--|--|--|
| ChannelFrequency<br>(MHz)Chain 0<br>PPSD<br>(dBm)Chain 1<br>PPSD<br>(dBm)Total<br>PSSD<br>(dBm)Limit<br>(dBm) |                                              |       |   |       |   |  |  |  |  |  |
| Low                                                                                                           | 2412                                         | -6.07 | - | -6.07 |   |  |  |  |  |  |
| Mid                                                                                                           | 2437                                         | -8.02 | - | -8.02 | 8 |  |  |  |  |  |
| High                                                                                                          | 2462                                         | -6.70 | - | -6.70 |   |  |  |  |  |  |

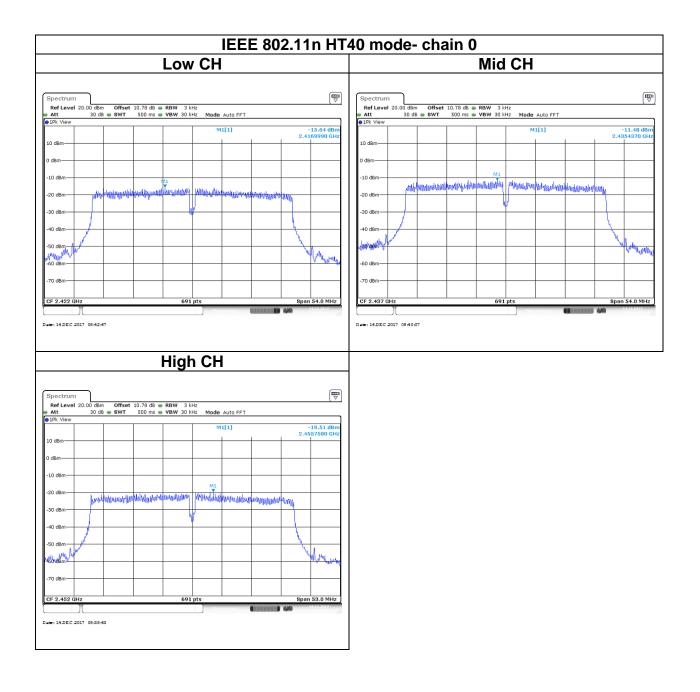

|         | Test mode: IEEE 802.11g mode / 2412-2462 MHz                                                                                |       |   |       |   |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-------|---|-------|---|--|--|--|--|--|
| Channel | ChannelFrequency<br>(MHz)Chain 0<br>PPSDChain 1<br>PPSDTotal<br>PSSDLimit<br>(dBm)Channel(MHz)(dBm)(dBm)(dBm)Limit<br>(dBm) |       |   |       |   |  |  |  |  |  |
| Low     | 2412                                                                                                                        | -7.98 | - | -7.98 |   |  |  |  |  |  |
| Mid     | 2437                                                                                                                        | -8.26 | - | -8.26 | 8 |  |  |  |  |  |
| High    | 2462                                                                                                                        | -7.54 | - | -7.54 |   |  |  |  |  |  |

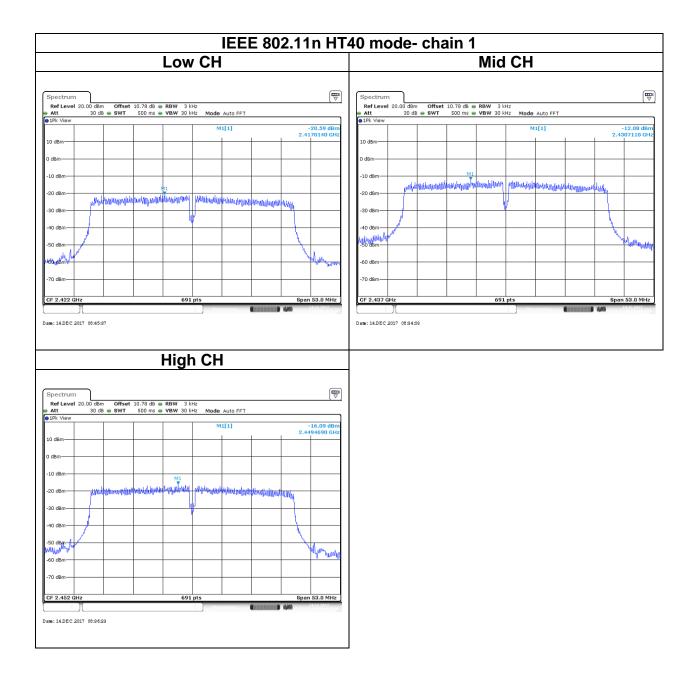

|                                                                                                             | Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz |        |        |       |   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------|--------|-------|---|--|--|--|--|
| ChannelFrequency<br>(MHz)Chain 0<br>PPSDChain 1<br>PPSDTotal<br>PSSDLimit<br>(dBm)(dBm)(dBm)(dBm)(dBm)(dBm) |                                                        |        |        |       |   |  |  |  |  |
| Low                                                                                                         | 2412                                                   | -11.53 | -11.42 | -8.46 |   |  |  |  |  |
| Mid                                                                                                         | 2437                                                   | -10.63 | -9.54  | -7.04 | 8 |  |  |  |  |
| High                                                                                                        | 2462                                                   | -10.97 | -11.54 | -8.24 |   |  |  |  |  |


|         | Test mode: IEEE 802.11n HT 40 MHz mode / 2422-2452 MHz                                                 |        |        |        |   |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------|--------|--------|--------|---|--|--|--|--|
| Channel | ChannelFrequency<br>(MHz)Chain 0<br>PPSDChain 1<br>PPSDTotal<br>PSSDLimit<br>(dBm)(dBm)(dBm)(dBm)(dBm) |        |        |        |   |  |  |  |  |
| Low     | 2422                                                                                                   | -15.64 | -20.59 | -14.43 |   |  |  |  |  |
| Mid     | 2437                                                                                                   | -11.48 | -12.08 | -8.76  | 8 |  |  |  |  |
| High    | 2452                                                                                                   | -19.51 | 16.09  | 16.09  |   |  |  |  |  |

### Test Data








 ECESSF
 Compliance Certification Services Inc.

 FCC ID: PPQ-WCBN3507R
 ISED NO: 4491A-WCBN3507R





## 5.5 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

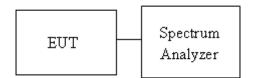
### 5.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5,

In any 100 kHz bandwidth outside the authorized frequency band,

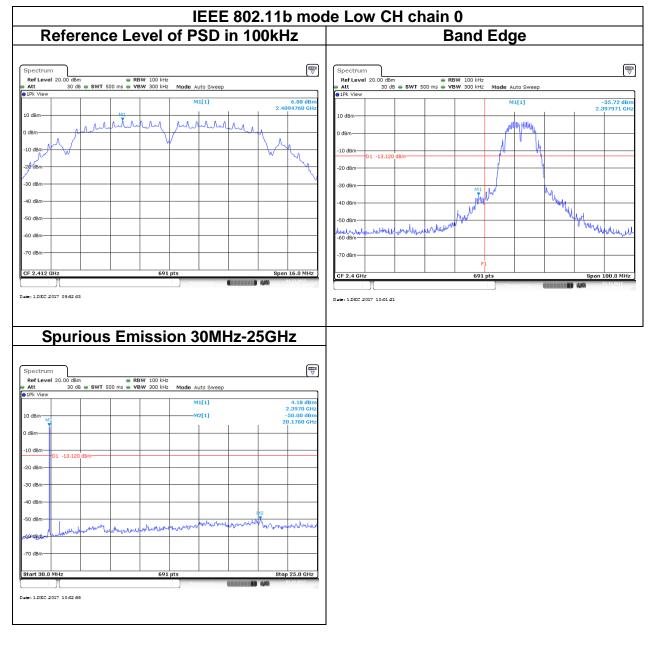
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

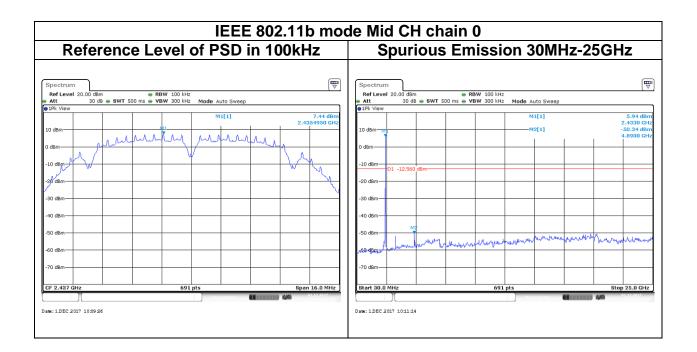
#### 5.5.2 Test Procedure


Test method Refer as KDB 662911 D01 v02 r01, KDB 558074 D01 V04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

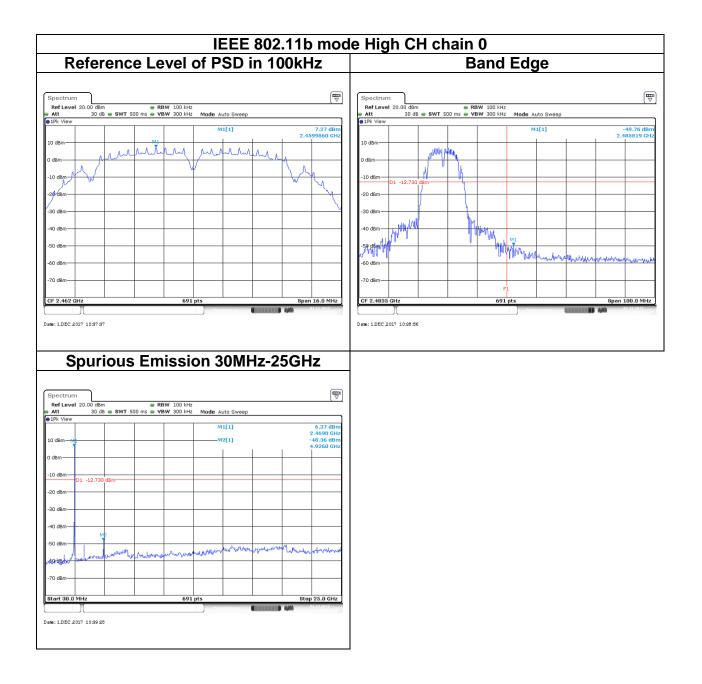
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

