

Report No. : FZ8D1231

FCC DFS TEST REPORT

FCC ID	1	PPQ-V523
Equipment	м в	Wi-Fi Indoor Camera
Brand Name	л 5	ALARM.COM
Model Name	a 0	ADC-V523
Applicant		LITE-ON Technology Corp. Bldg. C, 90, Chien 1 Rd., Chung-Ho, New Taipei City, 23585 Taiwan
Manufacturer	:	Lite-On Network Communication (Dongguan) Limited 30#Keji Rd.,Yin Hu Industrial Area,Qingxi Town,DongGuan City,Guangdong,China
Standard	-	47 CFR FCC Part 15.407

The product was received on Dec. 17, 2018, and testing was started from Jul. 20, 2019 and completed on Jul. 20, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

Histo	ry of this test report3
Sum	mary of Test Result4
1	General Description
1.1	Information5
1.2	Accessories7
1.3	Support Equipment7
1.4	Applicable Standards7
1.5	Testing Location Information7
2	Test Configuration of EUT8
2.1	Test Channel Frequencies Configuration8
2.2	The Worst Case Measurement Configuration8
3	Dynamic Frequency Selection (DFS) Test Result9
3.1	General DFS Information9
3.2	Radar Test Waveform Calibration11
3.3	In-service Monitoring17
4	Test Equipment and Calibration Data24
5	Measurement Uncertainty25
Арре	endix A. Test Photos

Photographs of EUT v01

History of this test report

Report No.	Version	Description	Issued Date
FZ8D1231	01	Initial issue of report	Sep. 04, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark				
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Move Time (CMT)	PASS	-				
3.3	FCC KDB 905462 7.8.3	DFS: In-Service Monitoring for Channel Closing Transmission Time (CCTT)	PASS	-				
3.3	3.3 FCC KDB 905462 7.8.3 DFS: In-Service Monitoring for Non-Occupancy Period (NOP) PASS -							
	Note: Since the product is client without radar detection function, only Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period are required to perform.							

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen

Report Producer: Vicky Huang

1 General Description

1.1 Information

1.1.1 **RF General Information**

Specification Items	Desc	Description				
Frequency Range	5250 MHz – 5350 MHz 5470 MHz – 5725 MHz					
Power Type	From power adapter					
Channel Bandwidth	20/40/80 MHz operating channel ba	andwidth				
	Master					
Operating Mode	Client with radar detection					
	Client without radar detection					
Communication Mode	IP Based (Load Based)	Frame Based				
TPC Function	With TPC	Without TPC				
Weather Band (5600~5650MHz)	With 5600~5650MHz	Without 5600~5650MHz				
Power-on cycle	NA (No Channel Availability Check Function)					
Software / Firmware Version	0.5.1.071					
 11a, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation. VHT20, VHT40, VHT80 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation 						

modulation.
 EUT employ a TPC mechanism and TPC have the capability to operate at least 6 dB below highest RF output power.

Note: The above information was declared by manufacturer.

TPC Power Result

Mode	Min Power	Max Power	Min EIRP	Max EIRP
	(dBm)	(dBm)	(dBm)	(dBm)
802.11a_Nss1,(6Mbps)_2TX	-	-	-	-
5.25-5.35GHz	15.36	21.36	20.76	26.76
5.47-5.725GHz	14.60	20.60	20.00	26.00
802.11ac VHT20_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	15.18	21.18	20.58	26.58
5.47-5.725GHz	14.49	20.49	19.89	25.89
802.11ac VHT40_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	15.08	21.08	20.48	26.48
5.47-5.725GHz	14.90	20.90	20.30	26.30
802.11ac VHT80_Nss1,(MCS0)_2TX	-	-	-	-
5.25-5.35GHz	10.20	16.20	15.60	21.60
5.47-5.725GHz	14.99	20.99	20.39	26.39

1.1.2 Antenna Information

		Por	ť						Gain (c	lBi)
Ant.	2.4 GHz	5 GHz	Bluetooth	Brand	Model Name	Antenna Type	Connector	2.4 GHz	5 GHz	Bluetooth
1	1	1	-	LYNwave	ALX18F-222A A4-00	Dipole Antenna	I-PEX	4.9	5.4	-
2	2	2	1	LYNwave	ALX18F-222A A5-00	Dipole Antenna	I-PEX	5.2	4.7	5.2

Note: The above information was declared by manufacturer.

For 2.4GHz WLAN function

For IEEE 802.11b/g/n mode (2TX, 2RX):

Ant. 1(Port 1) and Ant. 2(Port 2) could transmit/receive simultaneously.

