

Product Name	PREMIUM SPEAKER DOCK
Model No	MS7000
FCC ID.	PPQ-MS7000

Applicant	Lite-On Technology Corp.
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien
	235,Taiwan,R.O.C.

Date of Receipt	Apr, 25, 2012
Issue Date	Aug. 14, 2012
Report No.	124518R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Aug. 14, 2012 Report No.: 124518R-RFUSP42V01

Product Name	PREMIUM SPEAKER DOCK			
Applicant	Lite-On Technology Corp.			
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.			
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD			
Model No.	MS7000			
FCC ID.	PPQ-MS7000			
EUT Rated Voltage	AC 120V, 60Hz			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	marantz			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010			
	ANSI C63.4: 2003			
Test Result	Complied			

The test results relate only to the samples tested.

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

in oanne. 0

(Adm. Specialist / Joanne Lin)

Tested By

incent chu

(Assistant Engineer / Vincent Chu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Operational Description	
13	Tested System Details	8
1.5.	Configuration of Tested System	8
1.4.	EUT Evercise Software	
1.5.	Tost Eggility	
1.0.		10
Ζ.	Conducted Emission	11
2.1.	Test Equipment	11
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	
2 1	Test Faviane	17
3.1.	Test Equipment	
3.2.	lest Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	20
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4 5	Uncertainty	23
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5 1	Test Equipment	34
5.1.	Test Setun	34
53	Limite	
5.5.	Tast Droedure	
5. 4 .	Lincontainty	
5.5. 5.6	Test Result of RF antenna conducted test	
6	Band Edge	48
υ.	Danu Luge	40
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
	-	

7.	Occupied Bandwidth	59
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	60
8.	Power Density	66
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	73

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	PREMIUM SPEAKER DOCK	
Trade Name	marantz	
Model No.	MS7000	
FCC ID.	PPQ-MS7000	
Frequency Range	2412-2462MHz for 802.11b/g	
Number of Channels	802.11b/g: 11	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps	
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)	
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)	
Antenna Type	PIFA Antenna	
Antenna Gain	Refer to the table "Antenna List"	
Channel Control	Auto	
RJ45 Cable	Shielded, 3.0m	

Antenna List

No.	Manufacturer	Model No.	Peak Gain	
1	MAGLAYERS	MSA-3810-25GC1-A4	6.41 dBi for 2.4GHz	
		MSA-3810-25GC1-A5		

Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is a PREMIUM SPEAKER DOCK with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps > 802.11g is 6Mbps)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The different of the each model is shown as below:

Module	SDRAM brand	Note
#1	Winbond	Two modules are different at SDRAM brand, the
#2	ESMT	other components and PCB layout are identical.

- 6. The SDRAM are digital circuits function and not part of RF circuits.
- 7. The test item conducted emission and 30MHz 1GHz radiated emission are tested at two WLAN modules which describe in above note.
- 8. After tested conducted emission and 30MHz 1GHz radiated emission, the worst case are system include WLAN module #1. The worst case are tested all test item.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Iphone 3GS	APPLE	MS637TA	84029A7JEDG	N/A
2	IPod nano	Apple	A1199	YM706LSCVQ5	N/A
3	Remote Control	Lite-On	N/A	N/A	N/A

Signal Cable Type		Signal cable Description
Α	Audio Cable	Non-Shielded, 1.8m
В	RJ45 Cable	Non-Shielded, 3.0m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Connect EUT and Notebook via test fixture.
- (2) Execute program on the Notebook
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Remove notebook and test fixture, Setup the EUT as shown in Section 1.4
- (6) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on		
	Federal Communications Commission		
	FCC Engineering Laboratory		
	7435 Oakland Mills Road		
	Columbia, MD 21046		
	Registration Number: 92195		
	Accreditation on NVLAP		
	NVLAP Lab Code: 200533-0		
Site Name:	Quietek Corporation		
Site Address:	No.5-22, Ruishukeng,		
	Linkou Dist. New Taipei City 24451,		
	Taiwan, R.O.C.		
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789		
	E-Mail : <u>service@quietek.com</u>		

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2012	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2012	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2012	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2012	
5	No.1 Shielded Roor	n		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit				
Frequency	Limits			
MHz	QP	AVG		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz) (ESMT)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.166	9.710	31.630	41.340	-24.203	65.543
0.236	9.662	23.410	33.072	-30.471	63.543
0.334	9.640	13.610	23.250	-37.493	60.743
0.505	9.640	17.890	27.530	-28.470	56.000
1.455	9.670	14.840	24.510	-31.490	56.000
24.002	9.950	32.820	42.770	-17.230	60.000
Average					
0.166	9.710	17.000	26.710	-28.833	55.543
0.236	9.662	9.530	19.192	-34.351	53.543
0.334	9.640	3.710	13.350	-37.393	50.743
0.505	9.640	10.500	20.140	-25.860	46.000
1.455	9.670	8.360	18.030	-27.970	46.000
24.002	9.950	29.180	39.130	-10.870	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " " means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product	: PREMIUM SPEAKER DOCK					
Test Item	: Conducted Emission Test					
Power Line	: Line 2					
Test Mode	: Mode 2: Tr	ansmit (802.11g	6Mbps) (2437MHz)	(ESMT)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.177	9.706	29.660	39.366	-25.863	65.229	
0.220	9.673	24.900	34.573	-29.427	64.000	
0.349	9.650	17.170	26.820	-33.494	60.314	
0.783	9.680	8.310	17.990	-38.010	56.000	
2.740	9.700	12.460	22.160	-33.840	56.000	
24.002	10.160	32.800	42.960	-17.040	60.000	
Average						
0.177	9.706	12.540	22.246	-32.983	55.229	
0.220	9.673	12.620	22.293	-31.707	54.000	
0.349	9.650	14.120	23.770	-26.544	50.314	
0.783	9.680	1.630	11.310	-34.690	46.000	
2.740	9.700	6.480	16.180	-29.820	46.000	
24.002	10.160	29.030	39.190	-10.810	50.000	

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: PREMIUM SPEAKER DOCK					
Test Item	: Conducted Emission Test					
Power Line	: Line 1					
Test Mode	: Mode 2: T	Transmit (802.11	g 6Mbps) (2437MHz	z) (Winbond)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 1						
Quasi-Peak						
0.166	9.710	31.410	41.120	-24.423	65.543	
0.228	9.668	23.440	33.108	-30.663	63.771	
0.349	9.640	18.810	28.450	-31.864	60.314	
0.701	9.640	15.580	25.220	-30.780	56.000	
1.408	9.670	13.020	22.690	-33.310	56.000	
24.002	9.950	32.580	42.530	-17.470	60.000	
Average						
0.166	9.710	18.860	28.570	-26.973	55.543	
0.228	9.668	9.030	18.698	-35.073	53.771	
0.349	9.640	15.680	25.320	-24.994	50.314	
0.701	9.640	11.840	21.480	-24.520	46.000	
1.408	9.670	6.620	16.290	-29.710	46.000	
24.002	9.950	29.030	38.980	-11.020	50.000	

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	Product : PREMIUM SPEAKER DOCK					
Test Item	: Conducted Emission Test					
Power Line	r Line : Line 2					
Test Mode	: Mode 2: T	Transmit (802.11	lg 6Mbps) (2437MHz	z) (Winbond)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.166	9.718	31.230	40.948	-24.595	65.543	
0.209	9.681	25.330	35.011	-29.303	64.314	
0.252	9.656	20.870	30.526	-32.560	63.086	
0.705	9.652	14.240	23.892	-32.108	56.000	
2.736	9.700	15.870	25.570	-30.430	56.000	
19.045	10.080	23.390	33.470	-26.530	60.000	
Average						
0.166	9.718	18.430	28.148	-27.395	55.543	
0.209	9.681	12.020	21.701	-32.613	54.314	
0.252	9.656	6.450	16.106	-36.980	53.086	
0.705	9.652	11.220	20.872	-25.128	46.000	
2.736	9.700	8.840	18.540	-27.460	46.000	
19.045	10.080	17.370	27.450	-22.550	50.000	

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012	
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012	
Note:					
1.	All equipments are	calibrated with trac	eable calibrations. Each calibra	ation is traceable to the	
	national or internati	onal standards.			
2.	The test instruments marked with "X" are used to measure the final test results.				