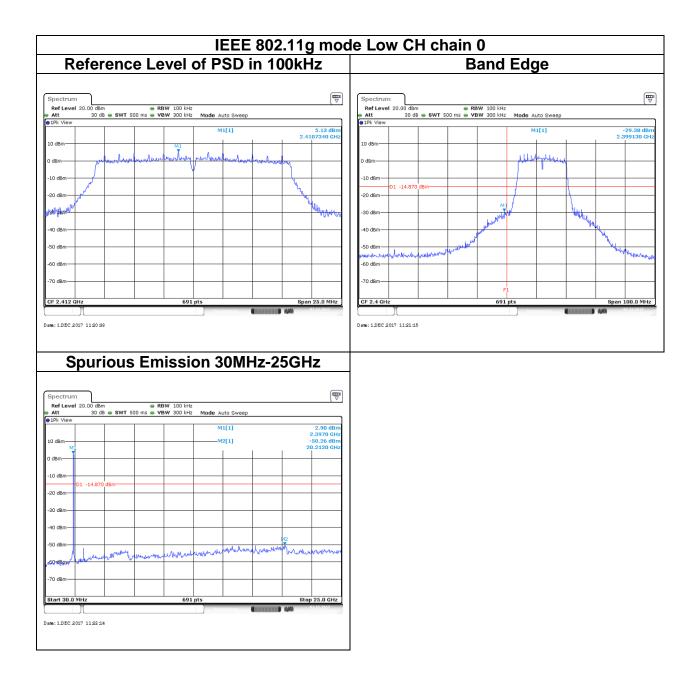

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

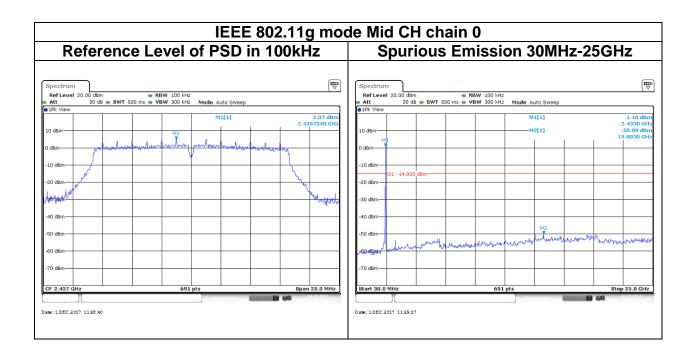

#### 5.5.3 Test Setup

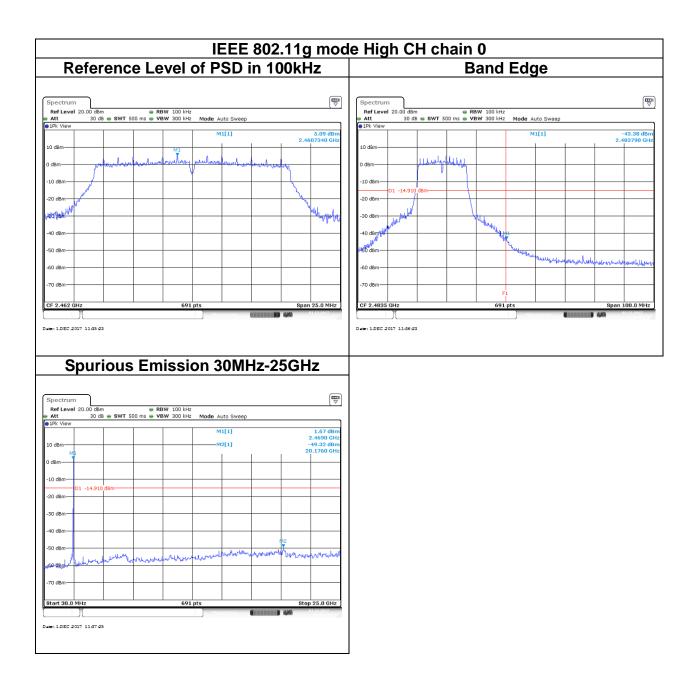


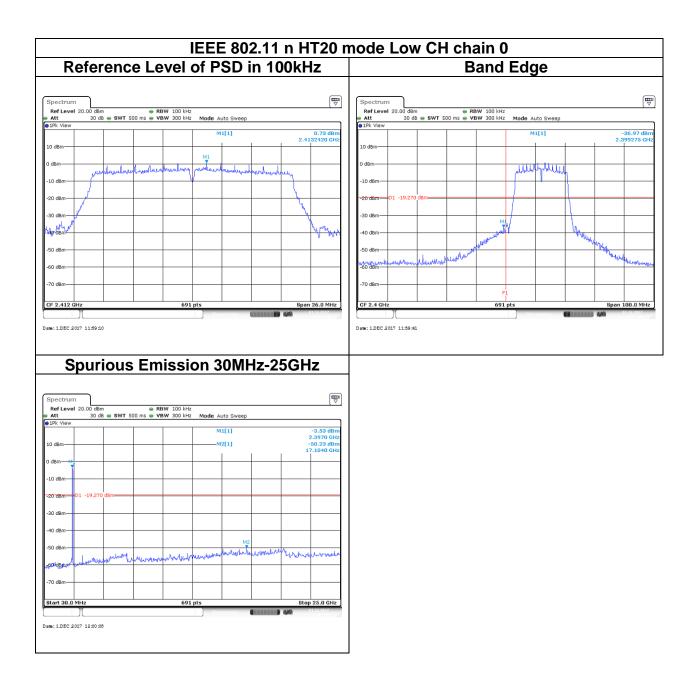
#### 5.5.4 Test Result


#### Test Data



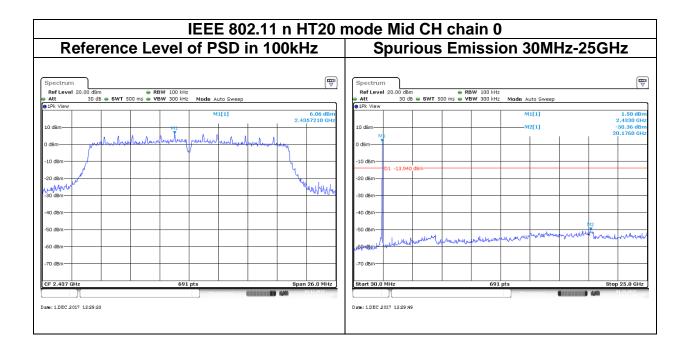



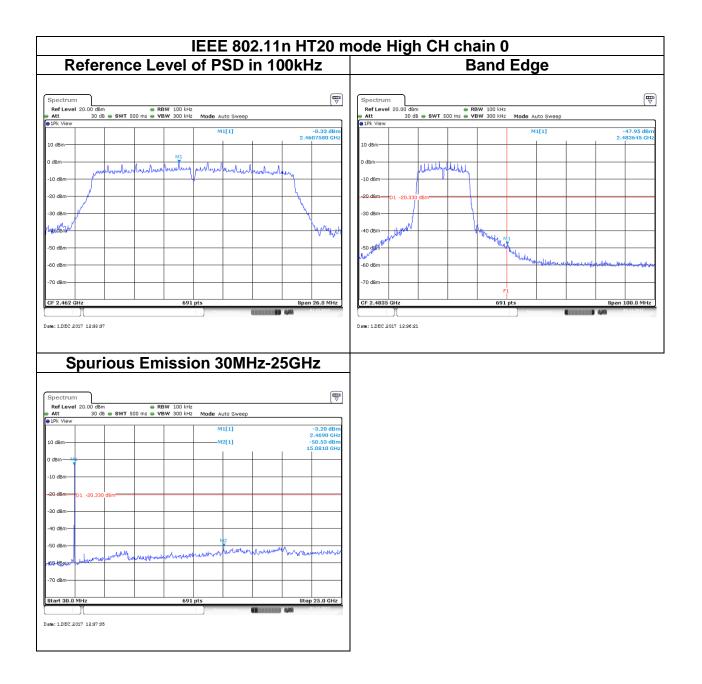


ISED NO: 4491A-WCBN3507R

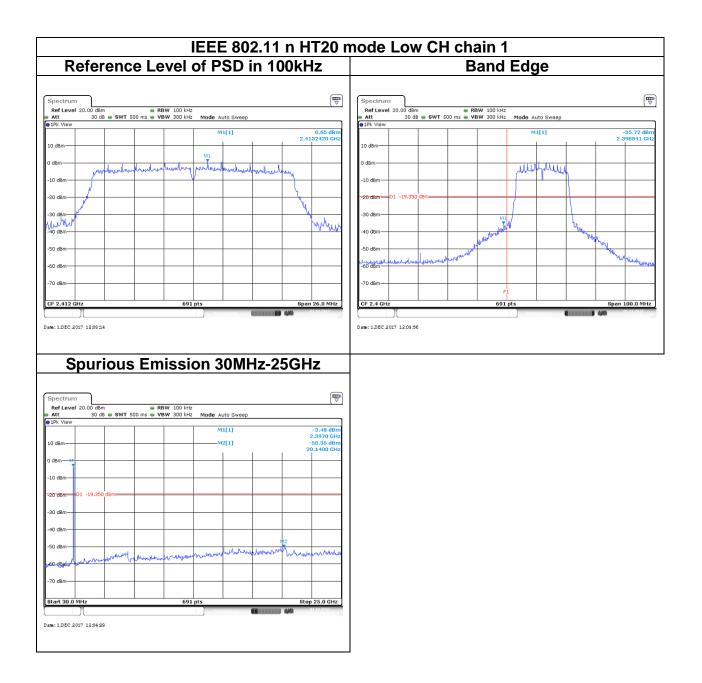

**EESRF** Compliance Certification Services Inc.



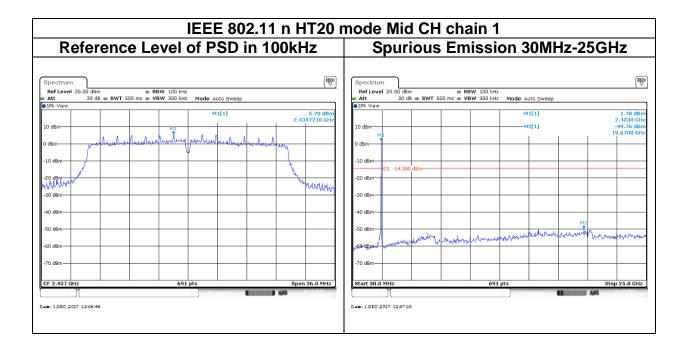




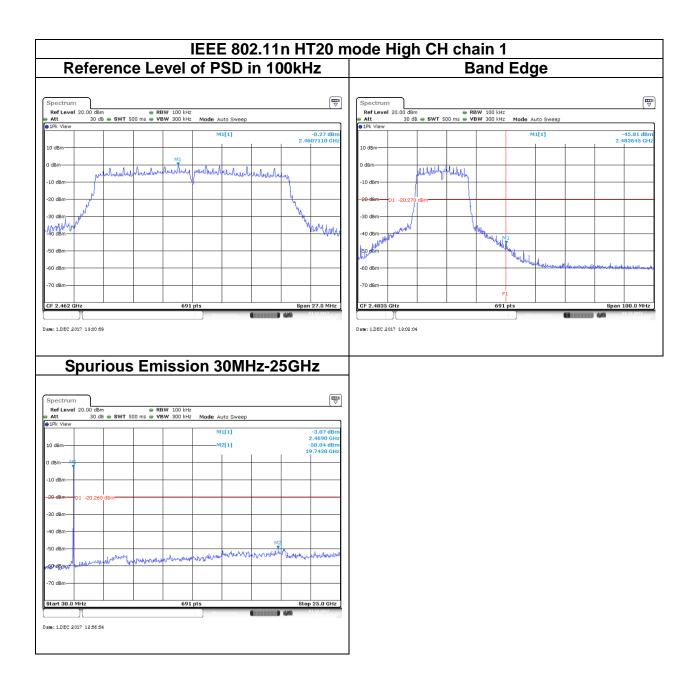




ISED NO: 4491A-WCBN3507R

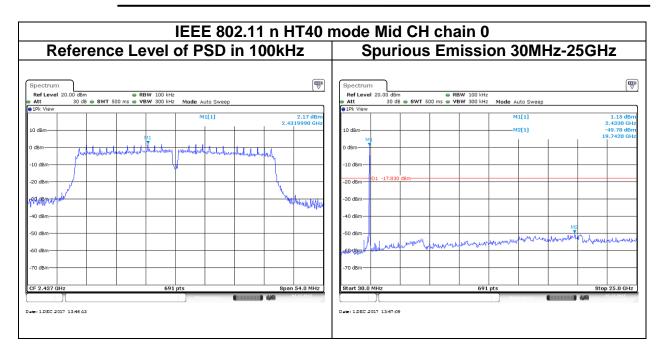

**EESRF** Compliance Certification Services Inc.

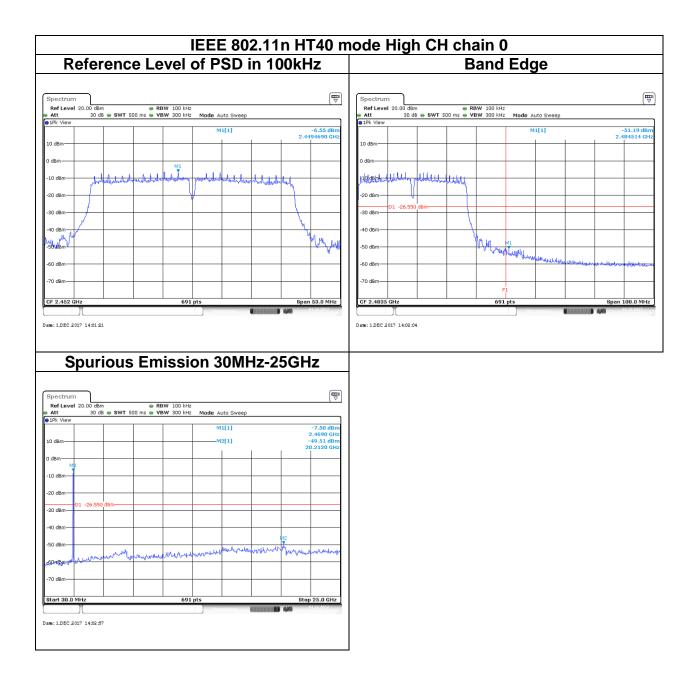


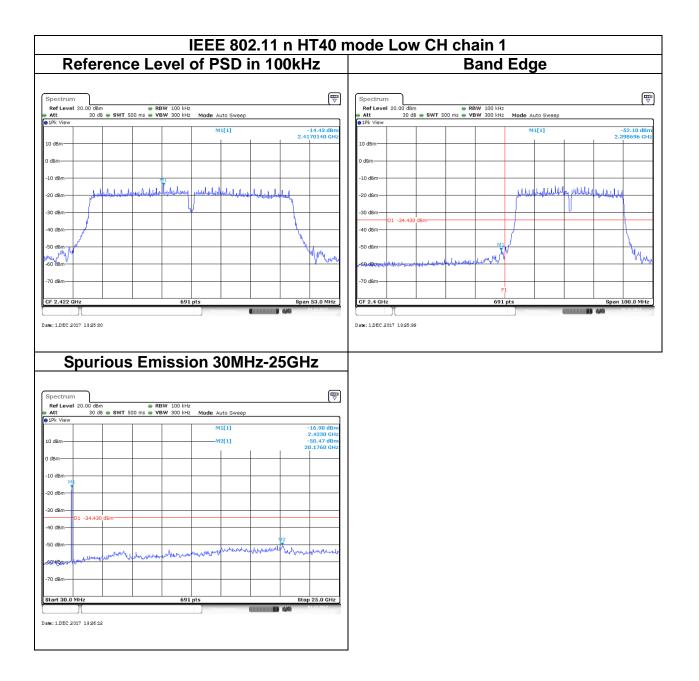




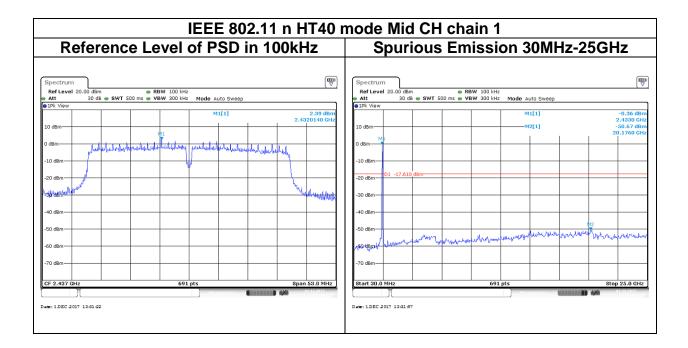


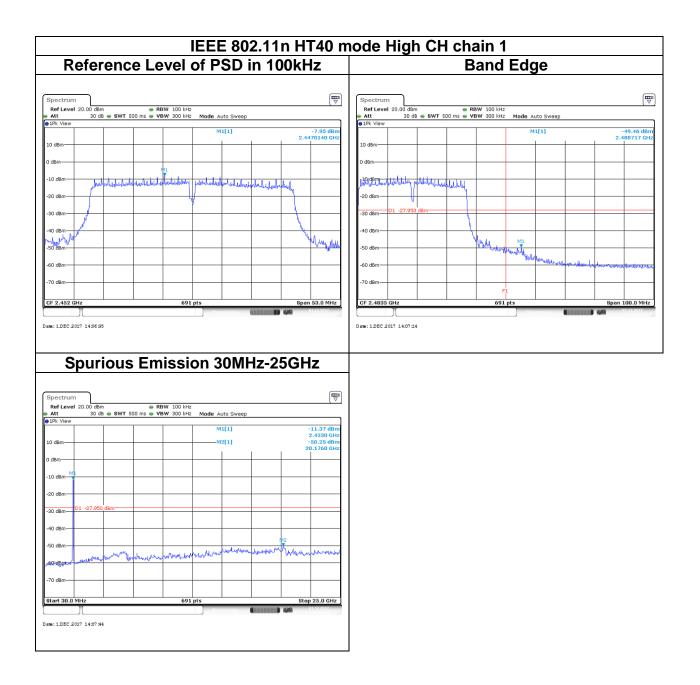







Report No.: T171129W02-RP1














# 5.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

# 5.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

#### Below 30 MHz

| Frequency     | Field Strength<br>(microvolts/m) | Magnetic<br>H-Field<br>(microamperes/m) | Measurement<br>Distance<br>(metres) |
|---------------|----------------------------------|-----------------------------------------|-------------------------------------|
| 9-490 kHz     | 2,400/F (F in kHz)               | 2,400/F (F in kHz)                      | 300                                 |
| 490-1,705 kHz | 24,000/F (F in kHz)              | 24,000/F (F in kHz)                     | 30                                  |
| 1.705-30 MHz  | 30                               | N/A                                     | 30                                  |

#### Above 30 MHz

| Frequency | Field Strength<br>(microvolts/m) | Measurement<br>Distance<br>(metres) |
|-----------|----------------------------------|-------------------------------------|
| 30-88     | 100                              | 3                                   |
| 88-216    | 150                              | 3                                   |
| 216-960   | 200                              | 3                                   |
| Above 960 | 500                              | 3                                   |

### 5.6.2 Test Procedure

Test method Refer as KDB 662911 D01 v02 r01, KDB 558074 D01 V04, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

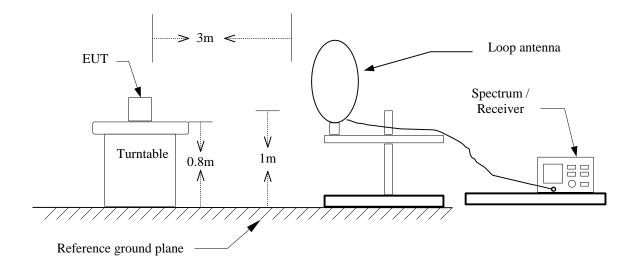
3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

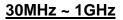
Note: No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz)

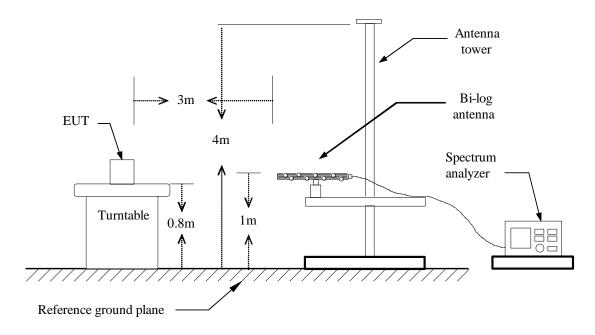
Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

- 4. The SA setting following :
  - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
  - (2) Above 1G :
    - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
    - (2.2) For Average measurement : RBW = 1MHz, VBW


If Duty Cycle  $\geq$  98%, VBW=10Hz.

