

Report No. : FR862001-01AF

FCC Test Report

FCC ID	:	PPQ-L-HUB-01
Contains ID	:	WS2-WG7833B0
Equipment	:	Locix Outdoor Hub
Brand Name	:	LOCIX
Model Name	:	L-HUB-01-IP65, L-HUB-01
Applicant	:	LITE-ON Technology Corp. Bldg. C, 90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C
Manufacturer	:	LITE-ON Network Communication (Dongguan) Limited 30#Keji Rd.,Yin Hu Industrial Area,Qingxi Town,DongGuan City,Guangdong,China
Standard	:	47 CFR FCC Part 15.247

The product was received on Sep. 05, 2018, and testing was started from Sep. 18, 2018 and completed on Sep. 20, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	Test Condition	8
2.2	Test Channel Mode	8
2.3	The Worst Case Measurement Configuration	9
2.4	Accessories	10
2.5	Support Equipment	10
2.6	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	DTS Bandwidth	13
3.3	Maximum Conducted Output Power	14
3.4	Power Spectral Density	16
3.5	Emissions in Non-restricted Frequency Bands	17
3.6	Emissions in Restricted Frequency Bands	18
4	TEST EQUIPMENT AND CALIBRATION DATA	21
APPI	ENDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPI	ENDIX B. TEST RESULTS OF DTS BANDWIDTH	
APPI	ENDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPI	ENDIX D. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPI	ENDIX E. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPI	ENDIX F. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPI	ENDIX G. TEST PHOTOS	
PHO	TOGRAPHS OF EUT V01	

History	of this	test re	port
----------------	---------	---------	------

Report No.	Version	Description	Issued Date
FR862001-01AF	01	Initial issue of report	Oct. 08, 2018
FR862001-01AF	02	Update Description of EUT's material in 1.1.5 section. This report is the latest version replacing for the report issued on Oct. 08, 2018	Oct. 11, 2018

Summary of Test Result

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	FCC 15.203
3.1	15.207	AC Power-line Conducted Emissions	PASS	FCC 15.207
3.2	15.247(a)	DTS Bandwidth	PASS	≥500kHz
3.3	15.247(b)	Maximum Conducted Output Power	PASS	Power [dBm]:30
3.4	15.247(e)	Power Spectral Density	PASS	PSD [dBm/3kHz]:8
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	Non-Restricted Bands: > 30 dBc
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	Restricted Bands: FCC 15.209

Reviewed by: Sam Tsai

Report Producer: Debby Hung

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Modulation	Ch. Frequency (MHz)	Channel Number	
902-928	2-GFSK	923.6-927.6	5	

Band	Mode	BWch (MHz)	Nant
902-928MHz	GFSK	0.5	1TX

Note:

• 902-928 MHz Band uses a combination of 2-GFSK modulation.

BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Model Name:L-HUB-01-IP65

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Walsin Technology Corporation	RFDPA161300SBBB801	Dipole antenna	I-PEX	0.05

Model Name: L-HUB-01

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Walsin Technology Corporation	RFDPA870900SBBB803	Dipole antenna	I-PEX	0.05

For 923-928MHz function:

Ant. 1 (port 1) could transmit/receive simultaneously.

1.1.3 EUT Information

	Identify EUT						
RF	Chip		TI/C	C1310			
				Operati	onal	Cor	ndition
EUT	Γ Power T	уре	Fro	m AC Adapter			
EUT	Function	า	\boxtimes	Point-to-multipoint	t [Point-to-point
				Ту	pe of	f EU	т
\boxtimes	☐ Stand-alone						
	Combined (EUT where the radio part is fully integrated within another device)						
	Combined Equipment - Brand Name / Model No.:						
	Plug-in radio (EUT intended for a variety of host systems)						
	Host System - Brand Name / Model No.:						
	Other:						

1.1.4 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
GFSK	1	0	n/a (DC>=0.98)	n/a (DC>=0.98)

1.1.5 Table for Multiple Listing

The brand/model names in the following table are all refer to the identical product.