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channal No.	Frequency	For d	Average PowerPeakFor different Data Rate (Mbps)Power					Pogult
Channel No	(MHz)	1	2	5.5	11	1	Limit	Kesuit
			Measur	ement Lev	vel (dBm)			
01	2412	17.88				20.25	<30dBm	Pass
06	2437	17.79	17.65	17.58	17.43	20.13	<30dBm	Pass
11	2462	15				17.52	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

			г	lor diffe	Average	e Powe	r Mhr	a)		Peak		
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	6 Power	Required Limit	Result
			Measurement Level (dBm)									
01	2412	13.41								22.67	<30dBm	Pass
06	2437	16.43	16.35	16.25	16.17	16.03	15.95	15.87	15.71	24.04	<30dBm	Pass
11	2462	13.33								22.7	<30dBm	Pass

Note: Peak Power Output Value =Reading value on power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	uV/m@3m	dBuV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	37.870	41.131	-32.869	74.000
7236.000	10.650	36.290	46.940	-27.060	74.000
9648.000	13.337	35.760	49.096	-24.904	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	37.110	43.531	-30.469	74.000
7236.000	11.495	36.840	48.335	-25.665	74.000
9648.000	13.807	37.340	51.146	-22.854	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	36.830	39.867	-34.133	74.000		
7311.000	11.795	36.020	47.814	-26.186	74.000		
9748.000	12.635	37.220	49.855	-24.145	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	36.830	42.641	-31.359	74.000		
7311.000	12.630	35.220	47.849	-26.151	74.000		
9748.000	13.126	36.740	49.866	-24.134	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2462 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
1 5	Factor	Level	Level	C				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	2.858	37.490	40.347	-33.653	74.000			
7386.000	12.127	35.660	47.788	-26.212	74.000			
9848.000	12.852	36.970	49.823	-24.177	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4924.000	5.521	36.500	42.020	-31.980	74.000			
7386.000	13.254	35.530	48.784	-25.216	74.000			
9848.000	13.367	36.520	49.887	-24.113	74.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : PREMIUM SPEAKER DOCK							
Test Item	: Harmonic Radiated Emission Data							
Test Site	Test Site : No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2412MHz	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4824.000	3.261	38.810	42.071	-31.929	74.000			
7236.000	10.650	36.420	47.070	-26.930	74.000			
9648.000	13.337	36.120	49.456	-24.544	74.000			
Average Detector.								
Average Detector.								
Vertical								
Peak Detector:								
4824.000	6.421	37.130	43.551	-30.449	74.000			
7236.000	11.495	36.340	47.835	-26.165	74.000			
9648.000	13.807	36.780	50.586	-23.414	74.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK							
Test Item	: Harmonic Radiated Emission Data							
Test Site	Test Site : No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	lg 6Mbps) (2437 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4874.000	3.038	38.310	41.347	-32.653	74.000			
7311.000	11.795	35.870	47.664	-26.336	74.000			
9748.000	12.635	36.560	49.195	-24.805	74.000			
Average Detector:								
Peak Detector:								
4874.000	5.812	36.680	42.491	-31.509	74.000			
7311.000	12.630	35.050	47.679	-26.321	74.000			
9748.000	13.126	36.480	49.606	-24.394	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	2.858	37.040	39.897	-34.103	74.000			
7386.000	12.127	35.230	47.358	-26.642	74.000			
9848.000	12.852	36.440	49.293	-24.707	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4924.000	5.521	41.700	47.220	-26.780	74.000			
7386.000	13.254	35.430	48.684	-25.316	74.000			
9848.000	13.367	37.010	50.377	-23.623	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) (ESMT)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
119.240	-7.291	43.999	36.709	-6.791	43.500					
375.320	0.918	37.731	38.649	-7.351	46.000					
474.260	2.294	33.071	35.365	-10.635	46.000					
610.060	3.657	32.832	36.489	-9.511	46.000					
745.860	3.906	34.331	38.237	-7.763	46.000					
875.840	5.816	32.337	38.153	-7.847	46.000					
Vertical										
47.460	-11.425	46.566	35.141	-4.859	40.000					
134.760	-4.093	38.034	33.941	-9.559	43.500					
338.460	-1.640	41.006	39.365	-6.635	46.000					
480.080	-3.390	37.157	33.767	-12.233	46.000					
610.060	2.087	32.485	34.572	-11.428	46.000					
745.860	1.316	38.316	39.632	-6.368	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) (ESMT)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
119.240	-7.291	43.453	36.163	-7.337	43.500					
313.240	-4.640	43.249	38.609	-7.391	46.000					
400.540	0.942	39.720	40.662	-5.338	46.000					
474.260	2.294	33.243	35.537	-10.463	46.000					
654.680	1.893	35.248	37.141	-8.859	46.000					
829.280	7.376	29.435	36.811	-9.189	46.000					
Vertical										
119.240	-3.571	37.425	33.855	-9.645	43.500					
177.440	-1.248	36.048	34.800	-8.700	43.500					
406.360	-4.472	40.804	36.333	-9.667	46.000					
610.060	2.087	34.651	36.738	-9.262	46.000					
745.860	1.316	37.527	38.843	-7.157	46.000					
949.560	3.156	34.979	38.135	-7.865	46.000					