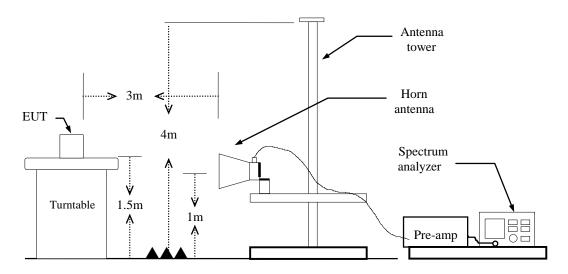

<sup>·</sup>If Duty Cycle < 98%, VBW=1/T.


| Configuration | Duty Cycle (%) | T(ms)  | 1/T (kHz) | VBW Setting |
|---------------|----------------|--------|-----------|-------------|
| 802.11b       | 99%            | 8.7700 | -         | 10Hz        |
| 802.11g       | 90%            | 1.5000 | 0.667     | 680Hz       |
| 802.11n HT20  | 91%            | 1.4200 | 0.704     | 750Hz       |
| 802.11n HT40  | 82%            | 0.7200 | 1.389     | 1.5kHz      |

### 5.6.3 Test Setup

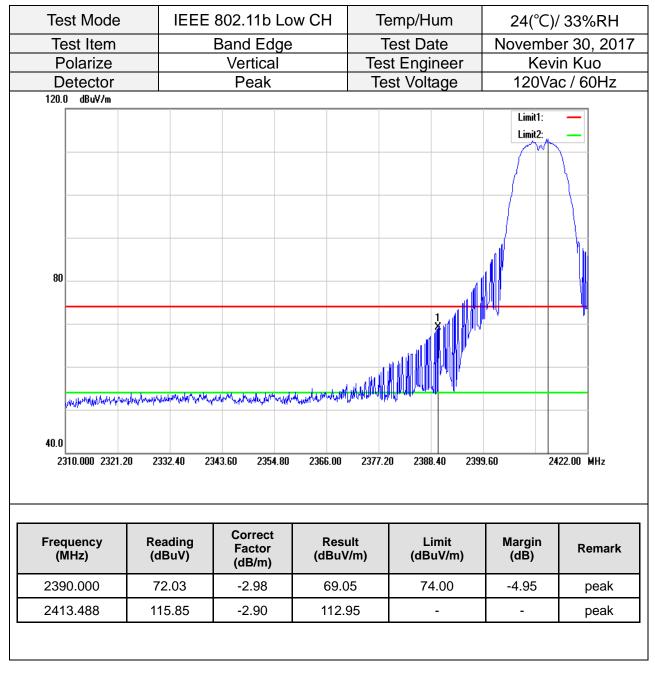
#### <u>9kHz ~ 30MHz</u>



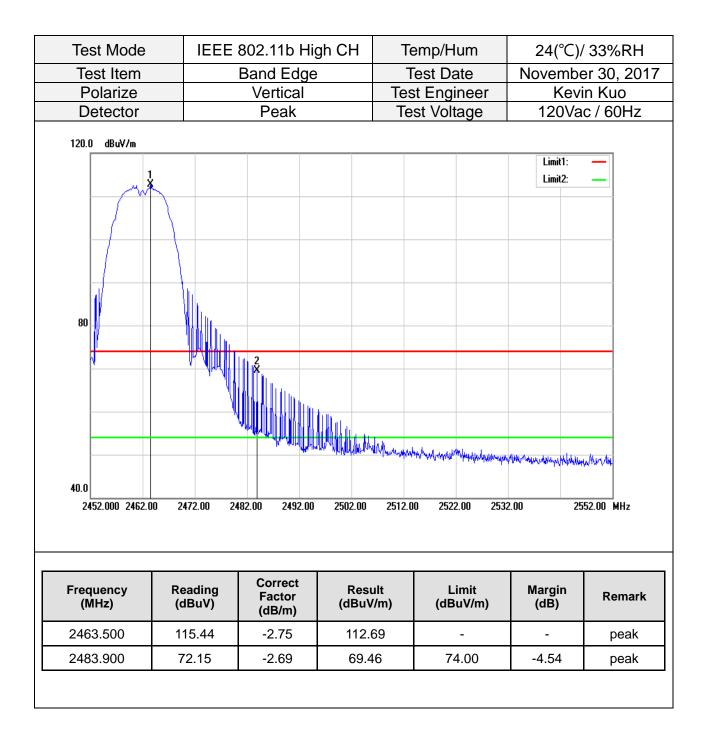


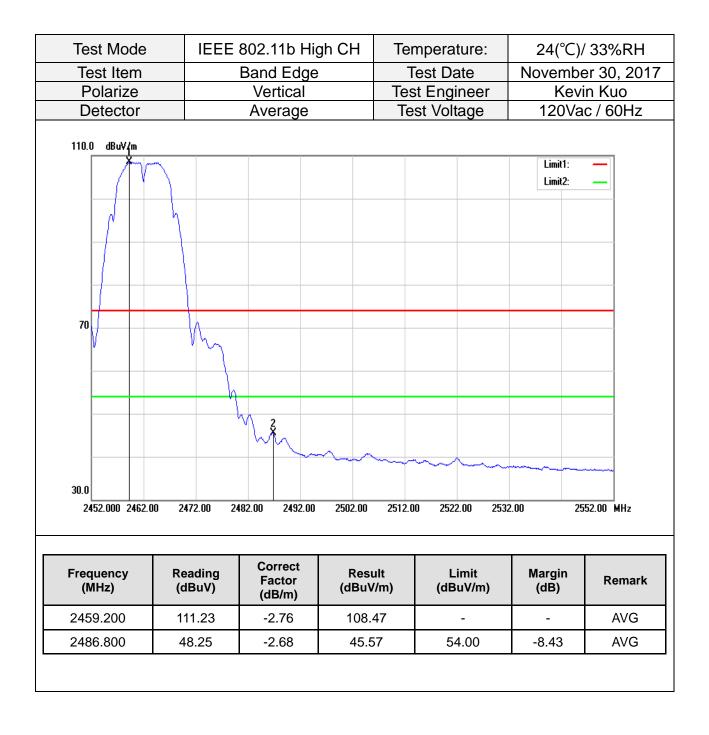



 Compliance Certification Services Inc.


 FCC ID: PPQ-WCBN3507R
 ISED NO: 4491A-WCBN3507R

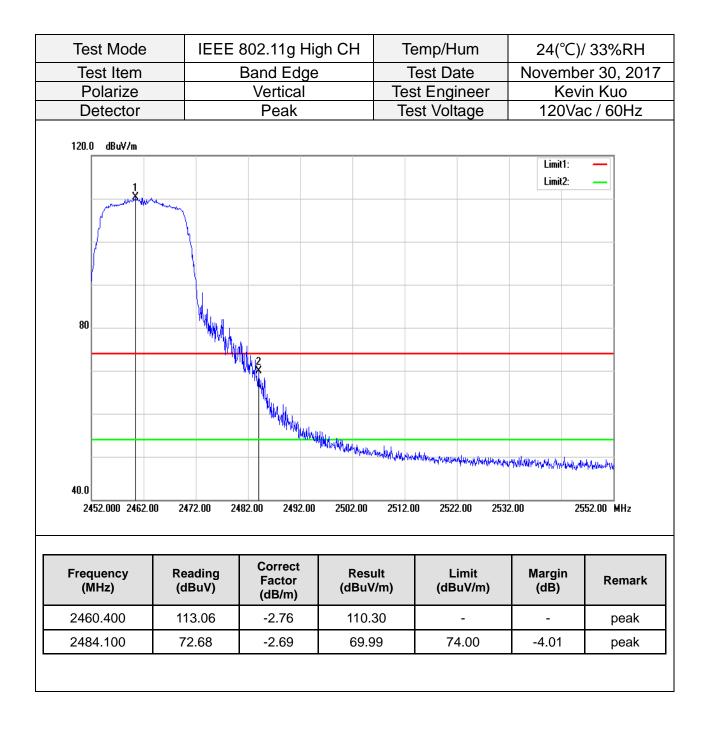
#### Above 1 GHz





## 5.6.4 Test Result

### Band Edge Test Data




| Test Mode           | IEEE              | 802.11b Lo                  | W CH               | lemperature:      |                 | / 33%RH    |
|---------------------|-------------------|-----------------------------|--------------------|-------------------|-----------------|------------|
| Test Item           |                   | Band Edge                   |                    | Test Date         | November 30, 20 |            |
| Polarize            |                   | Vertical                    | Т                  | est Engineer      |                 | in Kuo     |
| Detector            |                   | Average                     |                    | Test Voltage      | 120Va           | c / 60Hz   |
| 120.0 dBu¥/m        |                   |                             |                    |                   |                 |            |
|                     |                   |                             |                    |                   | Limit1:         | —          |
|                     |                   |                             |                    |                   | Limit2:         |            |
|                     |                   |                             |                    |                   |                 |            |
|                     |                   |                             |                    |                   |                 | 4          |
| 00                  |                   |                             |                    |                   |                 |            |
| 80                  |                   |                             |                    |                   |                 |            |
|                     |                   |                             |                    |                   | $\mathcal{N}$   | ₩          |
|                     |                   |                             |                    |                   |                 |            |
| 40.0                |                   |                             |                    |                   |                 |            |
| 40.0 2310.000 2321. | 20 2332.40 2      | 343.60 2354.80              | 2366.00 23         | 77.20 2388.40 239 | 9.60 24         | 122.00 MHz |
|                     |                   |                             |                    |                   |                 |            |
| Frequency<br>(MHz)  | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)  | Remark     |
| 2390.000            | 51.06             | -2.98                       | 48.08              | 54.00             | -5.92           | AVG        |
| 2414.720            | 111.78            | -2.90                       | 108.88             | -                 | -               | AVG        |
|                     |                   |                             |                    |                   |                 |            |





| Test Mode               | IEEE              | 802.11g Lo                              | w CH          | Ter                                            | mp/Hum                  | 24(°C)             | / 33%RH                |
|-------------------------|-------------------|-----------------------------------------|---------------|------------------------------------------------|-------------------------|--------------------|------------------------|
| Test Item               |                   | Band Edge                               | )             |                                                | st Date                 |                    | er 30, 20 <sup>-</sup> |
| Polarize                |                   | Vertical                                |               |                                                | Engineer                |                    | in Kuo                 |
| Detector                |                   | Peak                                    |               | Tes                                            | t Voltage               | 120Va              | c / 60Hz               |
| 120.0 dBuV/m            |                   |                                         |               |                                                |                         | Limit1:<br>Limit2: |                        |
| 80                      |                   | un of ferture to the ferture of the out | dar.Jahranga  | - ALARAN AND AND AND AND AND AND AND AND AND A | white the second second |                    |                        |
| 40.0<br>2310.000 2321.2 | 20 2332.40 2      | 2343.60 2354.80                         | 2366.00       | 2377.20                                        | 2388.40 2               | 399.60 24          | 422.00 MHz             |
| Frequency<br>(MHz)      | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m)             | Rest<br>(dBuV |                                                | Limit<br>(dBuV/m)       | Margin<br>(dB)     | Remark                 |
| 2390.000                | 71.81             | -2.98                                   | 68.8          | 33                                             | 74.00                   | -5.17              | peak                   |
| 2412.144                | 110.95            | -2.91                                   | 108.          | 04                                             | -                       | -                  | peak                   |
|                         |                   |                                         |               |                                                |                         |                    |                        |

| Test Mode          | IEEE              | 802.11g Lo                  |               |         | perature:         | 24(°C)/ 33%RH  |           |  |
|--------------------|-------------------|-----------------------------|---------------|---------|-------------------|----------------|-----------|--|
| Test Item          |                   | Band Edge                   | •             |         | st Date           | Novembe        |           |  |
| Polarize           |                   | Vertical                    |               |         | Engineer          |                | n Kuo     |  |
| Detector           |                   | Average                     |               | Tes     | t Voltage         | 120Va          | c / 60Hz  |  |
| 110.0 dBuV/m       |                   |                             |               |         |                   | Limit1:        | —         |  |
| 70                 |                   |                             |               |         |                   |                |           |  |
| 30.0               | 20 2332.40        | 2343.60 2354.80             | 2366.00       | 2377.20 | 2388.40 239       | 9.60 24        | 22.00 MHz |  |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resı<br>(dBuV |         | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark    |  |
| 2390.000           | 53.87             | -2.98                       | 50.8          | 9       | 54.00             | -3.11          | AVG       |  |
| 2410.240           | 100.56            | -2.92                       | 97.6          | 64      | -                 | -              | AVG       |  |
|                    |                   |                             |               |         |                   |                |           |  |



| Test Mode              | IEEE              | 802.11g Hi                  | gh CH         | Ten     | nperature:        | 24(°C)             | )/ 33%RH        |  |
|------------------------|-------------------|-----------------------------|---------------|---------|-------------------|--------------------|-----------------|--|
| Test Item              |                   | Band Edge                   | ;             |         | est Date          |                    | November 30, 20 |  |
| Polarize               |                   | Vertical                    |               |         | t Engineer        |                    | /in Kuo         |  |
| Detector               |                   | Average                     |               | Tes     | st Voltage        | 120Va              | ac / 60Hz       |  |
| 110.0 dBu¥/m<br>1      |                   |                             |               |         |                   | Limit1:<br>Limit2: |                 |  |
| 70                     |                   | 2                           |               |         |                   |                    |                 |  |
| 30.0<br>2452.000 2462. | 00 2472.00 2      | 482.00 2492.00              | 2502.00       | 2512.00 | ) 2522.00         | 2532.00 2          | 2552.00 MHz     |  |
| Frequency<br>(MHz)     | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resı<br>(dBuV |         | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark          |  |
| 2461.000               | 103.03            | -2.76                       | 100.2         | 27      | -                 | -                  | AVG             |  |
| 2483.500               | 53.19             | -2.69                       | 50.5          | 0       | 54.00             | -3.50              | AVG             |  |
|                        |                   |                             |               |         |                   |                    |                 |  |

| Test Mode                                                            | IEEE 802.2                               | 1n HT20 L                                              | ow CH                     | Те      | mp/Hum           |         | 24(°C)/            | ′ 33%RH    |
|----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------|---------|------------------|---------|--------------------|------------|
| Test Item                                                            |                                          | and Edge                                               |                           |         | est Date         |         |                    | er 12, 201 |
| Polarize                                                             |                                          | Vertical                                               |                           |         | t Enginee        |         |                    | Chuang     |
| Detector                                                             |                                          | Peak                                                   |                           | Tes     | st Voltage       | Э       | 120Va              | c / 60Hz   |
| 120.0 dBuV/m                                                         |                                          |                                                        |                           |         |                  |         | Limit1:<br>Limit2: |            |
| <sub>สุทรภ</sub> ามสาวที่สุนที่เหนือสุนิทร<br>40.0<br>2310.000 2321. | <u>ատեւմ հայիստուն։</u><br>20 2332.40 23 | y <del>/h.alddia/c.ianul/wa/May</del><br>43.60 2354.80 | (Maxw)haaaaaya<br>2366.00 | 2377.20 |                  | 2399.60 | ) 24               | 22.00 MHz  |
| Frequency<br>(MHz)                                                   | Reading<br>(dBuV)                        | Correct<br>Factor<br>(dB/m)                            | Resi<br>(dBuV             |         | Limit<br>(dBuV/n |         | Margin<br>(dB)     | Remark     |
| 2389.632                                                             | 73.76                                    | -2.98                                                  | 70.7                      | '8      | 74.00            |         | -3.22              | peak       |
| 2409.792                                                             | 111.72                                   | -2.92                                                  | 108.                      | 80      | -                |         | -                  | peak       |
|                                                                      |                                          |                                                        |                           | -       |                  |         |                    |            |