Brand Name	Model Name	Enclosure	Description	
LOCIX	L-HUB-01-IP65 Black		All models are identical, including the material. The only	
	L-HUB-01	White	differences are enclosure color and white device's antenna can be bent.	

Note : The model : L-HUB-01-IP65 was chosen and measured during the test.

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 558074 D01 v05

1.3 Testing Location Information

Testing Location							
\square	HWA YA	ADD	:	No. 52, Huaya 1st Rd.,	No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)		
	TEL : 886-3-327-3456 FAX : 886-3-327-0973			FAX : 886-3-327-0973			
Test site Designation No. TW1190 with FCC.							
	JHUBEI	ADD	:	No.8, Ln. 724, Bo'ai St.	No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County, Taiwan (R.O.C.)		
	TEL : 886-3-656-9065 FAX : 886-3-656-9085						
Test site Designation No. TW0006 with FCC.							

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-HY	Andy	25.5°C / 64.5%	20/Sep/2018
Radiated	03CH02-HY	Terry	25°C / 57%	19/Sep/2018
AC Conduction	CO04-HY	Daniel	23.1°C / 52%	18/Sep/2018

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.9 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Condition

RF Conducted	Abbreviation	Remark
TnomVnom	Tnom	20°C
-	Vnom	120V

2.2 Test Channel Mode

Mode	PowerSetting	
Test Software Version	Setup_SmartRF_Studio_7-2.8.0	

Mode	PowerSetting
GFSK	-
923.6MHz	11
925.6MHz	11
927.6MHz	4

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral			
Operating Mode	СТХ		
1	Adapter mode		

The Worst Case Mode for Following Conformance Tests			
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition	Conducted measurement at transmit chains		

The Worst Case Mode for Following Conformance Tests				
Tests Item	Emissions in Restricted Fr	equency Bands		
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
Operating Mode < 1GHz	СТХ			
1	Adapter mode			
Operating Mode > 1GHz	СТХ			
	X Plane Y Plane Z Plane			
Orthogonal Planes of EUT				
Worst Planes of EUT			V	

2.4 Accessories

Accessories					
	Brand Name	Asian Power Devices Inc.	Model Name	WB-10E05FU	
AC Adapter	Power Rating	I/P: <u>100</u> - <u>240</u> Vac,50-60Hz,	<u>0.4</u> A Max. O/P	P: <u>5</u> Vdc, <u>2 A</u>	
	Power Cord	1.8 meter, Non-Shielded of	cable, w/o ferrite	core	

Reminder: Regarding to more detail and other information, please refer to user manual.

2.5 Support Equipment

	Support Equipment – RF Conducted					
No. Equipment Brand Name Model Name FCC				FCC ID		
1	Notebook	DELL	E5410	R33002 / DOC		
2	Adapter for NB	DELL	HA65NM130	R35737 / DOC		
3	AC Power Source	GW	APS-9102	-		

Test Setup Diagram 2.6

3 **Transmitter Test Result**

AC Power-line Conducted Emissions 3.1

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5 56 46					
5-30 60 50					
Note 1.* Decreases with the logarithm of the frequency					

reases with the logarithm of the frequency

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

Test Result of AC Power-line Conducted Emissions 3.1.5

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

• 6 dB bandwidth \geq 500 kHz.

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
•	For the emission bandwidth shall be measured using one of the options below:								
	Refer as KDB 558074. clause 8.2 (11.9.2.2 of ANSI C63.10) DTS bandwidth measurement.								
Refer as RSS-Gen, clause 6.7 for for occupied bandwidth testing.									
	Refer as ANSI C63.10, clause 6.9.3 for occupied bandwidth testing.								