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: PREMIUM SPEAKER DOCK									
Test Item	: General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	: Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) (Winbond)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
119.240	-7.291	45.725	38.435	-5.065	43.500					
255.040	-5.409	44.449	39.040	-6.960	46.000					
350.100	-1.298	39.635	38.337	-7.663	46.000					
480.080	1.870	39.435	41.305	-4.695	46.000					
542.160	3.925	35.978	39.903	-6.097	46.000					
833.160	6.616	33.504	40.120	-5.880	46.000					
Vertical										
95.960	-6.836	40.293	33.457	-10.043	43.500					
134.760	-4.093	38.377	34.284	-9.216	43.500					
264.740	-5.071	40.887	35.817	-10.183	46.000					
406.360	-4.472	39.328	34.857	-11.143	46.000					
654.680	-3.047	39.208	36.161	-9.839	46.000					
951.500	3.083	38.319	41.402	-4.598	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	: PREMIUM SPEAKER DOCK General Radiated Emission Data									
Test Site	: No.3 OATS									
Test Mode	Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) (Winbond)									
			8)()						
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
222.060	-10.124	47.292	37.167	-8.833	46.000					
350.100	-1.298	40.211	38.913	-7.087	46.000					
429.640	0.630	35.968	36.597	-9.403	46.000					
542.160	3.925	33.822	37.747	-8.253	46.000					
654.680	1.893	36.607	38.500	-7.500	46.000					
947.620	6.971	31.450	38.421	-7.579	46.000					
Vertical										
95.960	-6.836	42.215	35.379	-8.121	43.500					
245.340	-5.908	44.453	38.545	-7.455	46.000					
361.740	-0.646	35.478	34.831	-11.169	46.000					
542.160	1.855	31.692	33.547	-12.453	46.000					
654.680	-3.047	39.429	36.382	-9.618	46.000					
949.560	3.156	34.788	37.944	-8.056	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agilen	t Spectri	ım Analyze	er - Swept	SA								
IXI RI		RF	50 Ω /			SEI	NSE:INT	Aug Tung	ALIGNAUT	0 06:45:34	PM Jul 25, 2012	Frequency
Cen	ter Fr	eq 51	5.0000	UU IVIH Pi	IZ NO: Fast 🗔	Trig: Free	Run	UAR INC	. LUg-r w	TY		
				IFO	Gain:Low	#Atten: 30	dB			DI	א אוא אוא אודי	
									М	kr1 817.2	52 MHz	Autorune
10 dE	3/div	Ref 20	.00 dB	m						-55.	06 dBm	
209												Contor From
10.0												515 000000 MH
												515.000000 WH2
0.00												
816.9												Start Freq
-10.0												30.000000 MHz
3											-15.48 dBm	
-20.0							3					04 E
111111												Stop Freq
-30.0												1.00000000 GH2
-40.0			_			-		-				CF Step
												Auto Man
-50.0		_			í	-		-		1		
	1.5					1.1.1	A CONTRACTOR		11.16	Control of Baseline J. 1	. J. A.J. Hall second	
-60.0	Property and a second		Debail solves			and a standard particular stands	angelagi sentenana Angelagi sentenana	na ng manya ng kanan Ng mang kanang kanan		and the second second	andra B. A Bilder tark	FreqOffset
					and the second							0 HZ
-70.0		-					-					
Star	t 30 0	ЛЦу								Stop 1 (
#Res	s BW	100 kHz	2		#VBW	1.0 MHz			Sweep	90.0 ms (1	0001 pts)	
MSG 🤇)File <	Image n	na> save	d					STA	TUS	Consistent Frank	

Agilent Spectrum Analyzer - Swept SA										
Center Fi	RF 50 Ω req 6.5000	AC 00000 GHz PN0: Fast (SE Trig: Free	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:45:031 TRAC TYP	PM Jul 25, 2012 E 1 2 3 4 5 6 PE MWWWWW	Frequency	
10 dB/div	Ref 20.00 (IFGain:Low	#Atten: 30) dB		Mk	ته 1 2.413 r1 a.4	3 5 GHz 52 dBm	Auto Tune	
10.0	1								Center Freq 6.50000000 GHz	
0.00									Start Freq	
-20.0								-15.48 dBm	Stap From	
-30.0									12.000000000 GHz	
-40.0									CF Step 1.10000000 GHz <u>Auto</u> Man	
-60.0						in the second state of the second		an a	Freq Offset	
-70.0										
Start 1.00 #Res BW	0 GHz 100 kHz	#VB	W 1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)		
мsg 🗼 Point	s changed; all	traces cleared				STATU	S			

Agiler	it Spectru	m Analyzer - Sw	rept SA		100		299				
Cen	ter Fr	RF 50 Ω eq 18.500	AC 000000		SEI	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:46:04 TRAC TYF	PM Jul 25, 2012 E 1 2 3 4 5 6 PE M WWWWW	Frequency
10 di Log	3/div	Ref 20.00	dBm	Gain:Low	#Atten: 30) dB		Mkr	1 23.62 -41.	B 5 GHz 13 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00											Start Freq 12.000000000 GHz
-20.0										-15.48 dBm	Stop Freq
-30.0										1	CF Step
-50.0					Calcolar Hales Department	houldon		an la participa de la Cargo			1.300000000 GHz <u>Auto</u> Man
-60.0	a an lles si h										Freq Offset 0 Hz
-70.0											
Star #Re	t 12.00 s BW 1	0 GHz 00 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	₽File <	mage.png> s	aved					STATU	s		

Agilent	Spectrum	Analyzer - Sw	ept SA	95							
LXI RL		RF 50 Ω	AC		SEI	VSE:INT		ALIGN AUTO	06:49:07	PM Jul 25, 2012	Erequency
Cent	ter Frec	1 515.00	0000 M	Hz		-	Avg Type	: Log-Pwr	TRAC	E123456	Frequency
				PNO: Fast 😱	#Atton: 30	Run			DE		
			22	FGain:Low	#Atten. ot				101 21010 10		
								Mk	r1 960.0	36 MHz	Autorune
10 dB	div R	ef 20.00	dBm						-55.	05 dBm	
Log			1	T T			1	1			
											Center Freq
10.0											545 000000 MU
10.0						· · · · · · · · · · · · · · · · · · ·					515.000000 MHZ
0.00			-	6			-				
											Start Freq
10.0											30.000000 MHz
510.0										-14.12 dBm	
-20.0						-					Stop Fred
											diop11cq
-30.0											1.00000000 GHz
-00.0											
											OE Oton
-40.0			-				-		-		
											97.000000 MH2
50.0											Auto Mari
-30.01										●'	
	a la come re	I beine ate	a second	and the second second	demand to meet have	a line of the	a struck by abdaes	a selection de Miller	والأندع ومسرة فكرار المأس	Level and evel	Eron Offset
-60.0	and the set of a set of	A REAL POLY AND A REAL PROPERTY OF A REAL PROPERTY			and the state of the state	in the territory of the	an a	Providence in the second s	and the second	han instituti (1. op.	Trequise
						254 425					0 Hz
70.0											
-70.0											
Ctorf	20.0 84		1	1 1			1	1	Stop 1 (
Sidri	DW 40	12 0 kUz		#\/D\A/	4 0 844-			Sucon (0.0 mo. /1	0000 GHZ	
#Res				#VDVV	1.0 19162			oweep s	1) 2111 U.U	0001 pts)	
MSG 🤇	File <im< td=""><td>age.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>JS</td><td></td><td></td></im<>	age.png> s	aved					STATU	JS		

Channel 06 (2437MHz)

Agiler	it Spectrum A	nalyzer - Swe	pt SA								
Con	ter Fred	F 50 Ω		U-7	SEI	ISE:INT	Ava Type	Log-Pwr	06:48:36 TRAC	PM Jul 25, 2012	Frequency
10 dl	3/div R e	f 20.00 d	10000 G PI IFO	NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	Run dB		Mk	r1 2.434 5.5	4 4 GHz 88 dBm	Auto Tune
10.0		• ¹				5					Center Freq 6.50000000 GHz
0.00 -10.0										-14.12 dBm	Start Freq 1.000000000 GHz
-20.0 -30.0											Stop Freq 12.000000000 GHz
-40.0 -50.0											CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0		il Rimon				an a			_{Dist} er Staffensfelfer angeselfette techter		Freq Offset 0 Hz
-70.0	t 1 000 C	47							Stop 12	000 GH-	
#Re	s BW 100	kHz		#VBW	1.0 MHz			Sweep	1.02 s (1	0001 pts)	
MSG 🤇	Points ch	anged; all t	races clear	red				STATU	5		

Agilen	t Spectrum	Analyzer - Sw	rept SA	-	98		286				
Cen	ter Fred	RF 50 S 18.500	2 AC 10000000 (PI	GHz 10: Fast 😱	SEr Trig: Free	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:49:38 TRAC TYI	PM Jul 25, 2012 E 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dE	3/div R	ef 20.00	dBm	Gain:Low	#Atten: 30	dB		Mkr	1 23.64 -40.	4 1 GHz 81 dBm	Auto Tune
10.0											Center Freq 18.50000000 GHz
0.00 -10.0										-14.12 dBm	Start Freq 12.000000000 GHz
-20.0											Stop Freq 25.00000000 GHz
-40.0				and the line line line line line line line lin	en ster filmslite		(14) Jacquer 2003 (14) 787	la de la como			CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	ana da belinay partificia dinan		y a y felden si fa din, me a dinan,	n fan skie men and de Willie fer fan s							Freq Offset 0 Hz
-70.0 Start #Res	t 12.000 s BW 10	GHz 0 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	File <im< td=""><td>age.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>S</td><td></td><td></td></im<>	age.png> s	aved					STATU	S		