| Test Mode                           | IEEE 802.1                          | 1n HT20 Hi                                   | gh CH                                                   | Te              | mp/Hu          | um                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / 33%RH        |
|-------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------|----------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Test Item                           |                                     | nd Edge                                      |                                                         |                 | est Da         |                          | Decemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er 12, 2017    |
| Polarize                            | \\                                  | /ertical                                     |                                                         | Test Engineer   |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chuang         |
| Detector                            |                                     | Peak                                         |                                                         | Tes             | st Volta       | age                      | 120Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ac / 60Hz      |
| 120.0 dBuV/m                        |                                     | 2                                            |                                                         |                 |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                                     |                                     | whether                                      | Marganete                                               |                 |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                                     |                                     |                                              | A TO FOR THE AND A TO A T | the property of | nuruhlanthuyuh | Mulluhan                 | and manifest the second s | erron with the |
| 40.0                                |                                     |                                              |                                                         |                 |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 2452.000 2462<br>Frequency<br>(MHz) | .00 2472.00 24<br>Reading<br>(dBuV) | 82.00 2492.00<br>Correct<br>Factor<br>(dB/m) | 2502.00<br>Resu<br>(dBuV                                |                 | Li             | .00 2532<br>mit<br>JV/m) | 2.00 2<br>Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remark         |
| 2462.000                            | 112.09                              | -2.76                                        | 109.3                                                   | 33              |                | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | peak           |
| 2483.900                            | 75.00                               | -2.69                                        | 72.3                                                    | 31              | 74             | .00                      | -1.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | peak           |
|                                     |                                     |                                              |                                                         |                 |                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |

| Test Mode          | IEEE 802.1        | 1n HT20 Hi                  | gh CH           | Temp    | perature:         | 24(°C)/            | 33%RH                   |
|--------------------|-------------------|-----------------------------|-----------------|---------|-------------------|--------------------|-------------------------|
| Test Item          |                   | ind Edge                    |                 |         | st Date           |                    | er 12, 201 <sup>°</sup> |
| Polarize           |                   | /ertical                    |                 |         | Engineer          | Jerry              | Chuang                  |
| Detector           | A                 | verage                      |                 | Test    | Voltage           | 120Va              | c / 60Hz                |
| 110.0 dBu¥/m       |                   |                             |                 |         |                   | Limit1:            |                         |
| 1                  | mum               |                             |                 |         |                   | Limit1:<br>Limit2: |                         |
|                    |                   |                             |                 |         |                   |                    |                         |
| 70                 |                   |                             |                 |         |                   |                    |                         |
|                    |                   |                             |                 |         |                   |                    |                         |
|                    |                   |                             |                 |         |                   |                    |                         |
| 30.0               |                   |                             |                 |         |                   |                    |                         |
| 2452.000 2462.     | 00 2472.00 24     | 482.00 2492.00              | 2502.00         | 2512.00 | 2522.00 2532      | 2.00 25            | 52.00 MHz               |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resul<br>(dBuV/ |         | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark                  |
|                    | 100.77            | -2.76                       | 98.01           |         | -                 | -                  | AVG                     |
| 2461.300           |                   |                             |                 |         |                   |                    |                         |

| Test Mode               | IEEE 802.                                     | 11n HT40 L                                        | ow CH             | Temp/H      | lum           | 24(°C)/                      | ′ 33%RH   |
|-------------------------|-----------------------------------------------|---------------------------------------------------|-------------------|-------------|---------------|------------------------------|-----------|
| Test Item               | Ba                                            | and Edge                                          |                   | Test Da     | ate           | December 12, 20 <sup>2</sup> |           |
| Polarize                |                                               | Vertical                                          |                   | Test Eng    |               | Jerry                        | Chuang    |
| Detector                |                                               | Peak                                              |                   | Test Vol    | tage          | 120Va                        | c / 60Hz  |
| 120.0 dBuV/m            |                                               |                                                   |                   |             | 2             |                              |           |
| 40.0<br>2310.000 2323.2 | ณมุโกฟ <sub>ฟ</sub> (การประชา<br>0 2336.40 2: | waylwyw 45 m 10 m 1 | 2376.00           | 2389.20 240 | 2.40 2415     | 5.60 24                      | 42.00 MHz |
|                         |                                               |                                                   |                   |             |               |                              |           |
| Frequency<br>(MHz)      | Reading<br>(dBuV)                             | Correct<br>Factor<br>(dB/m)                       | Result<br>(dBuV/r |             | imit<br>uV/m) | Margin<br>(dB)               | Remark    |
| 2390.000                | 73.99                                         | -2.98                                             | 71.01             | 7           | 4.00          | -2.99                        | peak      |
|                         |                                               | -2.90                                             | 101.80            | <u> </u>    |               | -                            | peak      |

| Test Mode          | IEEE 802.         | 11n HT40 L                | ow CH Te           | mperature:        | 24(°C)/ 33%RH      |           |
|--------------------|-------------------|---------------------------|--------------------|-------------------|--------------------|-----------|
| Test Item          |                   | and Edge                  |                    | Test Date         | December 12, 201   |           |
| Polarize           |                   | Vertical                  |                    | st Engineer       |                    | Chuang    |
| Detector           |                   | Average                   | Te                 | est Voltage       | 120Vac / 60Hz      |           |
| 110.0 dBuV/m       |                   |                           |                    | phy and a         | Limit1:<br>Limit2: |           |
| 30.0               |                   | 349.60 2362.80<br>Correct | 2376.00 2389.      |                   |                    | 42.00 MHz |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)          | Result<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark    |
| 0000 000           | 56.08             | -2.98                     | 53.10              | 54.00             | -0.90              | AVG       |
| 2390.000           |                   |                           |                    |                   |                    |           |

|                    | IEEE 802.11n HT40 High CH |                             |                  | Ter           | np/Hum                      | 24(°C)/ 33%RH      |                     |
|--------------------|---------------------------|-----------------------------|------------------|---------------|-----------------------------|--------------------|---------------------|
| Test Item          | Ba                        |                             | Te               | st Date       | December 12, 201            |                    |                     |
| Polarize           | Vertical                  |                             |                  | Test Engineer |                             | Jerry Chuang       |                     |
| Detector           | Peak                      |                             |                  | Tes           | t Voltage                   | 120Vac / 60Hz      |                     |
| 120.0 dBuV/m       |                           |                             | 2<br>2<br>41/141 |               |                             | Limit1:<br>Limit2: |                     |
| 40.0               | 0 2456.00 24              | 68.00 2480.00               | 2492.00          | 2504.00       | чаличнитори<br>2516.00 2520 |                    | ⊾Лщиму<br>52.00 MHz |
| Frequency<br>(MHz) | Reading<br>(dBuV)         | Correct<br>Factor<br>(dB/m) | Resu<br>(dBuV/   |               | Limit<br>(dBuV/m)           | Margin<br>(dB)     | Remark              |
| 2456.840           | 109.15                    | -2.78                       | 106.3            | 37            | -                           | -                  | peak                |
|                    | 74.35                     | -2.67                       | 71.6             | 8             | 74.00                       | -2.32              | peak                |

| V                 | nd Edge<br>/ertical<br>verage | Tes                                                                           | Test Date<br>st Engineer                                                         | Decembe<br>Jerry (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                               |                                                                               |                                                                                  | Jerry (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chuand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A                 | verage                        | _                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                               | le                                                                            | est Voltage                                                                      | 120Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c / 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                               |                                                                               |                                                                                  | Limit1:<br>Limit2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Same                          |                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.00 2456.00 24   | 68.00 2480.00                 | 2492.00 2504.1                                                                | 00 2516.00 252                                                                   | B.00 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                               |                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m)   | Result<br>(dBuV/m)                                                            | Limit<br>(dBuV/m)                                                                | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 99.81             | -2.79                         | 97.02                                                                         | -                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | -2.69                         | 53.78                                                                         | 54.00                                                                            | -0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 4.00 2456.00 24               | 4.00 2456.00 2468.00 2480.00<br>Reading<br>(dBuV) Correct<br>Factor<br>(dB/m) | Reading<br>(dBuV)         Correct<br>Factor<br>(dB/m)         Result<br>(dBuV/m) | No.         No. <td>No.         No.         No.</td> | No.         No. |

## Below 1G Test Data

| Test Mode                        |                   | Mode 1                      |                 | Temp   | o/Hum             | 24(°C)/            | / 33%RH    |
|----------------------------------|-------------------|-----------------------------|-----------------|--------|-------------------|--------------------|------------|
| Test Item                        |                   | 30MHz-1GH                   | z               |        | Date              |                    | er 2, 201  |
| Polarize                         |                   | Vertical                    |                 |        | ngineer           |                    | in Kuo     |
| Detector                         |                   | Peak                        |                 | Test \ | /oltage           | 120Va              | c / 60Hz   |
| 80.0 dBuV/m                      | i i               | - i - i                     | i               |        | i.                |                    |            |
|                                  |                   |                             |                 |        |                   | Limit1:<br>Margin: | _          |
|                                  |                   |                             |                 |        |                   |                    |            |
|                                  |                   |                             |                 |        |                   |                    |            |
| 30                               | 1<br>X            | 2<br>X                      |                 |        | 4 X               |                    | 6<br>X     |
|                                  |                   |                             | 3<br>X          |        |                   |                    |            |
|                                  |                   |                             |                 |        |                   |                    |            |
|                                  |                   |                             |                 |        |                   |                    |            |
| -20                              |                   |                             |                 |        |                   |                    |            |
| 30.000 127.00                    | 224.00            | 321.00 418.00               | 515.00          | 612.00 | 709.00 806.       | 00 10              | )00.00 MHz |
| Frequency<br>(MHz)               | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resul<br>(dBuV/ |        | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark     |
| 240.4900                         | 50.91             | -16.12                      | 34.79           | )      | 46.02             | -11.23             | peak       |
| 345.2500                         | 44.90             | -13.09                      | 31.81           |        | 46.02             | -14.21             | peak       |
| 499.4800                         | 33.39             | -8.50                       | 24.89           |        | 46.02             | -21.13             | peak       |
|                                  | 36.64             | -4.85                       | 31.79           |        | 46.02             | -14.23             | peak       |
| 703.1800                         |                   |                             | 0101            |        | 46.02             | -11.41             | peak       |
| 703.1800<br>719.6700<br>960.2300 | 39.26<br>36.69    | -4.65                       | 34.61           |        | 54.00             |                    | Poon       |

| Test Mo              | de       |                 | Mode 1                      |                | Te     | mp/Hum            | 24(°C)             | / 33%RF      |
|----------------------|----------|-----------------|-----------------------------|----------------|--------|-------------------|--------------------|--------------|
| Test Ite             |          | 3               | 0MHz-1GF                    |                |        | est Date          | Decemb             |              |
| Polariz              |          |                 | Horizontal                  |                |        | t Engineer        |                    | in Kuo       |
| Detect               | or       |                 | Peak                        |                | Tes    | st Voltage        | 120Va              | ic / 60Hz    |
| 80.0 dBuV/           | 'm       |                 |                             |                |        |                   |                    |              |
|                      |          |                 |                             |                |        |                   | Limit1:<br>Margin: |              |
|                      |          |                 |                             |                |        |                   |                    |              |
|                      |          |                 |                             |                |        |                   |                    | F            |
| 30                   |          |                 |                             | _              |        |                   |                    | 6<br>X       |
|                      | ×        | 2 <sup>3</sup>  |                             | 4 5<br>X X     |        |                   |                    |              |
|                      |          |                 |                             |                |        |                   |                    |              |
|                      |          |                 |                             |                |        |                   |                    |              |
| -20                  |          |                 |                             |                |        |                   |                    |              |
| 30.000 1             | 127.00 2 | 224.00 32       | 1.00 418.00                 | 515.00         | 612.00 | 709.00 806        | .00 10             | 000.00 MHz   |
| Frequency<br>(MHz)   |          | eading<br>dBuV) | Correct<br>Factor<br>(dB/m) | Resu<br>(dBuV/ |        | Limit<br>(dBuV/m) | Margin<br>(dB      | Remar        |
|                      |          | 43.64           | -16.69                      | 26.9           | 5      | 43.52             | -16.57             | peak         |
| 110.5100             |          | 43.04           |                             |                |        |                   |                    |              |
| 110.5100<br>240.4900 |          | 43.04<br>39.46  | -16.12                      | 23.3           | 4      | 46.02             | -22.68             | peak         |
|                      | ;        |                 |                             |                |        | 46.02<br>46.02    | -22.68<br>-20.74   | peak<br>peak |
| 240.4900             |          | 39.46           | -16.12                      | 23.3           | 8      |                   |                    |              |
| 240.4900<br>257.9500 |          | 39.46<br>40.87  | -16.12<br>-15.59            | 23.3<br>25.2   | 8      | 46.02             | -20.74             | peak         |

30MHz(9KHz~30MHz)

## Above 1G Test Data

| Test Mode      |        | IEEE    | 802.11b          | Low CH       | Te      | emp/H    | um        |         | C)/ 33%RH    |
|----------------|--------|---------|------------------|--------------|---------|----------|-----------|---------|--------------|
| Test Item      |        |         | Harmon           |              |         | lest Da  |           |         | nber 5, 201  |
| Polarize       |        |         | Vertica          |              |         | st Engi  |           |         | ry Chuang    |
| Detector       |        | Pea     | k and Av         | erage        | Te      | est Volt | age       | 120     | Vac / 60Hz   |
| 110.0 dBuV/m   |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           | Limit1: |              |
|                |        |         |                  |              |         |          |           | Limit2  | ·            |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
| 70             |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                | 1<br>X |         |                  |              |         |          |           |         |              |
|                | Ť      |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
| 30.0           |        |         |                  |              |         |          |           |         |              |
| 1000.000 3550. | 00 610 | 0.00 86 | 50.00 1120       | 0.00 13750.0 | 0 16300 | .00 1889 | 50.00 214 | DO.OO   | 26500.00 MHz |
|                |        |         |                  |              |         |          |           |         |              |
| Frequency      | Rea    | ading   | Correct          | Res          | sult    | L        | imit      | Margin  | Damark       |
| (MHz)          | (dE    | 3uV) ¯  | Factor<br>(dB/m) | (dBu         | V/m)    | (dB      | uV/m)     | (dB)    | Remark       |
| 4827.000       | 43     | 3.96    | 4.38             | 48           | 34      | 74       | 4.00      | -25.66  | peak         |
| N/A            |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |
|                |        |         |                  |              |         |          |           |         |              |