For 5GHz WLAN function

For IEEE 802.11a/n/ac mode (2TX, 2RX):

Ant. 1(Port 1) and Ant. 2(Port 2) could transmit/receive simultaneously.

For Bluetooth function (1TX, 1RX):

Only Ant. 2(Port 1) can be used as transmitting/receiving functions.

1.1.3 DFS Band Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140.

For 40MHz bandwidth systems, use Channel 54, 62, 102, 110, 118, 126, 134. For 80MHz bandwidth systems, use Channel 58, 106, 122.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	58	5290 MHz	-	-
	100	5500 MHz	120	5600 MHz
	102	5510 MHz	122	5610 MHz
	104	5520 MHz	124	5620 MHz
5470~5725 MHz	106	5530 MHz	126	5630 MHz
Band 3	108	5540 MHz	128	5640 MHz
Danu 3	110	5550 MHz	132	5660 MHz
	112	5560 MHz	134	5670 MHz
	116	5580 MHz	136	5680 MHz
	118	5590 MHz	140	5700 MHz

1.2 Accessories

	Accessories						
Equipment Name	Brand Name	Model Name	Rating				
Adapter	APD	WB-12G12FU	INPUT: 100-240V~50-60Hz, 0.3A Max. OUTPUT: 12V, 1A				
	Other						
Wall-mounted rack*1							

1.3 Support Equipment

	Support Equipment							
No.	No. Equipment Brand Name Model Name FCC ID							
А	NB	DELL	E4300	N/A				
В	WLAN AP	D-LINK	DIR860L	KA2IR860LA1				

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

• FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

1.5 Testing Location Information

	Testing Location								
	HWA YA	ADD	DD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)						
		TEL	: 886-3-327-3456 FAX : 886-3-327-0973						
\square	JHUBEI	ADD	: No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.						
		TEL	:	886-3-656-	886-3-656-9065 FAX : 886-3-656-9085				
Tes	t Condition	T€	est	Site No. Test Engineer			Test Environment	Test Date	
	DFS Site		DF	01-CB	Nyle C	hang		25.5~26.3°C / 61~66%	Jul. 20, 2019

Test site Designation No. TW0006 with FCC

Test site registered number IC 4086B with Industry Canada.

2 Test Configuration of EUT

2.1 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration					
IEEE Std.	Test Channel Freq. (MHz)				
802.11ac (VHT80)	5530 MHz				

2.2 The Worst Case Measurement Configuration

Tł	The Worst Case Mode for Following Conformance Tests					
Tests Item	Dynamic Frequency Selection (DFS)					
Test Condition	Radiated measurement The EUT shall be configured to operate at the highest transmitter output power setting. If more than one antenna assembly is intended for this power setting, the gain of the antenna assembly with the lowest gain shall be used. The DFS radar test signals have been aligned to the direction corresponding to the EUT's maximum antenna gain.					
Modulation Mode	802.11ac (VHT80)					

3 Dynamic Frequency Selection (DFS) Test Result

3.1 General DFS Information

3.1.1 DFS Parameters

Table D.1: DFS requirement values				
Parameter	Value			
Non-occupancy period	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds (Note 1).			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. (Notes 1 and 2).			
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth (Note 3).			

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
 Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

Table D.2: Interference threshold values				
Maximum Transmit Power Value (see note)				
EIRP ≥ 200 mW	-64 dBm			
EIRP < 200 mW and PSD < 10dBm/MHz	-62 dBm			
EIRP < 200 mW and PSD >= 10dBm/MHz -64 dBm				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911D01.

3.1.2 Applicability of DFS Requirements Prior to Use of a Channel

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

3.1.3 Applicability of DFS Requirements during Normal Operation

	DFS Operational mode				
Requirement	Master	Client without radar detection	Client with radar detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection				
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required				
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several						

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

3.1.4 Channel Loading/Data Streaming

	The data file (MPEG-4) has been transmitting in a streaming mode.					
\square	Software to ping the client is permitted to simulate data transfer with random ping intervals.					
\square	Minimum channel loading of approximately 17%.					
	Unicast protocol has been used.					

3.2 Radar Test Waveform Calibration

3.2.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	See Note 1	See Note 1
1A	1	15 unique PRI in KDB 905462 D02 Table 5a	$\left[(1) (19 \times 10^6) \right]$	60%	15
1B	1	15 unique PRI within 518-3066, Excluding 1A PRI	$Roundup\left\{\left(\frac{1}{360}\right)\times\left(\frac{19\times10^{6}}{PRI}\right)\right\}$	60%	15
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggrega	ate (Radar Type	80%	120		

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the short pulse radar types 1 through 4. If more than 30 waveforms are used for short pulse radar types 1 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

3.2.2 Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Bursts</i>	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Each waveform is defined as follows:

• The transmission period for the Long Pulse Radar test signal is 12 seconds.