Agilent S	pectrum	Analyzer -	Swept SA		-02						
Cente	er Free	r⊧ ∣s q 515.	0 Ω AC	MHz	SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	06:57:16 F TRACE	M Jul 25, 2012	Frequency
10 dB/c	div R	tef 20.0	0 dBm	IFGain:Low	#Atten: 3	0 dB		Mkr	₀ 1 858.5 -55.1	74 MHz 10 dBm	Auto Tune
10.0											Center Freq 515.000000 MHz
0.00 -										-15.60 dBm	Start Freq 30.000000 MHz
-20.0											Stop Freq 1.000000000 GHz
-40.0									 1-		CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	ing belanding and a possible of	line e all address	delana (temperi se Red Matematikana (temperi se Red Matematikana (temperi se Red			lashiyyida ata ing			la de la destada	l athall a landa da an Anna ann an Cantair	Freq Offset 0 Hz
-70.0 Start :	30.0 M BW 10	Hz 0 kHz		#VR	W 1.0 MHz			Sweep 9	Stop 1.0	000 GHz	
MSG	File <im< td=""><td>age.png</td><td>> saved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>s</td><td></td><td></td></im<>	age.png	> saved					STATU	s		

Channel 11 (2462MHz)

Agilen	Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fr	RF 50 G		GHz			Avg Type	ALIGNAUTO : Log-Pwr	06:57:47 TRAC TYF	PM Jul 25, 2012 E 1 2 3 4 5 6 PE MWWWWW	Frequency	
10 di	3/div	Ref 20.00	dBm	Gain:Low	#Atten: 30) dB		Mkr	⊓ 1 23.65 -41.3	9 7 GHz 20 dBm	Auto Tune	
10.0											Center Freq 18.50000000 GHz	
0.00											Start Freq 12.000000000 GHz	
-20.0										-15.60 dBm	Stop Freq	
-30.0										.1	25.00000000 GHz	
-40.0 -50.0					المرواط والماري	hladhaghach	and the print frequency	lagenet al accepted at			CF Step 1.300000000 GHz <u>Auto</u> Man	
-60.0	u (L) proved sy like Samuel Mary Kilow			n for an a second state of the	un ander Mersener ander en en andere en en andere en						Freq Offset 0 Hz	
-70.0												
Star #Re:	t 12.00 s BW 1	0 GHz 00 kHz		#VBW	1.0 MHz		1	Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)		
MSG 🤇	File <	mage.png> s	aved					STATU	S			

:	PREMIUM SPEAKER DOCK
:	RF Antenna Conducted Spurious
:	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps)
	: : : :

Channel 01 (2412MHz)

Agilent	Spectrum Ar	ialyzer - Sv	vept SA								
(XI RL	RF or Frog	50 S			SEf	NSE:INT	Ava Type	ALIGNAUT	0 07:23:38 r TRA	PM Jul 25, 2012	Frequency
10 dB/	div Re	f 20.00	dBm	NO: Fast ၞ Gain:Low	┘ Trig: Free #Atten: 30	e Run) dB		М	™⊅ kr1 875.2 -55.	258 MHz 24 dBm	Auto Tune
10.0 -			-	·							Center Freq 515.000000 MHz
0.00 - -10.0 -											Start Freq 30.000000 MHz
-20.0 = -30.0 =										-20.85 dBm	Stop Freq 1.000000000 GHz
-40.0 -									1		CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	lasti data da seconda e				ang ng kipatal		the suddread boost	a bijestada bije		l e se la contra pel de tara. Les se	Freq Offset 0 Hz
-70.0 Start #Res	30.0 MH BW 100	z kHz		#VBW	1.0 MHz			Sweep	Stop 1.0 90.0 ms (1	0000 GHz	
MSG 🤳	File <imag< td=""><td>ge.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STA</td><td>TUS</td><td></td><td></td></imag<>	ge.png> s	aved					STA	TUS		

Page: 42 of 75

Agilen	t Spectru	m Analyzer -	Swept SA								
Cen	ter Fr	RF 5	DΩ AC	GHz	SEI	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	07:23:08 TRAC	PM Jul 25, 2012 E 1 2 3 4 5 6	Frequency
10 dE	3/div	Ref 20.0	0 dBm	PNO: Fast 🖵 IFGain:Low	#Atten: 30	dB		Mk	r1 2.40	5 8 GHz 85 dBm	Auto Tune
10.0		1									Center Freq 6.50000000 GHz
0.00 -10.0											Start Freq 1.000000000 GHz
-20.0										-20.85.dBm	Stop Freq 12.000000000 GHz
-40.0											CF Step 1.10000000 GHz Auto Man
-50.0 -60.0	a an							anda da yang kanang pang Pangang pang pang kanang pang pang pang pang pang pang pang		n je jezen bywielski od podriana za podri ^{bij} ka	Freq Offset 0 Hz
-70.0											
star #Res	s BW 1	I GHZ		#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤇	Points	changed;	all traces cle	ared				STATU	s		

Agilent Spectrum Analyzer - Sw	ept SA				
⊠ RL RF 50 Ω Center Freq 18.500	AC 000000 GHz Trig:	SENSE:INT Av Free Run	ALIGNAUTO g Type: Log-Pwr	07:24:09 PM Jul 25, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00	IFGain:Low #Atte	n: 30 dB	Mkr	DET P NNNN I 23.632 4 GHz -41.23 dBm	Auto Tune
10.0					Center Freq 18.50000000 GHz
-10.0					Start Freq 12.00000000 GHz
-20.0				-20.85.dBm	Stop Freq 25.00000000 GHz
-40.0				1	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	n provenski klasticke i provi site. En prelifika i konstanti site				Freq Offset 0 Hz
-70.0				Stop 25 000 GHz	
#Res BW 100 kHz	#VBW 1.0 I	IHz	Sweep Status	1.20 s (10001 pts)	

Agilen	Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fr	req 515.0	ος ac D00000 M	Hz	SE		Avg Type	ALIGNAUTO : Log-Pwr	07:27:28 F	PM Jul 25, 2012	Frequency	
10 dE	3/div	Ref 20.0	ı 0 dBm	PNO: Fast C	#Atten: 30	dB		Mkr	^{DE} 1 953.8 -55.0	28 MHz 03 dBm	Auto Tune	
10.0											Center Freq 515.000000 MHz	
0.00 -10.0										Sale of Persons	Start Freq 30.000000 MHz	
-20.0 -30.0				8						-17.87 dBm	Stop Freq 1.000000000 GHz	
-40.0										.1	CF Step 97.000000 MHz <u>Auto</u> Man	
-60.0	de la la ser	(bern 1) state belge	No. of Marian		nada ola et da e	haday have been	ningalan kelenan pelapat Ana ang ang ang ang ang ang ang ang ang a	hanner frigdet set	te and spatter to ensure		Freq Offset 0 Hz	
-70.0 Star	t 30.0	MHz 100 kHz		#\/B1A/	1.0 MHz			Sween 9	Stop 1.0	0000 GHz		
MSG 🤇	File <	Image.png	saved		114 141112			STATUS	sie ins (1	, pro)		

Channel 06 (2437MHz)

Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fro	eq 18.500	2 AC	GHz	SEI	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	07:27:591 TRAC TYP	PM Jul 25, 2012 E 1 2 3 4 5 6 E M WWWWW	Frequency
10 di	3/div	Ref 20.00	dBm	Gain:Low	#Atten: 30	dB		Mkr	₀ 1 23.670 -41.	6 GHz 14 dBm	Auto Tune
10.0			-								Center Freq 18.50000000 GHz
0.00 -10.0										Sam (1995)art	Start Freq 12.000000000 GHz
-20.0										-17.87 dBm	Stop Freq 25.00000000 GHz
-40.0 -50.0			- Hubbertowe	must see the station of the			den halfe di tarife	and differences		1	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	ta pitika kaj sitaka Kaj sitaka polisia			i ti de se							Freq Offset 0 Hz
-70.0 Star #Re	t 12.00 s BW 1	0 GHz 00 kHz		#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🤇	₽File <i< td=""><td>mage.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>s</td><td></td><td></td></i<>	mage.png> s	aved					STATU	s		

Agilen	Agilent Spectrum Analyzer - Swept SA											
Cen	ter Fr	RF 50 eq 515.0	Ω AC 00000 MH	łz	SE		Avg Type	ALIGNAUTO : Log-Pwr	07:39:421 TRAC	PM Jul 25, 2012	Frequency	
10 dE	3/div	Ref 20.00	P IF dBm	NO: Fast 🖵 Gain:Low	#Atten: 30) dB		Mkr	1 968.8 -54.8	63 MHz 83 dBm	Auto Tune	
10.0											Center Freq 515.000000 MHz	
0.00											Start Freq 30.000000 MHz	
-20.0										-18.28 dBm	Stop Freq 1.000000000 GHz	
-40.0											CF Step 97.000000 MHz <u>Auto</u> Man	
-50.0 -60.0	a da a populationa		all a flowering to for		er Balling belle for the second s	albel () Longoro		gannet og kladen.		1-	Freq Offset 0 Hz	
-70.0 Star	t 30.0	MHz							Stop 1.0	0000 GHz		
#Re:	s BW ′ Pile <	I 00 kHz Image.png>	saved	#VBW	1.0 MHz			Sweep 9	0.0 ms (1	0001 pts)		

Channel 11 (2462MHz)

Agilent Spectrum Analyzer - Swept SA								
Center Freq 18.500	2 AC 0000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	07:40:13 PM Jul 25, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency			
10 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mkr	DET ^P NNNNN 1 23.752 0 GHz -40.41 dBm	Auto Tune			
10.0					Center Freq 18.50000000 GHz			
-10.0					Start Freq 12.00000000 GHz			
-20.0				-18.28 dBm	Stop Freq 25.000000000 GHz			
-40.0			and the state of the	1	CF Step 1.30000000 GHz <u>Auto</u> Man			
-50.0					Freq Offset 0 Hz			
Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)				

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	X Pre-Amplifier		Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2384.800	31.489	30.059	61.548	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	28.086	59.595	74.00	54.00	Pass
01 (Peak)	2413.000	31.646	78.392	110.038			Pass
01 (Average)	2387.000	31.497	21.865	53.362	74.00	54.00	Pass
01 (Average)	2390.000	31.509	18.137	49.646	74.00	54.00	Pass
01 (Average)	2411.400	31.634	74.606	106.240			Pass

Figure Channel 01:

Horizontal (Average)

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (VERTICAL):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2386.000	30.934	26.363	57.297	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	24.460	55.375	74.00	54.00	Pass
01 (Peak)	2413.000	30.956	70.553	101.509			Pass
01 (Average)	2386.800	30.930	15.494	46.424	74.00	54.00	Pass
01 (Average)	2390.000	30.915	13.591	44.506	74.00	54.00	Pass
01 (Average)	2414.800	30.968	66.774	97.742			Pass

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

VERTICAL (Average)

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level [dBuV]	Emission Level	Detector
role		[ub/m]		[ави у/т]	
Horizontal	2462	31.892	75.944	107.836	Peak
Horizontal	2462	31.892	72.216	104.108	Average
Vertical	2462	30.48	66.546	97.026	Peak
Vertical	2462	30.48	62.698	93.178	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2490.4	107.836	48.679	59.157	74.000	Peak
Horizontal	2490.4	104.108	58.042	46.066	54.000	Average
Vertical	2490.4	97.026	48.679	48.347	74.000	Peak
Vertical	2490.4	93.178	58.042	35.136	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agiler	nt Spec	strum A	nalyzer - Sw	ept SA	-	100	10	200				
⊯ Cer	nter	Freq	^{ε 50 Ω}	AC 00000 G	Hz	S Tria: Era		Avg Ty	ALIGNAUTO pe: Log-Pwr	12:28:23 PI TRAC	Aug 13, 2012	Frequency
PNO: Fast C The rise current avgridid. do not ret PNNNNN IFGain: Low #Atten: 30 dB Mkr4 2.490 4 GHz									Auto Tune			
10 d Log 10.0 0.00	B/div		ef 20.00							-41.7		Center Freq 2.497500000 GHz
-20.0 -30.0 -40.0	7				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	3		n file and the file	magingerman	الم الم الم الم الم الم الم	Start Freq 2.447500000 GHz
-60.0 -70.0												Stop Freq 2.547500000 GHz
Cer #Re	ter 2 s BV	2.497 N 1.0	50 GHz MHz		#VBI	W 1.0 MH	z		#Sweep	Span 1 500 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz
1 2 3 4 5 6 7 8 9 10 11 12	N N N N			× 2.461 2.483 2.500 2.490	0 GHz 5 GHz 0 GHz 4 GHz	45.012 c 415.012 c 41.160 c 41.720 c			FUNCTION WIDTH		IN VALUE	Freq Offset 0 Hz
MSG	10		34		24. 				STATU	S		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum	Analyzer - Swept SA	L							
w Center Fre	RF 50 Ω AC q 2.4975000	00 GHz	SEN	BE:INT	Avg Type	ALIGNAUTO	12:28:44 PM TRAC	Aug 13, 2012	Frequency
10 dB/div	Ref 20.00 dBm	PNO: Fast (IFGain:Low	#Atten: 30	dB		Mk	r1 2.461 4.2	2 GHz 51 dBm	Auto Tune
10.0 0.00 -10.0									Center Freq 2.497500000 GHz
-20.0 -30.0 -40.0		hm	<u>∧4</u>						Start Freq 2.447500000 GHz
-50.0				<u>2</u> ~		<u> </u>	~~		Stop Freq 2.547500000 GHz
Center 2.49 #Res BW 1.	750 GH2 0 MHz	#VB	W 10 Hz			Sweep	Span 1 7.80 s (′	00.0 MHz 1001 pts)	CF Step 10.000000 MHz
MKR MODE TRG 1 N 1 2 N 1 3 N 1 4 N 1 5 6 - 7 - - 9 - - 10 - -	SCL ;;	2.461 2 GHz 2.483 5 GHz 2.500 0 GHz 2.490 4 GHz	4.251 dB -56.445 dB -55.907 dB -53.791 dB	m m m m m		NCTION WIDTH	FUNCTIO		Auto Man Freq Offset 0 Hz
11 12 MSG						STATUS			