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

|                                                                                               | IE                              | EE 802.11b l                          |                                |                   | emp/H                     |                            | -                        | )/ 33%RH               |
|-----------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|--------------------------------|-------------------|---------------------------|----------------------------|--------------------------|------------------------|
| Test Item                                                                                     |                                 | Harmoni                               |                                |                   | est Da                    |                            |                          | ber 5, 201             |
| Polarize<br>Detector                                                                          |                                 | Horizonta<br>Peak and Ave             |                                |                   | <u>st Engi</u><br>st Volt |                            |                          | / Chuang<br>/ac / 60Hz |
| Detector                                                                                      |                                 |                                       | ciago                          |                   | 31 VOI                    | ayc                        | 1200                     |                        |
| 110.0 dBuV/m                                                                                  |                                 |                                       |                                |                   |                           |                            | Limit1:                  |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            | Limit2:                  | _                      |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
| 70                                                                                            |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               | 1<br>X                          |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          | 1                      |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
|                                                                                               |                                 |                                       |                                |                   |                           |                            |                          |                        |
| 30.0                                                                                          | 00 6100 00                      | 8650.00 11200                         | 0.00 13750.00                  | 16300             | 00 1885                   | 50.00 214                  | 00.00                    | 26500 00 MHz           |
| 30.0<br>1000.000 3550.                                                                        | 00 6100.00                      | 8650.00 11200                         | ).00 13750.00                  | 16300.0           | 00 1885                   | 50.00 214                  | 00.00                    | 26500.00 MHz           |
|                                                                                               | 00 6100.00                      |                                       | 0.00 13750.00                  | 16300.1           | 00 1885                   | 50.00 214                  | 00.00                    | 26500.00 MHz           |
|                                                                                               | 00 6100.00<br>Reading<br>(dBuV) | Correct                               | 0.00 13750.00<br>Resi<br>(dBuV | ult               | L                         | 50.00 214<br>imit<br>uV/m) | 00.00<br>Margin<br>(dB)  | 26500.00 MHz<br>Remark |
| 1000.000 3550.<br>Frequency                                                                   | Reading                         | G Correct<br>Factor                   | Resu                           | ult<br>//m)       | L<br>(dB                  | imit                       | Margin                   |                        |
| 1000.000 3550.<br>Frequency<br>(MHz)                                                          | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)               | G Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                  | ult<br>//m)       | L<br>(dB                  | imit<br>uV/m)              | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000<br>N/A<br>N/A<br>emark:<br>1. Measu          | Reading<br>(dBuV)<br>42.05      | G Correct<br>Factor<br>(dB/m)<br>4.38 | Rest<br>(dBuV<br>46.4          | ult<br>//m)<br>I3 | L<br>(dB<br>74            | imit<br>uV/m)<br>4.00      | Margin<br>(dB)<br>-27.57 | Remark<br>peak         |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000<br>N/A<br>N/A<br>emark:<br>1. Measu<br>funda | Reading<br>(dBuV)<br>42.05      | G Correct<br>Factor<br>(dB/m)<br>4.38 | Rest<br>(dBuV<br>46.4          | ult<br>//m)<br>I3 | L<br>(dB<br>74            | imit<br>uV/m)<br>4.00      | Margin<br>(dB)<br>-27.57 | Remark<br>peak         |

| Test Mode                                                                                | IEEI                       | E 802.11b M                          | id CH                 |                          | emp/Hu              |                            |                          | C)/ 33%RH              |
|------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-----------------------|--------------------------|---------------------|----------------------------|--------------------------|------------------------|
| Test Item                                                                                |                            | Harmonic                             |                       |                          | est Dat             |                            |                          | <u>nber 5, 201</u>     |
| Polarize                                                                                 | De                         | Vertical                             |                       |                          | t Engin             |                            |                          | y Chuang               |
| Detector                                                                                 | Pe                         | eak and Aver                         | rage                  | Ie                       | st Volta            | ge                         | 120\                     | /ac / 60Hz             |
| 110.0 dBuV/m                                                                             |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            | Limit1:                  | —                      |
|                                                                                          |                            |                                      |                       |                          |                     |                            | Limit2:                  |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
| 70                                                                                       |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          | 1<br>X                     |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
|                                                                                          |                            |                                      |                       |                          |                     |                            |                          |                        |
| 30.0                                                                                     |                            |                                      |                       |                          |                     |                            |                          |                        |
| 30.0<br>1000.000 3550.0                                                                  | 00 6100.00                 | 8650.00 11200.0                      | 0 13750.00            | 16300.                   | 00 18850.           | 00 2140                    | 00.00                    | 26500.00 MHz           |
|                                                                                          | 00 6100.00                 | 8650.00 11200.0                      | 0 13750.00            | 16300.                   | 00 18850.           | 00 214(                    | 00.00                    | 26500.00 MHz           |
|                                                                                          | 00 6100.00                 |                                      | 0 13750.00            | 16300.                   | 00 18850.           | 00 2140                    | )0.00                    | 26500.00 MHz           |
| 1000.000 3550.1                                                                          | Reading                    | 8650.00 11200.0<br>Correct<br>Factor | Resu                  | ılt                      | Lin                 | nit                        | Margin                   | 26500.00 MHz<br>Remark |
| 1000.000 3550.0                                                                          |                            | Correct                              |                       | ılt                      |                     | nit                        |                          |                        |
| 1000.000 3550.1                                                                          | Reading                    | Correct<br>Factor                    | Resu                  | ılt<br>/m)               | Lin                 | nit<br>V/m)                | Margin                   |                        |
| 1000.000 3550.1<br>Frequency<br>(MHz)                                                    | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                                         | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                                         | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                                         | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                                         | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                                         | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.1<br>Frequency<br>(MHz)<br>4876.000<br>N/A                                 | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)          | Resu<br>(dBuV         | ılt<br>/m)               | Lin<br>(dBu'        | nit<br>V/m)                | Margin<br>(dB)           | Remark                 |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4876.000<br>N/A                                 | Reading<br>(dBuV)<br>45.36 | Correct<br>Factor<br>(dB/m)<br>4.47  | Resu<br>(dBuV<br>49.8 | ılt<br>/m)<br>3          | Lin<br>(dBu'<br>74. | nit<br>V/m)<br>00          | Margin<br>(dB)<br>-24.17 | Remark                 |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4876.000<br>N/A<br>N/A<br>Pmark:<br>1. Measu    | Reading<br>(dBuV)<br>45.36 | Correct<br>Factor<br>(dB/m)<br>4.47  | Resu<br>(dBuV<br>49.8 | ılt<br>/m)<br>3          | Lin<br>(dBu'<br>74. | nit<br>V/m)<br>00          | Margin<br>(dB)<br>-24.17 | Remark                 |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4876.000<br>N/A<br>Pemark:<br>1. Measu<br>funda | Reading<br>(dBuV)<br>45.36 | Correct<br>Factor<br>(dB/m)<br>4.47  | Resu<br>(dBuV<br>49.8 | Ilt<br>/m)<br>3<br>the 1 | Lin<br>(dBu'<br>74. | nit<br>V/m)<br>00<br>monic | Margin<br>(dB)<br>-24.17 | Remark                 |

|                             | IE                             | EEE 802.11b N                   |                               |            | mp/Hum                         |          |                      | 33%RH                     |
|-----------------------------|--------------------------------|---------------------------------|-------------------------------|------------|--------------------------------|----------|----------------------|---------------------------|
| Test Item                   |                                | Harmonio                        |                               |            | est Date                       |          |                      | er 5, 2017                |
| Polarize<br>Detector        |                                | Horizonta<br>Peak and Ave       |                               |            | t Enginee<br>st Voltage        |          |                      | <u>Chuang</u><br>c / 60Hz |
| 110.0 dBuV/m                |                                |                                 |                               |            |                                |          | Limit1:<br>Limit2:   |                           |
| 70                          | 1<br>X                         |                                 |                               |            |                                |          |                      |                           |
| 30.0<br>1000.000 3550.      | 00 6100.00                     | 8650.00 11200.                  | .00 13750.00                  | 16300.0    | 0 18850.00                     | 21400.00 | 26                   | 500.00 MHz                |
|                             | 00 6100.00<br>Readin<br>(dBuV) | g Correct                       | .00 13750.00<br>Resu<br>(dBuV | ılt        | 0 18850.00<br>Limit<br>(dBuV/m | M        | 26<br>largin<br>(dB) | 500.00 MHz<br>Remark      |
| 1000.000 3550.<br>Frequency | Readin                         | g Correct<br>9 Factor<br>(dB/m) | Resu                          | ılt<br>/m) | Limit                          | ) M      | largin               |                           |

| Ta at Itana                          |                                | E 802.11b Hi                | ghon                                 | Temp/Hum                                | , ,                         | / 33%RH                   |
|--------------------------------------|--------------------------------|-----------------------------|--------------------------------------|-----------------------------------------|-----------------------------|---------------------------|
| Test Item                            |                                | Harmonic                    |                                      | Test Date                               |                             | er 5, 201                 |
| Polarize<br>Detector                 | P                              | Vertical<br>eak and Aver    |                                      | est Engineer<br>Test Voltage            |                             | <u>Chuang</u><br>c / 60Hz |
| 110.0 dBuV/m                         |                                |                             |                                      |                                         | Limit1:<br>Limit2:          |                           |
|                                      | 1                              |                             |                                      |                                         |                             |                           |
| 30.0<br>1000.000 3550.               |                                | 8650.00 11200.00            | 0 13750.00 163                       | 300.00 18850.00 21                      | 400.00 26                   | 500.00 MHz                |
|                                      |                                | Correct<br>Factor           | 0 13750.00 163<br>Result<br>(dBuV/m) | 300.00 18850.00 21<br>Limit<br>(dBuV/m) | 400.00 26<br>Margin<br>(dB) |                           |
| 1000.000 3550.<br>Frequency          | 00 6100.00<br>Reading          | Correct                     | Result                               | Limit                                   | Margin                      | S500.00 MHz<br>Remark     |
| 1000.000 3550.<br>Frequency<br>(MHz) | 8 6100.00<br>Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m)                   | Limit<br>(dBuV/m)                       | Margin<br>(dB)              | Remark                    |

| LERF     | Comp      | liance Certificat | ion Servi | ces Inc.        |                            |
|----------|-----------|-------------------|-----------|-----------------|----------------------------|
|          | FCC ID: F | PQ-WCBN3507R      | ISED NO:  | 4491A-WCBN3507R | Report No.: T171129W02-RP1 |
|          |           |                   |           |                 |                            |
| Test Mod | le        | IEEE 802.11b H    | ligh CH   | Temp/Hum        | 24(°C)/ 33%RH              |

| 110.0       dBuV/m         Image: constrained and constraine | lest Mode |                | EEE 802   | 2.11b H  | ligh CH     |           | emp/H   |          |                | C)/ 33%    |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------|----------|-------------|-----------|---------|----------|----------------|------------|---------|
| Detector         Peak and Average         Test Voltage         120Vac / 60Hz           110.0         dBuV/m         Limit1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |           |          |             |           |         |          |                |            |         |
| 110.0       dBuV/m         110.0       dBuV         110.0       dBuV <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |           |          |             |           |         |          |                |            |         |
| Trequency       Reading       Correct<br>Factor<br>(dB/m)       Result<br>(dBuV/m)       Limit<br>(dBuV/m)       Margin<br>(dB)       Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                |           |          |             |           |         |          | Limit1         | : —        | <u></u> |
| ID00.000 3550.00       6100.00       8650.00       11200.00       13750.00       16300.00       18850.00       21400.00       26500.00 MHz         Frequency (MHz)       Reading (dBuV)       Correct Factor (dB/m)       Result (dBuV/m)       Limit (dBuV/m)       Margin (dB)       Remark         4925.000       44.91       4.55       49.46       74.00       -24.54       peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70        |                |           |          |             |           |         |          |                |            |         |
| Frequency<br>(MHz)Reading<br>(dBuV)Factor<br>(dB/m)Result<br>(dBuV/m)Limit<br>(dBuV/m)Margin<br>(dB)Remark<br>Remark4925.00044.914.5549.4674.00-24.54peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | .00 6100.0     | 10 8650.0 | 0 11200. | 00 13750.00 | ) 16300.1 | 00 1885 | 0.00 214 | 00.00          | 26500.00 M | lHz     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Readi<br>(dBu' | ng<br>V)  | Factor   |             |           |         |          | Margin<br>(dB) | Re         | mark    |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4925.000  | 44.9           | 1         | 4.55     | 49.4        | 46        | 74      | 1.00     | -24.54         | . p        | eak     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A       |                |           |          |             |           |         |          |                |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |          |             |           |         |          |                |            |         |

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| E |  | 212  | Col |
|---|--|------|-----|
|   |  | 40.0 | FCC |

## **R** Compliance Certification Services Inc.

FCC ID: PPQ-WCBN3507R ISED NO: 4491A-WCBN3507R

Report No.: T171129W02-RP1

|                                                         |                               | EE 802.11g L                       |                                 | Temp/l              |                               |                            | / 33%RH                   |
|---------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------|-------------------------------|----------------------------|---------------------------|
| Test Item                                               |                               | Harmoni                            | c                               | Test D              |                               |                            | er 5, 201                 |
| Polarize<br>Detector                                    |                               | Vertical<br>Peak and Ave           | erage                           | Test Eng<br>Test Vo |                               | 120Va                      | <u>Chuang</u><br>c / 60Hz |
| 110.0 dBuV/m                                            |                               |                                    |                                 |                     |                               | Limit1:                    |                           |
|                                                         |                               |                                    |                                 |                     |                               | Limit2:                    |                           |
|                                                         |                               |                                    |                                 |                     |                               |                            |                           |
| 70                                                      |                               |                                    |                                 |                     |                               |                            |                           |
|                                                         | 1<br>X                        |                                    |                                 |                     |                               |                            |                           |
|                                                         |                               |                                    |                                 |                     |                               |                            |                           |
| 30.0<br>1000.000 3550.                                  | 00 6100.00                    | 8650.00 11200                      | 0.00 13750.00                   | 16300.00 18         | 850.00 214                    | 00.00 26                   | 500.00 MHz                |
|                                                         | 00 6100.00<br>Readin<br>(dBuV | g Correct                          | 0.00 13750.00<br>Resu<br>(dBuV/ | lt                  | 850.00 214<br>Limit<br>BuV/m) | 00.00 26<br>Margin<br>(dB) | 500.00 MHz<br>Remark      |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000        | Readin                        | g<br>) Correct<br>Factor<br>(dB/m) | Resu                            | lt<br>(m) (d        | Limit                         | Margin                     |                           |
| 1000.000 3550.<br>Frequency<br>(MHz)                    | Readin<br>(dBuV)              | g Correct<br>Factor<br>(dB/m)      | Resu<br>(dBuV/                  | lt<br>(m) (d        | Limit<br>BuV/m)               | Margin<br>(dB)             | Remark                    |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000        | Readin<br>(dBuV)              | g Correct<br>Factor<br>(dB/m)      | Resu<br>(dBuV/                  | lt<br>(m) (d        | Limit<br>BuV/m)               | Margin<br>(dB)             | Remark                    |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4827.000<br>N/A | Readin<br>(dBuV)<br>41.41     | g Correct<br>Factor<br>(dB/m)      | Resu<br>(dBuV/<br>45.79         | lt<br>'m) (d<br>9   | Limit<br>BuV/m)<br>74.00      | Margin<br>(dB)<br>-28.21   | Remark                    |