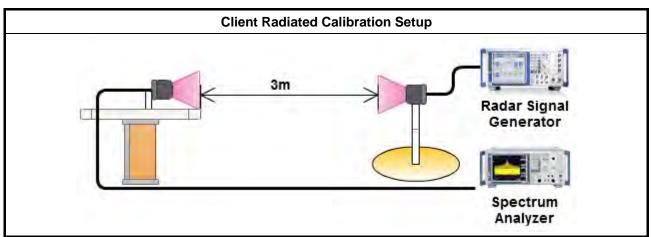
• There are a total of 8 to 20 Bursts in the 12 second period, with the number of Bursts being randomly chosen. This number is Burst Count.

• Each Burst consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each Burst within the 12 second sequence may have a different number of pulses.

- The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a Burst will have the same pulse width. Pulses in different Bursts may have different pulse widths.
- Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a transmission period will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

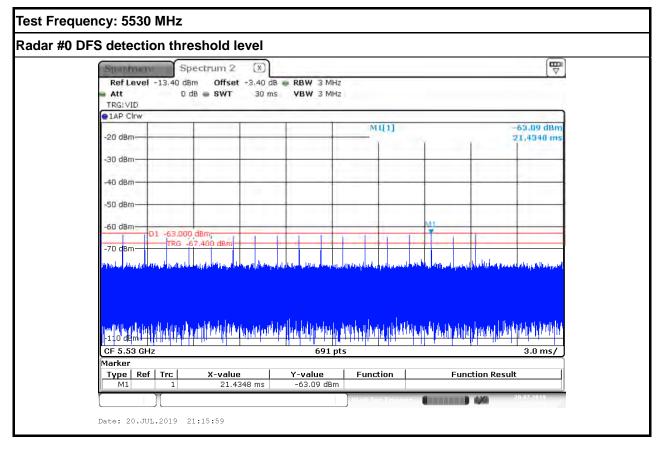
- If more than one pulse is present in a Burst, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a Burst, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- The 12 second transmission period is divided into even intervals. The number of intervals is equal to Burst Count. Each interval is of length (12,000,000 / Burst Count) microseconds. Each interval contains one Burst. The start time for the Burst, relative to the beginning of the interval, is between 1 and [(12,000,000 / Burst Count) (Total Burst Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each Burst is chosen independently.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (ms)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30

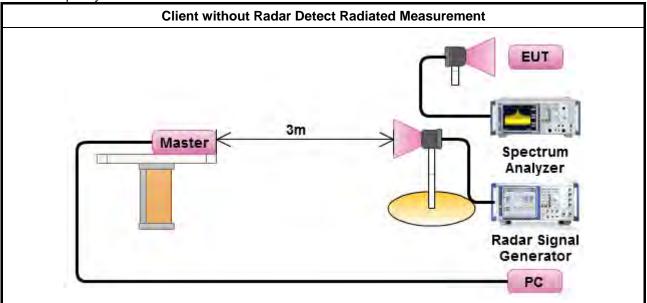

3.2.3 Frequency Hopping Radar Test Waveform

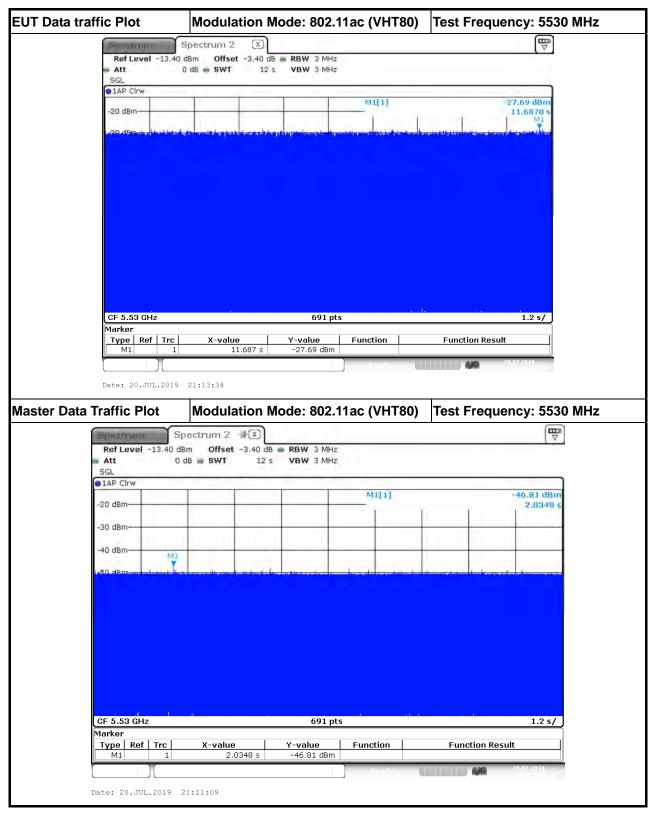
The FCC Type 6 waveform uses a static waveform with 100 bursts in the instruments ARB. In addition, the RF list mode is operated with a list containing 100 frequencies from a randomly generated list and it had be ensured that at least one of the random frequencies falls into the UNII Detection Bandwidth of the DUT. Each burst from the waveform file initiates a trigger pulse at the beginning that switches the RF list from one item to the next one.