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Мах	Maximum Conducted Output Power Limit										
	•	• If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$									
	-	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm									
	-	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm									
	-	Smart antenna system (SAS):									
		- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm									
		- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm									
		- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm									
e.i.r	.p. P	ower Limit:									
•	240	0-2483.5 MHz Band									
	-	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$									
	•	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$									
	•	Smart antenna system (SAS)									
		- Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$									
		- Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm									
		- Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$									
P _{Out} G _{TX}	= ma = the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi.									

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method							
•	Maximum Peak Conducted Output Power							
	□ Refer as KDB 558074, clause 8.3.1.1 (11.9.1.1 of ANSI C63.10) RBW ≥ EBW method.							
	Refer as KDB 558074, clause 8.3.1.2 (11.9.1.2 of ANSI C63.10) integrated band power method.							
	Refer as KDB 558074, clause 8.3.1.3 (11.9.1.3 of ANSI C63.10) peak power meter.							
•	Maximum Average Conducted Output Power							
	Refer as KDB 558074, clause 8.3.2.2 (11.9.2.2 of ANSI C63.10) using a spectrum analyzer.							
	Refer as KDB 558074, clause 8.3.2.3 (11.9.2.3 of ANSI C63.10) using a power meter.							
•	For conducted measurement.							
	 If the EUT supports multiple transmit chains using options given below: Refer as KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them. 							
	 If multiple transmit chains, EIRP calculation could be following as methods: P_{total} = P₁ + P₂ + + P_n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP_{total} = P_{total} + DG 							

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit

■ Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method								
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).								
	\square	Refer as KDB 558074, clause 8.4 (11.10 of ANSI C63.10) Method PKPSD.							
	For	conducted measurement.							
	•	If The EUT supports multiple transmit chains using options given below:							
		Measure and sum the spectra across the outputs. Refer as KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.							

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit							
RF output power procedure Limit (dB)							
Peak output power procedure	20						
Average output power procedure	30						
Note 1: If the peak output power procedure is used to	measure the fundamental emission power to						

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

• Refer as KDB 558074, clause 8.5 (11.11 of ANSI C63.10) for non-restricted frequency bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1	Emissions in	Restricted	Frequency	Bands Limit
-------	--------------	------------	-----------	--------------------

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

	Test Method							
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
	For the transmitter unwanted emissions shall be measured using following options below:							
	 Refer as KDB 558074, clause 8.6 (11.12 of ANSI C63.10) for restricted frequency bands. 							
	For the transmitter band-edge emissions shall be measured using following options below:							
	 Refer as KDB 558074 clause 8.7.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 							
	 Refer as KDB 558074, clause 8.7.2 (6.10.6 of ANSI C63.10) for marker-delta method for band-edge measurements. 							
	 Refer as KDB 558074, clause 8.7.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 							

3.6.4 Test Setup

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.6.6 Test Result of Transmitter Radiated Unwanted Emissions

Refer as Appendix F

4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMC Receiver	R&S	ESR	102051	9KHz ~ 3.6GHz	03/May/2018	02/May/2019
LISN	R&S	ENV216	101295	9kHz ~ 30MHz	17/Nov/2017	16/Nov/2018
RF Cable-CON	HUBER+SUHN ER	RG213/U	0761183202000 1	9kHz ~ 30MHz	06/Oct/2017	05/Oct/2018
AC POWER	APC	AFC-11005G	F310050055	47Hz~63Hz 5~300V	NCR	NCR
Impuls Begrenzer Puls e Limiter	SCHWARZBEC K	VTSD 9561-F	9561-F041	9 kHz ~ 30 MHz	12/Oct/2017	11/Oct/2018