|                                                                                                |                            | IEEE 802.11g Low CH<br>Harmonic     |                       |                              | mp/H             |              |                          | 24(°C)/ 33%RH<br>December 5, 201 |  |  |
|------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|-----------------------|------------------------------|------------------|--------------|--------------------------|----------------------------------|--|--|
| Test Item                                                                                      |                            |                                     |                       |                              | est Da           |              |                          |                                  |  |  |
| Polarize<br>Detector                                                                           | Р                          | Horizontal                          |                       |                              | Engii            |              |                          | Chuang                           |  |  |
| Detector                                                                                       |                            | eak and Ave                         | rage                  | Tes                          | st Volta         | age          | 12008                    | ac / 60Hz                        |  |  |
| 110.0 dBuV/m                                                                                   |                            |                                     |                       |                              |                  |              | i                        |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              | Limit1:<br>Limit2:       |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
| 70                                                                                             |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
| 70                                                                                             |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                | 1<br>X                     |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
|                                                                                                |                            |                                     |                       |                              |                  |              |                          |                                  |  |  |
| 30.0                                                                                           | 0 6100.00                  | 9650.00 11200.0                     | 10 12750 00           | 16200.0                      | 0 1995           | 0.00 214     | 00.00 2                  | C500.00 MHz                      |  |  |
| 30.0<br>1000.000 3550.0                                                                        | 00 6100.00                 | 8650.00 11200.0                     | 0 13750.00            | 16300.0                      | 0 1885           | 0.00 214     | 00.00 2                  | 6500.00 MHz                      |  |  |
|                                                                                                | DO 6100.00                 | 8650.00 11200.0                     | 0 13750.00            | 16300.0                      | 0 1885           | 0.00 214     | 00.00 2                  | 6500.00 MHz                      |  |  |
| 1000.000 3550.0<br>Frequency                                                                   | Reading                    | Correct                             | Resu                  | ılt                          | Li               | mit          | Margin                   |                                  |  |  |
| 1000.000 3550.0                                                                                |                            |                                     | 1                     | ılt                          | Li               |              |                          | 6500.00 MHz<br>Remark            |  |  |
| 1000.000 3550.0<br>Frequency                                                                   | Reading                    | Correct<br>Factor                   | Resu                  | ılt<br>/m)                   | Li<br>(dBu       | mit          | Margin                   |                                  |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)                                                          | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000                                              | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000<br>N/A                                       | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV         | ılt<br>/m)                   | Li<br>(dBu       | mit<br>uV/m) | Margin<br>(dB)           | Remark                           |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000<br>N/A                                       | Reading<br>(dBuV)<br>39.59 | Correct<br>Factor<br>(dB/m)<br>4.38 | Resu<br>(dBuV<br>43.9 | Ilt<br>/m)<br>17             | Li<br>(dBı<br>74 | mit<br>JV/m) | Margin<br>(dB)<br>-30.03 | Remark<br>peak                   |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000<br>N/A<br>N/A<br>Pmark:<br>1. Measu          | Reading<br>(dBuV)<br>39.59 | Correct<br>Factor<br>(dB/m)<br>4.38 | Resu<br>(dBuV<br>43.9 | Ilt<br>/m)<br>17             | Li<br>(dBı<br>74 | mit<br>JV/m) | Margin<br>(dB)<br>-30.03 | Remark<br>peak                   |  |  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4827.000<br>N/A<br>M/A<br>Emark:<br>1. Measu<br>funda | Reading<br>(dBuV)<br>39.59 | Correct<br>Factor<br>(dB/m)<br>4.38 | Resu<br>(dBuV<br>43.9 | ult<br>/m)<br>17<br>17<br>17 | Li<br>(dBu<br>74 | mit<br>JV/m) | Margin<br>(dB)<br>-30.03 | Remark<br>peak                   |  |  |

| Test Item                                   |                   | EE 802.11g N                  |                  |         | o/Hum              |                    | / 33%RH              |
|---------------------------------------------|-------------------|-------------------------------|------------------|---------|--------------------|--------------------|----------------------|
|                                             |                   | Harmonic                      | ;                |         | Date               |                    | <u>er 5, 201</u>     |
| Polarize<br>Detector                        |                   | Vertical<br>Peak and Ave      | rage             |         | ngineer<br>/oltage |                    | Chuang<br>c / 60Hz   |
| 110.0 dBuV/m                                |                   |                               |                  |         |                    | Limit1:<br>Limit2: |                      |
|                                             | 1                 |                               |                  |         |                    |                    |                      |
| 30.0<br>1000.000 3550<br>Frequency<br>(MHz) | Reading           | Factor                        | Resul            |         | Limit              | Margin             | 500.00 MHz<br>Remark |
| 1000.000 3550<br>Frequency<br>(MHz)         | Reading<br>(dBuV) | G Correct<br>Factor<br>(dB/m) | Resul<br>(dBuV/i | t<br>m) | Limit<br>(dBuV/m)  | Margin<br>(dB)     | Remark               |
| 1000.000 3550<br>Frequency                  | Reading           | G Correct<br>Factor           | Resul            | t<br>m) | Limit              | Margin             |                      |

| Test Mode                             | IEE               | EE 802.11g N                |                |            | p/Hum               |                            | / 33%RH              |
|---------------------------------------|-------------------|-----------------------------|----------------|------------|---------------------|----------------------------|----------------------|
| Test Item<br>Polarize                 |                   | Harmonic<br>Horizontal      |                |            | t Date              |                            | er 5, 2017<br>Chuang |
| Detector                              | F                 | Peak and Ave                |                |            | Engineer<br>Voltage |                            | Chuang<br>c / 60Hz   |
| 110.0 dBuV/m                          | •                 |                             | luge           | 1001       | voltage             | 12070                      | 07 00112             |
|                                       |                   |                             |                |            |                     | Limit1:<br>Limit2:         | _                    |
| 70                                    |                   |                             |                |            |                     |                            |                      |
| 1000.000 3550.0                       | 00 6100.00        | 8650.00 11200.0             | 00 13750.00    | 16300.00   | 18850.00 214        | 00.00 26                   | 500.00 MHz           |
| 1000.000 3550.0<br>Frequency<br>(MHz) | Reading<br>(dBuV) | Corroct                     | Resu<br>(dBuV  | ılt        | Limit<br>(dBuV/m)   | 00.00 26<br>Margin<br>(dB) | 500.00 MHz<br>Remark |
| Frequency<br>(MHz)<br>4876.000        | Reading           | Correct<br>Factor           | Resu           | ılt<br>/m) | Limit               | Margin                     |                      |
| Frequency<br>(MHz)                    | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Resu<br>(dBuV/ | ılt<br>/m) | Limit<br>(dBuV/m)   | Margin<br>(dB)             | Remark               |

|                                                                                                        | IEE                             | E 802.11g H                                   | -                            |                   | emp/H              |                            |                          | C)/ 33%RH               |
|--------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|------------------------------|-------------------|--------------------|----------------------------|--------------------------|-------------------------|
| Test Item                                                                                              |                                 | Harmonic                                      | >                            |                   | est Da             |                            |                          | nber 5, 201             |
| Polarize<br>Detector                                                                                   | D                               | Vertical<br>eak and Ave                       | vrage                        |                   | st Engi<br>st Volf |                            |                          | ry Chuang<br>Vac / 60Hz |
| Delector                                                                                               | _   F                           | eak and Ave                                   | lage                         | Ie                |                    | aye                        | 120                      |                         |
| 110.0 dBu¥/m                                                                                           |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            | Limit1:<br>Limit2:       |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
| 70                                                                                                     |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        | 1<br>X                          |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        | Î                               |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
|                                                                                                        |                                 |                                               |                              |                   |                    |                            |                          |                         |
| 30.0                                                                                                   |                                 |                                               |                              |                   |                    |                            |                          |                         |
| 30.0<br>1000.000 3550.0                                                                                | 0 6100.00                       | 8650.00 11200.                                | 00 13750.00                  | 16300.            | 00 188             | 50.00 214                  | 00.00                    | 26500.00 MHz            |
|                                                                                                        | 0 6100.00                       | 8650.00 11200.                                | 00 13750.00                  | 16300.            | 00 188             | 50.00 214                  | 00.00                    | 26500.00 MHz            |
| 1000.000 3550.0                                                                                        |                                 |                                               | 00 13750.00                  | 16300.            |                    |                            | 1                        |                         |
|                                                                                                        | 00 6100.00<br>Reading<br>(dBuV) | 8650.00 11200.<br>Correct<br>Factor<br>(dB/m) | 00 13750.00<br>Rest<br>(dBuV | ult               | L                  | 50.00 214<br>imit<br>uV/m) | 00.00<br>Margin<br>(dB)  |                         |
| 1000.000 3550.0                                                                                        | Reading                         | Correct<br>Factor                             | Resu                         | ult<br>//m)       | L<br>(dB           | imit                       | Margin                   | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)                                                                  | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000                                                      | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000                                                      | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000                                                      | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000                                                      | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000                                                      | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000<br>N/A                                               | Reading<br>(dBuV)               | Correct<br>Factor<br>(dB/m)                   | Resu<br>(dBuV                | ult<br>//m)       | L<br>(dB           | imit<br>uV/m)              | Margin<br>(dB)           | Remark                  |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000<br>N/A                                               | Reading<br>(dBuV)<br>43.50      | Correct<br>Factor<br>(dB/m)<br>4.55           | Rest<br>(dBuV<br>48.0        | ult<br>//m)<br>05 | L<br>(dB<br>74     | imit<br>uV/m)<br>4.00      | Margin<br>(dB)<br>-25.95 | Remark<br>peak          |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000<br>N/A<br>N/A<br>emark:<br>1. Measu                  | Reading<br>(dBuV)<br>43.50      | Correct<br>Factor<br>(dB/m)<br>4.55           | Rest<br>(dBuV<br>48.0        | ult<br>//m)<br>05 | L<br>(dB<br>74     | imit<br>uV/m)<br>4.00      | Margin<br>(dB)<br>-25.95 | Remark<br>peak          |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4925.000<br>N/A<br>Pemark:<br>1. Measu<br>fundat<br>2. For al | Reading<br>(dBuV)<br>43.50      | Correct<br>Factor<br>(dB/m)<br>4.55           | Resu<br>(dBuV<br>48.0        | ult<br>//m)<br>05 | Oth ha             | imit<br>uV/m)<br>4.00      | Margin<br>(dB)<br>-25.95 | Remark                  |

|  | 121 | - |
|--|-----|---|
|  |     |   |

**R=** Compliance Certification Services Inc.

FCC ID: PPQ-WCBN3507R ISED NO: 4491A-WCBN3507R

| Test Mode             |          | IEEE          | 802.11g                    |             | H                | Temp/F                   |                 |                    | / 33%RH                     |
|-----------------------|----------|---------------|----------------------------|-------------|------------------|--------------------------|-----------------|--------------------|-----------------------------|
| Test Item<br>Polarize |          |               | Harmo<br>Horizor           |             | т                | <u>Test D</u><br>est Eng |                 |                    | <u>per 5, 201</u><br>Chuang |
| Detector              |          | Pe            | ak and A                   |             |                  | est Vol                  |                 |                    | ac / 60Hz                   |
| 110.0 dBu¥/m          |          |               |                            |             |                  |                          |                 |                    |                             |
|                       |          |               |                            |             |                  |                          |                 | Limit1:<br>Limit2: | _                           |
|                       |          |               |                            |             |                  |                          |                 |                    |                             |
|                       |          |               |                            |             |                  |                          |                 |                    |                             |
| 70                    |          |               |                            |             |                  |                          |                 |                    |                             |
|                       |          |               |                            |             |                  |                          |                 |                    |                             |
|                       | X        |               |                            |             |                  |                          |                 |                    |                             |
| 30.0                  |          |               |                            |             |                  |                          |                 |                    |                             |
| 1000.000 3550.0       | 00 61    | 00.00 8       | 650.00 112                 | 200.00 1379 | 50.00 163        | DO.OO 188                | 850.00 2140     | 10.00 2            | 6500.00 MHz                 |
| Frequency<br>(MHz)    | Re<br>(d | ading<br>BuV) | Correc<br>Factor<br>(dB/m) | .   1       | Result<br>BuV/m) |                          | ₋imit<br>BuV/m) | Margin<br>(dB)     | Remark                      |
| 4925.000<br>N/A       | 4        | 2.10          | 4.55                       |             | 46.65            | 7                        | 4.00            | -27.35             | peak                        |
| IN/A                  |          |               |                            |             |                  |                          |                 |                    |                             |
|                       |          |               |                            |             |                  |                          |                 |                    |                             |
|                       |          |               |                            |             |                  |                          |                 |                    |                             |
| emark:                |          | <u> </u>      |                            |             |                  | 104                      |                 |                    |                             |
|                       |          |               | ncies tro<br>iency.        | m i GH      | z to the         | iuth h                   | armonic         | of highest         | [                           |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



## **CELER** Compliance Certification Services Inc.

FCC ID: PPQ-WCBN3507R ISED NO: 4491A-WCBN3507R Report No.: T171129W02-RP1

| est Mode           | IEE   | EE 802.           |         |                      | w CH          |       | emp/H   |                        |             | (°C)/ 339          |       |
|--------------------|-------|-------------------|---------|----------------------|---------------|-------|---------|------------------------|-------------|--------------------|-------|
| Test Item          |       |                   | larmor  |                      |               |       | lest Da |                        |             | mber 1             |       |
| Polarize           |       |                   | Vertica |                      |               |       | st Eng  |                        |             | erry Chu           |       |
| Detector           |       | Реак              | and A   | verage               | ;             | IE    | st Vol  | age                    | 12          | 0Vac/6             | OHZ   |
| 110.0 dBuV/m       |       |                   |         |                      |               |       |         |                        |             |                    | -     |
|                    |       |                   |         |                      |               |       |         |                        | Lin         | iit1: —<br>iit2: — |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | ł     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | {     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | {     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | •     |
| 70                 |       |                   |         |                      |               |       |         |                        |             |                    | 1     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | ĺ     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    | 1     |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
| 30.0               |       | 6100.00           | 8650.00 | 11200.00             | 13750.00      | 16300 | 00 100  | -0 00 - <del>2</del> - | 1400.00     | 26500.00           |       |
| 1000.000 333       | 00.00 | 6100.00           | 0030.00 | 11200.00             | 13730.00      | 16300 | .00 100 | 50.00 2 <sup>.</sup>   | 1400.00     | 26300.00           | MITZ  |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
| Frequency<br>(MHz) |       | Reading<br>(dBuV) | Fac     | rect<br>ctor<br>8/m) | Resi<br>(dBuV |       |         | imit<br>uV/m)          | Marg<br>(dB | in R               | emark |
| 4820.000           |       | 48.45             | 4.      | 36                   | 52.8          | 31    | 7       | 4.00                   | -21.1       | 9                  | peak  |
| N/A                |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |
|                    |       |                   |         |                      |               |       |         |                        |             |                    |       |