3.2.4 DFS Threshold Level

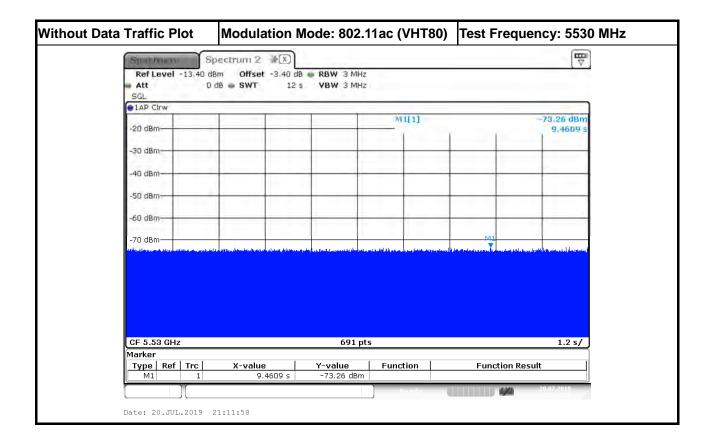

DFS Threshold Level						
DFS Threshold level:	-63	dBm		at the antenna connector		
			\square	in front of the antenna		
The Interference Radar Detection Threshold Level is is $-64 dB$) + 0 [dBi] + 1 dB = -63 dBm. That had been taken into account the output power range and antenna gain.						

3.2.5 Calibration Setup


3.2.6 Radar Waveform calibration Plot


3.2.7 Test Setup

A spectrum analyzer is used as a monitor to verify that the EUT has vacated the Channel within the (Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the detection and Channel move.



3.2.8 Data traffic Plot

3.3 In-service Monitoring

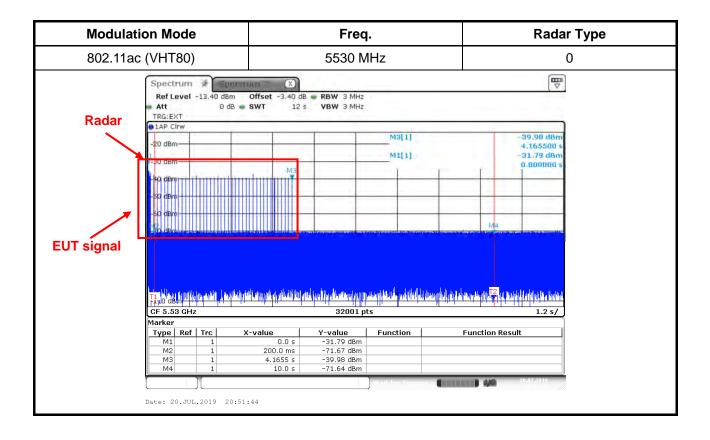
3.3.1 In-service Monitoring Limit

In-service Monitoring Limit				
Channel Move Time	10 sec			
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.			
Non-occupancy period	Minimum 30 minutes			

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

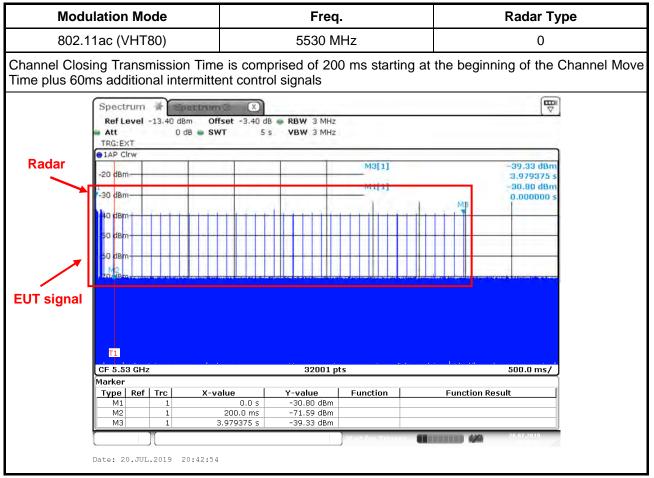
3.3.3 Test Procedures


Test Method						
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.						
Verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. One 12 sec plot needs to be reported for the Short Pulse Radar Types 0. And zoom-in a 60 ms plot verified channel closing time for the aggregate transmission time starting from 200ms after the end of the radar signal to the completion of the channel move.						
Verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.						