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2412	31.771	79.97	111.742	Peak
Horizontal	2412	31.771	63.26	95.032	Average
Vertical	2412	30.248	72.304	102.553	Peak
Vertical	2412	30.248	58.582	88.831	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2388.6	111.742	39.98	71.762	74.000	Peak
Horizontal	2353.7	95.032	42.248	52.784	54.000	Average
Vertical	2388.6	102.553	39.98	62.573	74.000	Peak
Vertical	2353.7	88.831	42.248	46.583	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agile	nt Spe	ectru	m An	alyzer - Swe	ept SA								
Cer	nter	Fre	RF Pq	50 Ω 2.3900	AC 00000 GI	Ηz	SE	NSE:INT	Avg Ty	pe: Log-Pwr	11:31:29 TRAC	AM Jul 26, 2012 E 1 2 3 4 5 6	Frequency
					PN IFG	IO: Fast ⊂ iain:Low	#Atten: 3	≥Run OdB		Mk	r1 2.41:		Auto Tune
10 c	B/div	/	Ref	20.00 c	lBm						11.	38 dBm	
10.0 0.00									/ month				Center Freq 2.390000000 GHz
-20.0 -30.0 -40.0		-		3	hora and a	W. WERELE	. Blander and the	22 hulls	nt [/]		man	The ageneira	Start Freq 2.340000000 GHz
-50.0 -60.0 -70.0)))												Stop Freq 2.440000000 GHz
Cer #Re	nter es B	2.3 W 1	900 .0 r	0 GHz /IHz		#VB	W 1.0 MHz			Sweep	Span 1 1.00 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz
MKR 1	MODE N	TRC 1	f		× 2.413	5 GHz	Y 11.38 d	Bm	NCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
2 3 4 5 6	N N N	1 1	f f		2.390 2.353 2.388	0 GHz 7 GHz 3 GHz	-28.528 d -35.496 d -28.60 d	Bm Bm Bm					Freq Offset 0 Hz
7 8 9 10 11													
12 MSG										STATUS	5		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum Analyzer - S	wept SA				
Center Freq 2.390	Ω AC 000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	11:32:55 AM Jul 26, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00	PNO: Fast C IFGain:Low	#Atten: 30 dB	Mk	r1 2.409 4 GHz -4.257 dBm	Auto Tune
10.0 0.00 -10.0			1		Center Freq 2.39000000 GHz
-20.0 -30.0 -40.0		12 12			Start Freq 2.340000000 GHz
-60.0					Stop Freq 2.440000000 GHz
Center 2.39000 GHz #Res BW 1.0 MHz	#VB	W 10 Hz	Sweep	Span 100.0 MHz 7.80 s (1001 pts)	CF Step 10.000000 MHz
Instruction Instruction	2.409 4 GHz 2.390 0 GHz 2.353 7 GHz 2.388 6 GHz	-4.257 dBm -48.302 dBm -46.505 dBm -48.888 dBm			Freq Offset 0 Hz

QuieTer

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2462	31.892	79.74	111.632	Peak
Horizontal	2462	31.892	61.78	93.672	Average
Vertical	2462	30.48	71.515	101.995	Peak
Vertical	2462	30.48	58.021	88.501	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Limit (dBuV/m)	Detector
Horizontal	2483.5	111.632	38.553	73.079	74.000	Peak
Horizontal	2483.5	93.672	40.614	53.058	54.000	Average
Vertical	2483.5	101.995	38.553	63.442	74.000	Peak
Vertical	2483.5	88.501	40.614	47.887	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Agilen	it Spec	ctrun	n Ana	alyzer - Sv	wept SA	1												
Cen	ter	Fre	RF q	50 s	Ω AC 5000	00 G	iHz	_	SE Trig: Free	NSE:INT	r	Avg	Type	ALIGNAUTO	11:	28:23 Al TRACE	M Jul 26, 2012	Frequency
10 dl	B/div	. 1	Ref	20.00	dBm	ים ורי ו	NO: Fast Gain:Lov	/ /	#Atten: 30) dB				Mł	(r1 2.	^{DET} 455 11.9	7 GHz 1 dBm	Auto Tune
Log 10.0 0.00 -10.0					1000	1 100-10-10-00-00-00-00-00-00-00-00-00-00-	an a	1										Center Freq 2.483500000 GHz
-20.0 -30.0 -40.0	July Mark	phol ^{tor}	Anor	nut and a second				4	Mark-dury	2	- Altowarth	huppy	⊘ ³	and the second second	on the state	marite	mont	Start Freq 2.433500000 GHz
-50.0 -60.0 -70.0																		Stop Freq 2.533500000 GHz
Cen #Re	ter 2 s B\ Minima	2.48 N 1.	835 .0 N	0 GHz /IHz		×	#V	BW	1.0 MHz		FUNC		EIN	Sweep	Spa 1.00 r	an 10 ns (1	0.0 MHz 001 pts)	CF Step 10.000000 MHz Auto Man
1 2 3 4 5 6 7 8 9 10 11 12	N N N	1	f f			2.455 2.483 2.500	7 GHz 5 GHz 0 GHz		<u>11.910 d</u> <u>-26.643 dl</u> -39.926 dl	Bm 3m 3m								Freq Offset 0 Hz
MSG														STATU	s			

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

Agilent Spectrum	Analyzer - Swept 9	SA						
🚧 Center Fre	rf 50 Ω A q 2.483500	000 GHz	SENSE:	INT Avg Typ	e: Log-Pwr	11:29:43 TRAC	AM Jul 26, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div F	Ref 20.00 dBi	PNO: Fast (IFGain:Low	*Atten: 30 dE	3	Mk	r1 2.459 -4.3	9 6 GHz 93 dBm	Auto Tune
Log 10.0 0.00 -10.0		1 						Center Freq 2.483500000 GHz
-20.0 -30.0 -40.0			2					Start Freq 2.433500000 GHz
-50.0 -60.0 -70.0								Stop Freq 2.533500000 GHz
Center 2.48 #Res BW 1.	350 GHz 0 MHz	#VE	SW 10 Hz		Sweep	Span 1 7.80 s (00.0 MHz 1001 pts)	CF Step 10.000000 MHz
Much and Description Much and		× 2.459 6 GHz 2.483 5 GHz 2.500 0 GHz	4.393 dBm 45.007 dBm -53.508 dBm			FUNCTIO		Freq Offset 0 Hz
MSG					STATUS			

QuieTer

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	12750	>500	Pass

Figure Channel 1:

Agilen	it Spec	ctrun	а Апа	alyzer - Sw	ept SA												
LXI R	L	Ero	RF	50 Ω	AC		1-		SE	NSE:IN	IT	Ava T	Type	ALIGNAUTO	06:43:19 TRA	PM Jul 25, 2012	Frequency
Ceri	ler	rie	q	2.4120	00000	PN	12 10: Fast iain:Lov	v v	Trig: Fre #Atten: 3	e Run 0 dB	Î			. 209 1 11	TY	PE MWWWWW ET P N N N N N	
10 d	B/div		Ref	20.00	dBm									Mkr	2 2.405 1.	85 GHz 57 dBm	Auto Tune
Log 10.0 0.00 -10.0							- Contra		www	A1	www	Jan San	V.4			2.84 dBm	Center Freq 2.412000000 GHz
-20.0 -30.0 -40.0	MAN	L.	44	, Jorn W	A MINIPA	alv.	<i>f</i>						2	Alexan	bog . way) Multhur	Start Freq 2.387000000 GHz
-50.0 -60.0 -70.0	_																Stop Freq 2.437000000 GHz
Cen #Re	ter 2 s BV	2.41 N 3	20 00	0 GHz kHz			#V	ΒW	1.0 MHz					Sweep	Span : 1.00 ms	50.00 MHz (1001 pts)	CF Step 5.000000 MHz
MKE 1	N	TRC 1	sci f	(0)	× 2.4	12 50	D GHz	(0)	8.84 d	Bm	FUN	CTION	FUN	ICTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> Man
3 4 5 6 7 8 9 10 11 12	N	1	f		2.4	18 60	DGHZ		2.37 d	Bm							Freq Offset 0 Hz
MSG	100									101				STATU	5		

