FCC ID: PPQ-MZ0100S-0

IEEE C95.1 KDB447498 D03 47 C.F.R. Part 1, Subpart I, Section 1.1310 47 C.F.R. Part 2, Subpart J, Section 2.1091

RF EXPOSURE REPORT

For

ZigBee Module

Model: MZ0100S-0

Trade Name: LITE-ON

Issued to

Lite-On Technology Corp.

Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com

Issued Date: September 8, 2015

Report No.: T150811W04-MF

Report No.: T150811W04-MF

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	September 8, 2015	Initial Issue	ALL	Becca Chen

TABLE OF CONTENTS

Report No.: T150811W04-MF

1.	LIMIT	. 4
2.	EUT SPECIFICATION	. 4
3.	TEST RESULTS	. 5
4	MAXIMUM PERMISSIBI E EXPOSURE	6

FCC ID: PPQ-MZ0100S-0 Report No.: T150811W04-MF

1. LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

2. EUT SPECIFICATION

EUT	ZigBee Module		
Model	MZ0100S-0		
Trade Name	LITE-ON		
Frequency band (Operating)			
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others		
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)		
Antenna Specification	Antenna Gain: 4.59 dBi (Numeric gain: 2.88)		
Maximum Average output power	Zigbee Mode: 8.33 dBm (6.808 mW)		
Maximum Tune up Power	Zigbee Mode: 10.00 dBm (10.000 mW)		
Evaluation applied	✓ MPE Evaluation*☐ SAR Evaluation☐ N/A		

FCC ID: PPQ-MZ0100S-0

3. TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{377}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in mill watts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{377d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Report No.: T150811W04-MF

CC ID: PPQ-MZ0100S-0 Report No.: T150811W04-MF

4. MAXIMUM PERMISSIBLE EXPOSURE

Substituting the MPE safe distance using d = 20 cm into Equation 1:

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Zigbee mode:

	Ch.	Frq.(MHz)	P (mW)	Gain (num.)	D (cm)	Power density in mW / cm ²	Limit (mW/cm2)
ſ	Mid	2440	10.000	2.88	20	0.0057	1