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode                                                                                                                      | IEEE 802.                          | .11n HT20 Lo                        | ow CH                    | Te                      | emp/H          | um                    | 24(°C)                   | )/ 33%RH               |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------|-------------------------|----------------|-----------------------|--------------------------|------------------------|
| Test Item                                                                                                                      |                                    | Harmonic                            |                          |                         | est Da         |                       |                          | oer 13, 201            |
| Polarize                                                                                                                       |                                    | <u>Horizontal</u>                   | -                        |                         | t Engi         |                       |                          | Chuang                 |
| Detector                                                                                                                       | Реак                               | and Averag                          | e                        | les                     | st Volt        | age                   | 12008                    | ac / 60Hz              |
| 110.0 dBuV/m                                                                                                                   |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       | Limit1:<br>Limit2:       | —                      |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       | Limitz:                  |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
| 70                                                                                                                             |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                | 1                                  |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                | ×                                  |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
|                                                                                                                                |                                    |                                     |                          |                         |                |                       |                          |                        |
| 30.0                                                                                                                           |                                    |                                     |                          |                         |                |                       |                          |                        |
| 30.0<br>1000.000 3550                                                                                                          | .00 6100.00 8                      | 3650.00 11200.00                    | 13750.00                 | 16300.0                 | 00 188         | 50.00 214             | 00.00 2                  | 26500.00 MHz           |
|                                                                                                                                | .00 6100.00 8                      | 3650.00 11200.00                    | 13750.00                 | 16300.0                 | 00 188         | 50.00 214             | 00.00 2                  | 26500.00 MHz           |
| 1000.000 3550                                                                                                                  |                                    | Correct                             | 13750.00<br>Resul        |                         |                | 50.00 214<br>imit     | 00.00 2<br>Margin        |                        |
|                                                                                                                                | .00 6100.00 8<br>Reading<br>(dBuV) |                                     |                          | lt                      | L              |                       |                          | 26500.00 MHz<br>Remark |
| 1000.000 3550<br>Frequency                                                                                                     | Reading                            | Correct<br>Factor                   | Resul                    | lt<br>′m)               | L<br>(dB       | imit                  | Margin                   |                        |
| 1000.000 3550<br>Frequency<br>(MHz)                                                                                            | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000                                                                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)         | Resul<br>(dBuV/          | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)         | Margin<br>(dB)           | Remark                 |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000<br>N/A                                                                         | Reading<br>(dBuV)<br>44.36         | Correct<br>Factor<br>(dB/m)<br>4.38 | Resul<br>(dBuV/<br>48.74 | lt<br>(m)<br>4          | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00 | Margin<br>(dB)<br>-25.26 | Remark<br>Peak         |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4827.000<br>N/A<br>N/A<br>emark:<br>1. Meas                                             | Reading<br>(dBuV)<br>44.36         | Correct<br>Factor<br>(dB/m)<br>4.38 | Resul<br>(dBuV/<br>48.74 | lt<br>(m)<br>4          | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00 | Margin<br>(dB)<br>-25.26 | Remark<br>Peak         |
| 1000.000       3550         Frequency<br>(MHz)       4827.000         4827.000       N/A         emark:       1. Meas<br>funda | Reading<br>(dBuV)<br>44.36         | Correct<br>Factor<br>(dB/m)<br>4.38 | Resul<br>(dBuV/<br>48.74 | It<br>'m)<br>4<br>the 1 | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00 | Margin<br>(dB)<br>-25.26 | Remark<br>Peak         |

| <b>—</b>                                                                   |                            | 11n HT20 N                                  |                               |                        | emp/H                  | um                            | 24(                               | °C)/ 33%           | %RΠ           |
|----------------------------------------------------------------------------|----------------------------|---------------------------------------------|-------------------------------|------------------------|------------------------|-------------------------------|-----------------------------------|--------------------|---------------|
| Test Item                                                                  |                            | larmonic                                    |                               |                        | est Da                 |                               |                                   | mber 5             |               |
| Polarize                                                                   |                            | Vertical                                    |                               |                        | t Engi                 |                               |                                   | rry Chu            |               |
| Detector                                                                   | Peak                       | and Averag                                  | ge                            | le                     | st Volt                | age                           | 120                               | )Vac / 6           | OHZ           |
| 110.0 dBuV/m                                                               |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               | Limit                             |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               | Limit                             |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
| 70                                                                         |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
| 70                                                                         |                            |                                             |                               |                        |                        |                               |                                   |                    | ĺ             |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            | 1                          |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            | 2                          |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
|                                                                            |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
| 20.0                                                                       |                            |                                             |                               |                        |                        |                               |                                   |                    |               |
| 30.0<br>1000.000 3550.                                                     | 00 6100.00 80              | 650.00 11200.00                             | ) 13750.00                    | 16300.0                | 00 1885                | i0.00 21 <b>4</b>             | 00.00                             | 26500.00           | MHz           |
|                                                                            | 00 6100.00 84              | 650.00 11200.00                             | ) 13750.00                    | 16300.0                | 00 1885                | 0.00 214                      | 00.00                             | 26500.00           | MHz           |
|                                                                            | 00 6100.00 84              |                                             | ) 13750.00                    | 16300.0                | 00 1885                | i0.00 214                     | 00.00                             | 26500.00           | MHz           |
| 1000.000 3550.<br>Frequency                                                | Reading                    | Correct<br>Factor                           | Resu                          | ılt                    | Li                     | imit                          | Margi                             | n P                | MHz           |
| 1000.000 3550.<br>Frequency<br>(MHz)                                       | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                 | Resu<br>(dBuV                 | ılt<br>//m)            | Li<br>(dBi             | imit<br>uV/m)                 | Margi<br>(dB)                     | n R                | emark         |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000                           | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                 | Resu<br>(dBuV                 | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)                 | Margi<br>(dB)                     | n Ri<br>4 I        | emark         |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000                           | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000               | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45         | Resu<br>(dBuV<br>54.2         | ult<br>7/m)<br>26      | Li<br>(dB)<br>74       | imit<br>uV/m)<br>4.00         | Margi<br>(dB)<br>-19.74           | n Ri<br>4 I        | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4869.000<br>4869.000<br>N/A<br>N/A | Reading<br>(dBuV)<br>49.81 | Correct<br>Factor<br>(dB/m)<br>4.45<br>4.45 | Rest<br>(dBuV<br>54.2<br>43.4 | ult<br>//m)<br>26<br>5 | Li<br>(dB)<br>74<br>54 | imit<br>uV/m)<br>4.00<br>4.00 | Margi<br>(dB)<br>-19.74<br>-10.55 | n Ri<br>4 I<br>5 / | emark<br>Deak |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Item          |                   | 11n HT20 M                  | Id CH             | Temp     | o/Hum             | 24(°C)/            | / 33%RH        |
|--------------------|-------------------|-----------------------------|-------------------|----------|-------------------|--------------------|----------------|
|                    |                   | armonic                     |                   |          | Date              |                    | er 5, 2017     |
| Polarize           |                   | orizontal                   |                   |          | ngineer           |                    | Chuang         |
| Detector           | Peak              | and Average                 | e                 | Test V   | /oltage           | 120Va              | c / 60Hz       |
| 110.0 dBuV/m       |                   |                             |                   |          |                   | Limit1:<br>Limit2: | _              |
| 70                 | 1                 | 650.00 11200.00             | ) 13750.00        | 16300.00 | 18850.00 214      | 00.00 26           | 5500.00 MHz    |
|                    |                   |                             |                   |          |                   | •                  |                |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m |          | Limit<br>(dBuV/m) | Margin<br>(dB)     | Remark         |
|                    |                   | Factor                      |                   |          |                   |                    | Remark<br>peak |
| (MHz)              | (dBuV)            | Factor<br>(dB/m)            | (dBuV/m           |          | (dBuV/m)          | (dB)               |                |

| Test Item                                     |                   | 11n HT20 Hig                    | gh CH              | Temp/Hur        | n         | 24(°C)/ 33%RH      |                        |  |
|-----------------------------------------------|-------------------|---------------------------------|--------------------|-----------------|-----------|--------------------|------------------------|--|
| iest item                                     |                   | larmonic                        |                    | Test Date       | )         | Decemb             | oer 13, 201            |  |
| Polarize                                      |                   | Vertical                        |                    | Test Engine     |           |                    | Chuang                 |  |
| Detector                                      | Peak              | and Average                     | •                  | Test Voltag     | je        | 120Va              | ac / 60Hz              |  |
| 110.0 dBuV/m                                  |                   |                                 |                    |                 |           | Limit1:<br>Limit2: |                        |  |
| 70                                            |                   |                                 |                    |                 |           |                    |                        |  |
|                                               | ×                 |                                 |                    |                 |           |                    |                        |  |
|                                               |                   |                                 |                    |                 |           |                    |                        |  |
| 30.0<br>1000.000 35<br>Frequency              | Reading           | 8650.00 11200.00 Correct Factor | Result             | 6300.00 18850.0 | it        | Margin             | 26500.00 MHz<br>Remark |  |
| 1000.000 35<br>Frequency<br>(MHz)             | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m)     | Result<br>(dBuV/m) | Lim<br>(dBuV    | it<br>/m) | Margin<br>(dB)     | Remark                 |  |
| 1000.000 35<br>Frequency<br>(MHz)<br>4925.000 | Reading           | Correct<br>Factor               | Result             | Lim             | it<br>/m) | Margin             |                        |  |
| 1000.000 35<br>Frequency<br>(MHz)             | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m)     | Result<br>(dBuV/m) | Lim<br>(dBuV    | it<br>/m) | Margin<br>(dB)     | Remark                 |  |

| <b>T</b> (1)       |                   | 1n HT20 Hi                  | gn CH              | Temp/Hum           | 24(°C)/        | 33%RH          |
|--------------------|-------------------|-----------------------------|--------------------|--------------------|----------------|----------------|
| Test Item          |                   | armonic                     |                    | Test Date          |                | er 13, 2017    |
| Polarize           |                   | orizontal                   |                    | Test Engineer      |                | Chuang         |
| Detector           | Peak              | and Average                 | 3                  | Test Voltage       | 120Va          | c / 60Hz       |
| 110.0 dBu∀/m       |                   |                             |                    |                    | Limit1:        |                |
|                    |                   |                             |                    |                    | Limit2:        |                |
| 70                 |                   |                             |                    |                    |                |                |
| 30.0               | X                 |                             |                    |                    |                |                |
| 1000.000 3550      | ).00 6100.00 8    | 650.00 11200.00             | 13750.00 16        | 300.00 18850.00 21 | 400.00 26      | 500.00 MHz     |
|                    |                   | T                           |                    |                    |                |                |
| Frequency<br>(MHz) | Reading<br>(dBuV) | Correct<br>Factor<br>(dB/m) | Result<br>(dBuV/m) | Limit<br>(dBuV/m)  | Margin<br>(dB) | Remark         |
|                    |                   | Factor                      |                    |                    |                | Remark<br>peak |
| (MHz)<br>4918.000  | (dBuV)            | Factor<br>(dB/m)            | (dBuV/m)           | (dBuV/m)           | (dB)           |                |

|                                                              | IEEE 8                           | 02.11n HT4                     | 0 Low CH                   | Ter               | mp/Hum                          | 24(°C                    | )/ 33%RH               |
|--------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------|-------------------|---------------------------------|--------------------------|------------------------|
| Test Item                                                    |                                  | Harmonic                       | ;                          |                   | st Date                         |                          | per 13, 201            |
| Polarize                                                     |                                  | Vertical                       |                            |                   | Engineer                        |                          | / Chuang               |
| Detector                                                     | Pe                               | eak and Ave                    | rage                       | Test              | t Voltage                       | 120V                     | ac / 60Hz              |
| 110.0 dBuV/m                                                 |                                  |                                |                            |                   |                                 | Limit1:                  |                        |
| 70                                                           |                                  |                                |                            |                   |                                 |                          |                        |
| 30.0                                                         |                                  |                                |                            |                   |                                 |                          |                        |
| 30.0<br>1000.000 355<br>Frequency<br>(MHz)                   | 50.00 6100.00<br>Readin<br>(dBuV | ng Correc                      | r Kesi                     | ult               | ) 18850.00<br>Limit<br>(dBuV/m) | Margin                   | 26500.00 MHz<br>Remark |
| 1000.000 355                                                 | Readin                           | ng Correc<br>() Facto<br>(dB/m | ct Resu<br>r (dBuV         | ult<br>//m)       | Limit                           | Margin                   |                        |
| 1000.000 355<br>Frequency<br>(MHz)                           | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resu<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resu<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resu<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resi<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resi<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resi<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resi<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000               | Readin<br>(dBuV                  | ng Correc<br>() Facto<br>(dB/m | ct Resi<br>r (dBuV         | ult<br>//m)       | Limit<br>(dBuV/m)               | Margin<br>(dB)           | Remark                 |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000<br>N/A<br>N/A | Readin<br>(dBuV<br>41.31         | ng Facto<br>(dB/m<br>4.43      | ct Rest<br>r (dBuV<br>45.7 | ult<br>//m)<br>74 | Limit<br>(dBuV/m)<br>74.00      | Margin<br>(dB)           | Remark<br>peak         |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000<br>N/A<br>N/A | Readin<br>(dBuV<br>41.31         | ng Facto<br>(dB/m<br>4.43      | om 1 GHz to                | ult<br>//m)<br>74 | Limit<br>(dBuV/m)<br>74.00      | Margin<br>(dB)<br>-28.26 | Remark<br>peak         |
| 1000.000 355<br>Frequency<br>(MHz)<br>4848.000<br>N/A<br>N/A | Readin<br>(dBuV<br>41.31         | ng Facto<br>(dB/m<br>4.43      | om 1 GHz to                | ult<br>//m)<br>74 | Limit<br>(dBuV/m)<br>74.00      | Margin<br>(dB)<br>-28.26 | Remark<br>peak         |

| Test Mode                                                                                                                                                                  | IEEE 802.                                   | 11n HT40 Lo                                    | ow CH                       | Te                      | emp/H          | um                         | 24(                    | °C)/ 3 | 33%RH              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------|-------------------------|----------------|----------------------------|------------------------|--------|--------------------|
| Test Item                                                                                                                                                                  |                                             | larmonic                                       |                             |                         | est Da         |                            |                        |        | 13, 201            |
| Polarize                                                                                                                                                                   |                                             | lorizontal                                     |                             |                         | t Engi         |                            |                        |        | huang              |
| Detector                                                                                                                                                                   | Peak                                        | and Averag                                     | е                           | Tes                     | st Volt        | tage                       | 120                    | )Vac   | / 60Hz             |
| 110.0 dBu∀/m                                                                                                                                                               |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            | Limi                   |        | -                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            | Limi                   | t2: -  |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        | _                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        | _                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        |                    |
| 70                                                                                                                                                                         |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        | _                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        | _                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        | _                  |
|                                                                                                                                                                            |                                             |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            | 1<br>X                                      |                                                |                             |                         |                |                            |                        |        |                    |
|                                                                                                                                                                            | *                                           |                                                |                             |                         |                |                            |                        |        | _                  |
| 30.0                                                                                                                                                                       | 1                                           |                                                |                             |                         |                |                            |                        |        |                    |
| 30.0                                                                                                                                                                       |                                             | 550.00 11200.00                                | 13750.00                    | 16300.0                 | 00 188         | 50.00 214                  | 00.00                  | 26500  | D.00 MHz           |
|                                                                                                                                                                            |                                             | 550.00 11200.00                                | 13750.00                    | 16300.0                 | 00 188         | 50.00 214                  | 00.00                  | 2650   | D.00 MHz           |
|                                                                                                                                                                            |                                             |                                                | 13750.00                    | 16300.0                 | 00 188         | 50.00 214                  | 00.00                  | 26500  | D.00 MHz           |
|                                                                                                                                                                            |                                             | 550.00 11200.00<br>Correct<br>Factor<br>(dB/m) | 13750.00<br>Resul<br>(dBuV/ | lt                      | L              | 50.00 214<br>imit<br>uV/m) | 00.00<br>Margi<br>(dB) | n      | D.00 MHz<br>Remark |
| 1000.000 3550.0<br>Frequency                                                                                                                                               | 00 6100.00 84<br>Reading                    | Correct<br>Factor                              | Resu                        | lt<br>′m)               | L<br>(dB       | imit                       | Margi                  | n      |                    |
| 1000.000 3550.0<br>Frequency<br>(MHz)                                                                                                                                      | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000                                                                                                                          | 0 6100.00 80<br>Reading<br>(dBuV)           | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | lt<br>′m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)          | n      | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000<br>N/A<br>emark:                                                                                                         | 00 6100.00 80<br>Reading<br>(dBuV)<br>37.88 | Correct<br>Factor<br>(dB/m)<br>4.41            | Resul<br>(dBuV/<br>42.29    | lt<br>m)<br>9           | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-31.7 | n 1    | Remark             |
| 1000.000 3550.0<br>Frequency<br>(MHz)<br>4844.000<br>N/A<br>emark:<br>1. Measu                                                                                             | Reading<br>(dBuV)<br>37.88                  | Correct<br>Factor<br>(dB/m)<br>4.41            | Resul<br>(dBuV/<br>42.29    | lt<br>m)<br>9           | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-31.7 | n 1    | Remark             |
| Intervention         Intervention           Frequency<br>(MHz)         4844.000           N/A         N/A           emark:         1.           1.         Measu<br>fundal | 00 6100.00 80<br>Reading<br>(dBuV)<br>37.88 | Correct<br>Factor<br>(dB/m)<br>4.41<br>        | Resul<br>(dBuV/<br>42.29    | It<br>m)<br>9<br>the 10 | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-31.7 | n      | Remark<br>peak     |