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	10300	>500	Pass

Figure Channel 6:

Mark RF S0.9 AC SENSE:INT ALIGNAUTO 06:48:03 PM J425, 2012 Frequency Center Freq 2.437000000 GHz Avg Type: Log-Pwr TRACE I 2.345.6 Frequency PN0: Fast Trig: Free Run #Atten: 30 dB Mkr2 2.431 85 GHz Auto Tur 10 dB/div Ref 20.00 dBm 3.42 dBm 3.42 dBm Center Fre 100 2 1 3 3.99 dbm Center Fre 2.412000000 GF 2.412000000 GF 2.412000000 GF C412000000 GF C412000000 GF		
IFGain:Low #Atten: 30 dB DET/F NNNN Auto Tur 10 dB/div Ref 20.00 dBm 3.42 dBm Center Fre 100 2 1 3 399 dBm Center Fre 100 2 1 3 399 dBm Center Fre 100 2 1 3 24 dBm Center Fre 200 300 399 dBm Start Fre 2.41200000 GF 400 400 400 500 Fre Start Fre	SENSE:INT ALIGN AUTO 06:48:03 PM Jul 2 Avg Type: Log-Pwr TRACE 1 2 Trig: Free Run TYPE	5 6 Frequency
Log 10.0 000 10.0 2.43700000 GH 2.43700000 GH 2.43700000 GH 2.43700000 GH 2.41200000 GH 2.41200000 GH 2.41200000 GH 2.41200000 GH 3.00 40.0 40	#Atten: 30 dB Del(* M Mkr2 2.431 85 0 3.42 c	Hz Auto Tune
-20.0 -30.0 -40.0 -60.0 -2		Center Freq 2.437000000 GHz
-50.0 Stop Fre	- Alladon porond Mal	Start Freq 2.412000000 GHz
-70.0 2.46200000 GH		Stop Freq 2.462000000 GHz
Center 2.43700 GHz Span 50.00 MHz CF Ste #Res BW 300 kHz #VBW 1.0 MHz Sweep 1.00 ms (1001 pts) 5.000000 MH	Span 50.00 1.0 MHz Sweep 1.00 ms (1001	Hz CF Step 5.000000 MHz
MKE MADE FIG Set X Y FUNCTION FUNCTION VALUE Auto Mat 1 N 1 f 2.437 50 GHz 9.99 dBm	Y Function Function width Function value 9.99 dBm 3.42 dBm 3.42 dBm 3.76 dBm - 3.76 dBm - - - - -	Freq Offset

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	12700	>500	Pass

Figure Channel 11:

gilent	t Spec	ctrum	Апа	alyzer -	Swe	pt S/	١					10						9								
l RL	ter	Fre	RF q	2.46	^{50 Ω}	AC	00	Gł	-Iz	inst (_] Tria	SE : Free	NSE:I	nt n		Avg	Туре	ALIGN Contractions: Log	iauto -Pwr	0	06:55:0) TRA T	7 PM	1 2 3 M WWW	2012 4 5 6	Frequency
10 dB	3/div	F	Ref	20.0	0 d	Bm	<u> </u>	IFG	ain:	Low	•	#Att	en: 30	D dB						Mkr	2 2	.455 1.	0ET	5 G 3 d	iHz 3m	Auto Tui
og 10.0 0.00									5	MAN	2	ww	m	1	ww	ni	A3	N.						2.4	5 dBm	Center Fro 2.462000000 GI
0.0 0.0 0.0		Nµ M	m,	Jur of	hanger and the second s	ل والم	VA.	ł	<u></u>									Ŋ	W	nd for	L.	, My	-	M A	<u>J</u>	Start Fr 2.437000000 G
0.0 0.0 0.0	<u>ч</u> /																						4.			Stop Fr 2.487000000 GI
ent Res	ter 2 s BV	2.46 N 30	20	0 GH kHz	z				į	#VB	w	1.0 I	٧Hz						Sw	eep	S 1.00	pan :) ms	50. (10	.00 M 1001	ИHz pts)	CF Ste 5.000000 MI
E M 1 2	N N N	1 1	f f	(Δ)			× 2.46 2.45	150) GI 5 GI	Hz Hz (Z	<u>(</u>)	8. 1.	45 d 48 d	Bm Bm	F	UNCT	ION	FUI	NCTION	I WIDTH		FUNCT	ION	VALUE		uto Ma
4 5 6		-	-				2.40				<u>v</u>		.41 0	Din											_	
7 8 9 0																									_	
1										21	_			12									_			

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	16450	>500	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA				
XI RF 50Ω AC Center Freq 2.412000000 (GHz Trig: Free Bur	AVG Type: Log-Pwr	07:21:24 PM Jul 25, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 dBm	FGain:Low #Atten: 30 dB	Mkr	2 2.403 75 GHz -1.71 dBm	Auto Tune
Log 10.0 .000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.11 dBm	Center Fred 2.412000000 GHz
20.0 -30.0 -40.0		- Warne	Janen marin mark for the	Start Fred 2.387000000 GH:
-50.0				Stop Fred 2.437000000 GH:
Center 2.41200 GHz #Res BW 300 kHz	#VBW 1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Step 5.000000 MH;
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/5 GHz 6.11 dBm 75 GHz (Δ) -1.71 dBm 20 GHz (Δ) -0.08 dBm			Freq Offse 0 Ha
7 8 9 10 11				
12 //sg		STATU		

:	PREMIUM SPEAKER DOCK
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)
	::

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	16500	>500	Pass

Figure Channel 6:

Agilent Spectrum Analyzer - Swept S	БА	
Center Freq 2.4370000	OOO GHZ	ALIGNAUTO 07:26:24 PM Jul 25, 2012 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Frequency
10 dB/div Ref 20.00 dBr	PNO: Fast C High Free Run IFGain:Low #Atten: 30 dB	Mkr2 2.428 75 GHz 1.93 dBm
10.0	2	Center Freq 2.32 dBm 2.437000000 GHz
-20.0 -30.0 -40.0		Start Freq 2.412000000 GHz
-50.0		Stop Freq 2.462000000 GHz
Center 2.43700 GHz #Res BW 300 kHz	#VBW 1.0 MHz	Span 50.00 MHz Sweep 1.00 ms (1001 pts) 5.000000 MHz
MKR MODE TRC SCL	2 439 10 GHz 8 32 dBm	CTION FUNCTION WIDTH FUNCTION VALUE Auto Man
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.428 75 GHz (Δ) 1.93 dBm 2.445 25 GHz (Δ) 1.84 dBm	Freq Offset
7 8 9 10 11		
12 MSG		STATUS

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	16550	>500	Pass

Figure Channel 11:

gilent Spectrum Analyzer -	Swept SA						
enter Freq 2.46	ο Ω AC 2000000 GHz	SENSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	07:37:33 PM Ju TRACE 1 2 TYPE M	2 3 4 5 6	Frequency
0 dB/div Ref 20.0	IFGain:Low	#Atten: 30 dB		Mkr	DET P 1 2 2.453 70 0.72	GHz dBm	Auto Tune
og 10.0 0.00	2	man and	1			2.09 dBm	Center Free 2.462000000 GH:
20.0 30.0 MAYOCANDON CLAND	after and a service of the			have the south and a south a s	want was also all way	D. Martevyle	Start Free 2.437000000 GH
0.0							Stop Fre 2.487000000 GH
enter 2.46200 GH Res BW 300 kHz	z #VBW	(1.0 MHz		Sweep ′	Span 50.0 1.00 ms (100	0 MHz 1 pts)	CF Ster 5.000000 MH
R MODE TRC SCL	× 2 464 25 GHz	8.09 dBm	FUNCTION FUN	ICTION WIDTH	FUNCTION VA		<u>Auto</u> Mar
2 N 1 f (Δ) 3 N 1 f (Δ) 4 5 5 6	2.453 70 GHz (Δ) 2.470 25 GHz (Δ)	0.72 dBm 1.31 dBm					Freq Offse 0 H
7 8 9 0 1							
2 G		2		STATUS	3		

8. **Power Density**

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, VBW \geq 300KHz, SPAN to 5-30 % greater than the EBW, Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).