3.3.4 Test Result of Channel Move Time

Modulation Mode: 802.11ac (VHT80)

Decomptor	Test Result	Limit	
Parameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Channel Move Time (sec.)	4.165	< 10s	


3.3.5 Test Result of Channel Closing Transmission Time

Modulation Mode: 802.11ac (VHT80)

Doromotor	Test Result	Limit	
Parameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Channel Closing Transmission Time (ms) (Note)	20.468	< 60ms	

Note: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 seconds period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Dwell is the dwell time per spectrum analyzer sampling bin.

S is the sweep time

B is the number of spectrum analyzer sampling bins

C is the intermittent control signals of Channel Closing Transmission Time

N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission

Dwell (0.156 ms)= S (5000 ms) / B (32000)

C (20.468 ms) = N (131) X Dwell (0.156 ms)

3.3.6 Test Result of Non-Occupancy Period

Modulation Mode: 802.11ac (VHT80)

Peromotor	Test Result	Limit	
Parameter	Туре 0		
Test Channel (MHz)	5530 MHz	-	
Non-Occupancy Period (min.)	≧30	\geq 30 min	

Modulatio		Freq.				
802.11ac (5530 MHz				
Non-Occupancy Period During the 30 minutes obse signal was detected on that						
Ref Level -13.40	dBm Offset -3.40 dB 0 dB SWT 2000 s	RBW 3 MHz VBW 3 MHz				
-20 dbm	1		M1[1]		-22.55 dBm 98.55 s	
3m -						
CF 5.53 GHz Marker		691 pt	5		200.0 s/	
Type Ref Trc M1 1	X-value 98.55 s	Y-value -22.55 dBm	Function	Function Resu	lt	
Date: 20.JUL.2019	20:15:36		Ready		20:15:35	

Non-associated test Master was off. During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up. Spectrum 8 \$210000 Ref Level -13.40 dBm Offset -3.40 dB - RBW 3 MHz Att O dB . SWT 2000 s VBW 3 MHz SGL 1AP CIrw M1[1] 72.09 dBn -20 dBm 1866.67 -30 dBm -40 dBm -50 dBm -60 dBm M1 -70 dBm CF 5.53 GHz 691 pts 200.0 s/ Marker TypeRefTrcM11 Function X-value 1.86667 ks Y-value -72.09 dBm Function Result LX. Date: 20.JUL.2019 18:13:39

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Signal generator	R&S	SMB100A03	181147	1MHz-40GHz	Nov. 12, 2018	Nov. 11, 2019	Radiated (DF01-CB)
Vector Signal generator	R&S	SMU200A	102782	100kHz-6GHz	Jan. 16, 2019	Jan. 15, 2020	Radiated (DF01-CB)
Horn Antenna	COM-POWER	AH-118	071187	1GHz – 18GHz	Jul. 02, 2019	Jul. 01, 2020	Radiated (DF01-CB)
Horn Antenna	COM-POWER	AH-118	071042	1GHz – 18GHz	Dec. 24, 2018	Dec. 23, 2019	Radiated (DF01-CB)
RF Power Divider	ANAREN	2 Way	DFS-01-DV-02	1GHz ~ 6GHz	Oct. 08, 2018	Oct. 07, 2019	Radiated (DF01-CB)
RF Power Divider	MTJ	2 Way	DFS-01-DV-03	1GHz ~ 6GHz	Oct. 08, 2018	Oct. 07, 2019	Radiated (DF01-CB)
RF Power Divider	ANAREN	4 Way	DFS-01-DV-01	1GHz ~ 6GHz	Oct. 08, 2018	Oct. 07, 2019	Radiated (DF01-CB)
RF Cable-high	Woken	RG402	High Cable-57	1 GHz –18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiated (DF01-CB)
RF Cable-high	Woken	RG402	High Cable-58	1 GHz –18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiated (DF01-CB)

Note: Calibration Interval of instruments listed above is one year.

5 Measurement Uncertainty

Test Items	Uncertainty	Remark
Radiated Emission	3.4 dB	Confidence levels of 95%