|                                                                     | 1222.                              | 11n HT40 N                                  |                               |                         | emp/H                |                               |                                   | °C)/ 33% |               |
|---------------------------------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------|-------------------------|----------------------|-------------------------------|-----------------------------------|----------|---------------|
| Test Item                                                           |                                    | larmonic                                    |                               |                         | est Da               |                               |                                   | mber 5   |               |
| Polarize                                                            |                                    | Vertical                                    |                               |                         | t Engi               |                               |                                   | rry Chu  |               |
| Detector                                                            | Peak                               | and Averag                                  | ge                            | les                     | st Volt              | age                           | 120                               | )Vac / 6 | OHZ           |
| 110.0 dBuV/m                                                        |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               | Limit                             |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               | Limit                             | 2: —     |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
| 70                                                                  |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     | 1<br>X                             |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     | 2                                  |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
|                                                                     |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
| 30.0                                                                |                                    |                                             |                               |                         |                      |                               |                                   |          |               |
| 30.0<br>1000.000 3550.                                              | 00 6100.00 86                      | 550.00 11200.00                             | ) 13750.00                    | 16300.0                 | 00 188               | 50.00 214                     | 00.00                             | 26500.00 | MHz           |
|                                                                     | 00 6100.00 86                      | 550.00 11200.00                             | ) 13750.00                    | 16300.0                 | 00 188               | 50.00 214                     | 00.00                             | 26500.00 | MHz           |
| 1000.000 3550.                                                      |                                    | 550.00 11200.00<br>Correct                  |                               |                         |                      |                               | 1                                 |          | MHz           |
|                                                                     | 00 6100.00 84<br>Reading<br>(dBuV) | Correct<br>Factor                           | ) 13750.00<br>Rest<br>(dBuV   | ılt                     | L                    | 50.00 214<br>imit<br>uV/m)    | 00.00<br>Margii<br>(dB)           | n        | MHz           |
| 1000.000 3550.<br>Frequency<br>(MHz)                                | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                 | Resu<br>(dBuV                 | ılt<br>//m)             | L<br>(dB             | imit<br>uV/m)                 | Margii<br>(dB)                    | n R      | emark         |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                    | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000        | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                 | Resu<br>(dBuV                 | ult<br>//m)<br>33       | L<br>(dB             | imit<br>uV/m)                 | Margii<br>(dB)                    | n R      | emark         |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000                    | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000        | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000        | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000        | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000        | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47         | Resu<br>(dBuV<br>54.3         | ult<br>//m)<br>33       | L<br>(dB             | <b>imit</b><br>uV/m)<br>4.00  | Margin<br>(dB)<br>-19.67          | n R      | emark<br>Deak |
| 1000.000 3550.<br>Frequency<br>(MHz)<br>4876.000<br>4876.000<br>N/A | Reading<br>(dBuV)<br>49.86         | Correct<br>Factor<br>(dB/m)<br>4.47<br>4.47 | Rest<br>(dBuV<br>54.3<br>46.4 | ult<br>//m)<br>33<br>32 | L<br>(dB<br>74<br>54 | imit<br>uV/m)<br>4.00<br>4.00 | Margii<br>(dB)<br>-19.67<br>-7.58 | n Ri     | emark<br>Deak |

2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

| Test Mode                                                                            | IEEE 802.1                 | 11n HT40 M                                     | lid CH                      | Te                       | emp/H          | um                         | 24(                     | °C)/ 33%      | RH          |
|--------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|-----------------------------|--------------------------|----------------|----------------------------|-------------------------|---------------|-------------|
| Test Item                                                                            |                            | armonic                                        |                             |                          | est Da         |                            |                         | mber 5,       |             |
| Polarize                                                                             |                            | orizontal                                      |                             |                          | st Engi        |                            |                         | rry Chua      |             |
| Detector                                                                             | Peak                       | and Average                                    | e                           | Te                       | st Volt        | age                        | 120                     | )Vac / 60     | )Hz         |
| 110.0 dBuV/m                                                                         |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            | Limit                   |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            | Limit                   | t2: <u> </u>  |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
| 70                                                                                   |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      | -                          |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      | 1<br>X                     |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
|                                                                                      |                            |                                                |                             |                          |                |                            |                         |               |             |
| 20.0                                                                                 |                            |                                                |                             |                          |                |                            |                         |               |             |
| 30.0                                                                                 | .00 6100.00 8              | 650.00 11200.00                                | ) 13750.00                  | 16300.                   | .00 188        | 50.00 214                  | 00.00                   | 26500.00 M    | Hz          |
|                                                                                      | .00 6100.00 8              | 650.00 11200.00                                | ) 13750.00                  | 16300.                   | .00 188        | 50.00 214                  | 00.00                   | 26500.00 M    | Hz          |
|                                                                                      | .00 6100.00 84             |                                                | ) 13750.00                  | 16300.                   | .00 188        | 50.00 214                  | 00.00                   | 26500.00 M    | Hz          |
|                                                                                      | .00 6100.00 84             | 650.00 11200.00<br>Correct<br>Factor<br>(dB/m) | ) 13750.00<br>Resu<br>(dBuV | ılt                      | L              | 50.00 214<br>imit<br>uV/m) | 00.00<br>Margi<br>(dB)  | n Bo          | Hz          |
| 1000.000 3550<br>Frequency                                                           | Reading                    | Correct<br>Factor                              | Resu                        | ılt<br>/m)               | L<br>(dB       | imit                       | Margi                   | n Rei         |             |
| 1000.000 3550<br>Frequency<br>(MHz)                                                  | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000                                      | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000                                      | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000                                      | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000                                      | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000                                      | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000<br>N/A                               | Reading<br>(dBuV)          | Correct<br>Factor<br>(dB/m)                    | Resu<br>(dBuV/              | ılt<br>/m)               | L<br>(dB       | imit<br>uV/m)              | Margi<br>(dB)           | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000<br>N/A                               | Reading<br>(dBuV)<br>45.61 | Correct<br>Factor<br>(dB/m)<br>4.45            | Resu<br>(dBuV/<br>50.0      | llt<br>/m)<br>6          | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-23.94 | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000<br>N/A<br>emark:<br>1. Meas          | Reading<br>(dBuV)<br>45.61 | Correct<br>Factor<br>(dB/m)<br>4.45            | Resu<br>(dBuV/<br>50.0      | llt<br>/m)<br>6          | L<br>(dB<br>74 | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-23.94 | n Rei         | mark        |
| 1000.000 3550<br>Frequency<br>(MHz)<br>4869.000<br>N/A<br>emark:<br>1. Meas<br>funda | Reading<br>(dBuV)<br>45.61 | Correct<br>Factor<br>(dB/m)<br>4.45            | Resu<br>(dBuV/<br>50.0      | Ilt<br>/m)<br>6<br>the 1 | Oth ha         | imit<br>uV/m)<br>4.00      | Margi<br>(dB)<br>-23.9  | n Rei<br>4 pe | mark<br>eak |

|                                                                                  |                  | 002.11               | n HT40 H                            | igh CH                                                                                                  | Te                | emp/H            | um                    | 24(                      | °C)/ 33% | 6RH           |
|----------------------------------------------------------------------------------|------------------|----------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------------|--------------------------|----------|---------------|
| Test Item                                                                        |                  |                      | armonic                             |                                                                                                         |                   | est Da           |                       |                          | nber 13  |               |
| Polarize                                                                         |                  |                      | ertical                             |                                                                                                         |                   | st Engi          |                       |                          | ry Chu   |               |
| Detector                                                                         | ł                | Peak a               | nd Averag                           | e                                                                                                       | le                | st Volt          | age                   | 120                      | )Vac / 6 | 0Hz           |
| 110.0 dBuV/m                                                                     |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       | Limit                    | 1: —     |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       | Limit                    | 2: _     |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
| 70                                                                               |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  | 1<br>X           |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
|                                                                                  |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
| 30.0                                                                             |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          |               |
| 30.0<br>1000.000 35                                                              | 50.00 610        | 0.00 86              | 650.00 11200.                       | 00 13750.00                                                                                             | 16300.            | .00 1885         | 50.00 214             | 00.00                    | 26500.00 | ĦHz           |
|                                                                                  | 50.00 610        | 0.00 86              | 550.00 11200.                       | 00 13750.00                                                                                             | 16300.            | .00 1885         | <u>50.00</u> 214      | 00.00                    | 26500.00 | MHz           |
| 1000.000 35                                                                      |                  |                      |                                     |                                                                                                         |                   |                  |                       |                          |          | <b>M</b> Hz   |
| 1000.000 35                                                                      | Rea              | ding                 | Correct<br>Factor                   | Resi                                                                                                    | ult               | L                | imit                  | Margii                   |          | 4Hz<br>emark  |
| 1000.000 35<br>Frequency<br>(MHz)                                                | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | ding                 | Correct<br>Factor                   | Resi                                                                                                    | ult<br>//m)       | Li<br>(dB        | imit                  | Margii                   | n Re     |               |
| 1000.000 35<br>Frequency<br>(MHz)                                                | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000                                    | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000<br>N/A                             | Rea<br>(dE       | iding<br>BuV)        | Correct<br>Factor<br>(dB/m)         | Resu<br>(dBuV                                                                                           | ult<br>//m)       | Li<br>(dB        | imit<br>uV/m)         | Margii<br>(dB)           | n Re     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000<br>N/A                             | Rea<br>(dE<br>39 | 0.43                 | Correct<br>Factor<br>(dB/m)<br>4.51 | Rest<br>(dBuV<br>43.9                                                                                   | ult<br>//m)<br>)4 | 24<br>(dB)<br>74 | imit<br>uV/m)<br>4.00 | Margii<br>(dB)<br>-30.06 | n R(     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000<br>N/A<br>emark:<br>1. Mea         | Rea<br>(dE<br>39 | ding<br>BuV)<br>0.43 | Correct<br>Factor<br>(dB/m)<br>4.51 | Rest<br>(dBuV<br>43.9                                                                                   | ult<br>//m)<br>)4 | 24<br>(dB)<br>74 | imit<br>uV/m)<br>4.00 | Margii<br>(dB)<br>-30.06 | n R(     | emark         |
| 1000.000 35<br>Frequency<br>(MHz)<br>4904.000<br>N/A<br>emark:<br>1. Mea<br>func | Rea<br>(dE<br>39 | ding<br>BuV)<br>0.43 | Correct<br>Factor<br>(dB/m)<br>4.51 | Rest<br>(dBuV           43.9           43.9           1           1           1           1           0 | ult<br>//m)<br>04 | Oth ha           | imit<br>uV/m)<br>4.00 | Margin<br>(dB)<br>-30.06 | n R(     | emark<br>beak |

|                                                                                   | IEEE 802.7                         | 11n HT40 Hiợ                                    | gh CH                              | Temp/Hum                               | 24(°C)/                     | 33%RH                |
|-----------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------|----------------------------------------|-----------------------------|----------------------|
| Test Item                                                                         |                                    | Harmonic                                        |                                    | Test Date                              |                             | er 13, 2017          |
| Polarize                                                                          |                                    | lorizontal                                      |                                    | est Engineer                           |                             | Chuang               |
| Detector                                                                          | Peak                               | and Average                                     | 9                                  | Test Voltage                           | 120Va                       | c / 60Hz             |
| 110.0 dBu¥/m                                                                      |                                    |                                                 |                                    |                                        | Limit1:<br>Limit2:          |                      |
| 70                                                                                |                                    |                                                 |                                    |                                        |                             |                      |
| 30.0<br>1000.000 35                                                               | 50.00 6100.00                      | 8650.00 11200.00                                | 13750.00 163                       | 00.00 18850.00 21                      | 400.00 26                   | 500.00 MHz           |
|                                                                                   | 50.00 6100.00<br>Reading<br>(dBuV) | 8650.00 11200.00<br>Correct<br>Factor<br>(dB/m) | 13750.00 163<br>Result<br>(dBuV/m) | 00.00 18850.00 21<br>Limit<br>(dBuV/m) | 400.00 26<br>Margin<br>(dB) | 500.00 MHz<br>Remark |
| 1000.000 355                                                                      | Reading                            | Correct<br>Factor                               | Result                             | Limit                                  | Margin                      |                      |
| 1000.000 35<br>Frequency<br>(MHz)                                                 | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000                                    | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000                                    | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000                                    | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000                                    | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000                                    | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353                                                                      | Reading<br>(dBuV)                  | Correct<br>Factor<br>(dB/m)                     | Result<br>(dBuV/m)                 | Limit<br>(dBuV/m)                      | Margin<br>(dB)              | Remark               |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000<br>N/A                             | Reading<br>(dBuV)<br>38.64         | Correct<br>Factor<br>(dB/m)<br>4.51             | Result<br>(dBuV/m)<br>43.15        | Limit<br>(dBuV/m)<br>74.00             | Margin<br>(dB)<br>-30.85    | Remark<br>peak       |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000<br>N/A<br>emark:<br>1. Mea         | Reading<br>(dBuV)<br>38.64         | Correct<br>Factor<br>(dB/m)<br>4.51             | Result<br>(dBuV/m)<br>43.15        | Limit<br>(dBuV/m)                      | Margin<br>(dB)<br>-30.85    | Remark<br>peak       |
| 1000.000 353<br>Frequency<br>(MHz)<br>4904.000<br>N/A<br>emark:<br>1. Mea<br>func | Reading<br>(dBuV)<br>38.64         | Correct<br>Factor<br>(dB/m)<br>4.51             | Result<br>(dBuV/m)<br>43.15        | Limit<br>(dBuV/m)<br>74.00             | Margin<br>(dB)<br>-30.85    | Remark<br>peak       |