8.5. Uncertainty

 \pm 1.27 dB

8.6. Test Result of Power Density

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Cha	annel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
	1	2412	-8.549	< 8dBm	Pass

Figure Channel 1:

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-6.839	< 8dBm	Pass

Figure Channel 6:

Agilent Spectrum Ar	nalyzer - Swept SA								
RL RF	F 50Ω AC		SEI	VSE:INT	Δυσ Τνοο	ALIGNAUTO	06:50:10	PM Jul 25, 2012	Frequency
zenter Freq Ref 10 dB/div Re	2.437000000 f Offset -15.2 dB if 4.80 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free #Atten: 30	e Run) dB	Avg Hold:	-100/100 Mkr	1 2.436 -6.8	00 GHz 39 dBm	Auto Tune
-5.20		1 prode	1 why	m	mm	I MA			Center Fred 2.437000000 GHz
-15.2 -25.2	m			<u>}</u>					Start Fred 2.427000000 GHz
-35.2								- V	Stop Fred 2.447000000 GHz
-55.2			5						CF Step 2.000000 MH: <u>Auto</u> Mar
75.2									Freq Offse 0 H:
-85.2									
Center 2.4370 #Res BW 100	00 GHz kHz	#VBW	300 kHz			Sweep '	Span 2 1.93 ms (0.00 MHz 1001 pts)	
ISG						STATUS	6		

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-7.302	< 8dBm	Pass

Figure Channel 11:

Agilent	t Spectrum A	nalyzer - Swe	ept SA	-	105		200				
KXI RL	R	F 50 Ω	AC		SE	NSE:INT	A.u.a. Tum o		06:58:18	M Jul 25, 2012	Frequency
Cen	ter Freq	2.4620	00000 G	HZ NO: Fast	Trig: Free	Run	Avg Hold:	>100/100	TYP	EMWWWW	
			IF	Gain:Low	#Atten: 30	dB			DE	TPNNNNN	
	Re	f Offset -15	2 dB					Mkr	1 2.462	98 GHz	Auto I une
10 dE	Sidiv Re	f 4.80 dE	3m						-7.3	02 dBm	
Log											0
E 20						1					Center Freq
-0.20				1		Â.					2.462000000 GHz
15.0			1 ANTWO	Mar hand	www	1 Mar Winn	$w \sim w \sim w$	Un Anna			
-13.2	ň	10 hora	l r		7	r		· \ /	wn walnet		Start Freq
25.2	1v	w.	1					\bigvee	* h.d	L.	2.452000000 GHz
52J.Z	no					-				γ	
35.2	fr									^W V(
-30.2	V									2	Stop Freq
45.0											2.472000000 GHz
-4J.2											
65 Q										5	CF Step
~55.2											2.000000 MHz
-65.2											<u>Auto</u> Man
00.2											
.75.2											Freq Offset
10.2											0 Hz
-85.2											
00.2											
Cent	ter 2.4620	00 GHz						_	Span 2	0.00 MHz	
#Res	S BW 100	KHZ		#VBW	300 KHz			sweep	1.93 ms (1001 pts)	
MSG								STATUS	5		

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-10.578	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA				
(X) RL RF 50Ω AC	SENSE:INT	ALIGN AUTO	07:24:41 PM Jul 25, 2012	Frequency
Center Freq 2.412000000 GHZ PNO: Fast G IFGain:Low	┘ Trig: Free Run #Atten: 30 dB	Avg Hold:>100/100	DET P N N N N	Auto Tupo
Ref Offset -15.2 dB 10 dB/div Ref 4.80 dBm		Mkı	1 2.406 98 GHz -10.578 dBm	
				Center Freq
-5.20				2.412000000 GHz
-15.2 partitution and how marked with the second	white have been	mburnthurn	Marin Day	Start Freg
-25.2	ψV			2.402000000 GHz
25.2			VI WALL	
-35.2			U.V.	Stop Freq
-45.2				2.422000000 0112
-55.2				CF Step
.65.2				Auto Man
				Eren Offcet
-75.2				0 Hz
-85.2				
Center 2.41200 GHz #Res BW 100 kHz #VBW	300 kHz	Sweep	Span 20.00 MHz 1.93 ms (1001 pts)	
MSG		STATU	IS	

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-9.954	< 8dBm	Pass

Figure Channel 6:

Agilent Spectrum A	nalyzer - Swept SA								
XIRL R	F 50 Ω AC		SEI	VSE:INT		ALIGNAUTO	07:28:32	PM Jul 25, 2012	Frequency
Center Freq	2.437000000) GHz PNO: Fast 😱 IFGain:Low	Trig: Free #Atten: 30	Run I dB	Avg Type Avg Hold:	: Log-Pwr >100/100	TYF DE	2E 1 2 3 4 5 6 PE MWWWWWW T P N N N N N	
Re 10 dB/div Re	f Offset -15.2 dB f 4.80 dBm					Mkr	1 2.438 -9.9	24 GHz 54 dBm	Auto Tune
									Center Fred
-5.20	л Л Л	D 0.	n	1-	0 0	A	0 n		2.437000000 GH;
-15.2	~ mm part		Wall Wagen	mand had	and from More the	างประการ	Marth	7	Start Free
-25.2								4	2.427000000 GH
Mar And								Win.	
-35.2 **								V1.	Stop Free
-45.2				-					2.447000000 GH
-55.2									CF Step
									2.000000 MH Auto Ma
65.2									
-75.2				1					Freq Offse
									ОН
-85.2									
Center 2.4370	0 GHz						Span 2	0.00 MHz	
#Res BW 100	kHz	#VBW	300 kHz			Sweep	1.93 ms (1001 pts)	
ASG						STATUS	S		

Product	:	PREMIUM SPEAKER DOCK
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-9.832	< 8dBm	Pass

Figure Channel 11:

Agilen	t Spectrum Ar	alyzer - Swe	pt SA		-						
LXI RI	- RF	= 50 Ω	AC		SEI	VSE:INT		ALIGN AUTO	07:40:45	PM Jul 25, 2012	Erequency
Cen	ter Freq	2.46200	00000 G	GHZ PNO: Fast 😱 Gain:Low	Trig: Free #Atten: 30	Run I dB	Avg Type Avg Hold:	:: Log-Pwr >100/100	TRAC TYF DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	requeitcy
10 dE Log	Ref 3/div Re	Offset -15 f 4.80 dB	.2 dB Sm				1	Mkr	1 2.463 -9.8	26 GHz 32 dBm	Auto Tune
-5.20						1-					Center Freq
-15.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	w.Am	Marna	walking	month	Mann	unnmm	mant		
25.2					V	V					Start Freq 2.452000000 GHz
-20.2	apart for a series									h.	
-30.2										v	Stop Freq 2.472000000 GHz
-45.2											CESten
-55.2											2.000000 MHz Auto Man
-65.2						-					
-75.2										-	Freq Offset 0 Hz
-85.2											
Cen #Bo	ter 2.4620	0 GHz		#\/B\M	200 642			Swaan	Span 2	0.00 MHz	
MSG	5 044 100	N112		# V 13 V V	JUU MIZ			STATU	is is in the second sec	iou i hrs)	

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.