NCR : Non-Calibration Require

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	31/Oct/2017	30/Oct/2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	1GHz ~ 18GHz 3m	27/Oct/2017	26/Oct/2018
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	27Jul/2018	02/Jul/2019
Microwave Preamplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	28/Sep/2017	27/Sep/2018
Spectrum Analyzer	Rohde & Schwarz	FSP40	100593	9KHz - 40GHz	12/Dec/2017	11/Dec/2018
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100354	9kHz ~ 2.75GHz	08/Dec/2017	07/Dec/2018
RF Cable-R03m	Jye Bao	RG142	CB017	9kHz ~ 1GHz	19/Jan/2018	18/Jan/2019
RF Cable-high	SUHNER	SUCOFLEX104	MY34918/4	1GHz ~ 40GHz	19/Jan/2018	18/Jan/2019
Bilog Antenna & 5db Attenuator	SCHAFFNER/ MTJ	CBL6112D / MTJ6102-05	2678 / 001	30MHz ~ 2GHz	07/Jul/2018	06/Jul/2019
Loop Antenna	TESEQ	HLA 6120	31244	9k-30MHz	29/Mar/2018	28/Mar/2019
Double Ridged Guide Horn Antenna	SCHWARZBEC K	BBHA 9120D	BBHA 9120 D 1531	1GHz ~ 18GHz	18/Apr/ 2018	17/Apr/2019

Report No. : FR862001-01AF

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Signal Analyzer	R&S	FSV40	101500	10Hz ~ 40GHz	18/Jul/2018	17/Jul/2019
Power Sensor	Anritsu	MA2411B	1339407	300MHz ~ 40GHz	06/Nov/2017	05/Nov/2018
Power Meter	Anritsu	ML2495A	1517010	300MHz ~ 40GHz	06/Nov/2017	05/Nov/2018
RF Cable-1.5m	HUBER+SUHN ER	SUCOFLEX_10 4	MY12585/4	30MHz ~ 26.5GHz	26/Jan/2018	25/Jan/2019
RF Cable-0.2m	HUBER+SUHN ER	SUCOFLEX_10 4	MY10710/4	30MHz ~ 26.5GHz	26/Jan/2018	25/Jan/2019
RF Cable-0.2m	HUBER+SUHN ER	SUCOFLEX_10 4	MY10709/4	30MHz ~ 26.5GHz	26/Jan/2018	25/Jan/2019
Signal Generator	R&S	SMB100A	175727	100kHz~40GHz	26/Oct/2017	25/Oct/2018

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
902-928MHz	-	-	-	-	-
GFSK	519.375k	581.584k	582KF1D	516.875k	573.463k

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
GFSK	-	-	-	-
923.6MHz_TnomVnom	Pass	500k	518.125k	581.584k
925.6MHz_TnomVnom	Pass	500k	516.875k	578.461k
927.6MHz_TnomVnom	Pass	500k	519.375k	573.463k

Port X-N dB = Port **X** 6dB down bandwidth; **Port X-OBW** = Port **X** 99% occupied bandwidth;

Mode	Power	Power
	(dBm)	(W)
902-928MHz	-	-
GFSK	9.93	0.00984

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
GFSK	-	-	-	-
923.6MHz_TnomVnom	Pass	0.05	9.93	30.00
925.6MHz_TnomVnom	Pass	0.05	9.90	30.00
927.6MHz_TnomVnom	Pass	0.05	0.99	30.00

Mode	PD
	(dBm/RBW)
902-928MHz	-
GFSK	-5.55

RBW=3kHz.

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
GFSK	-	-	-	-
923.6MHz_TnomVnom	Pass	0.05	-5.55	8.00
925.6MHz_TnomVnom	Pass	0.05	-5.98	8.00
927.6MHz_TnomVnom	Pass	0.05	-13.97	8.00

RBW=3kHz.

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
902-928MHz	-		-	-	-	-	-	-	-	-	-	-	-
GFSK	Pass	923.424M	7.39	-22.61	463.758M	-52.32	901.326M	-57.40	928.008M	-22.71	6.978223G	-49.76	1

Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
GFSK	-	-	-	-	-	-	-	-	-	-	-	-	-
923.6MHz_TnomVnom	Pass	923.424M	7.39	-22.61	461.5805M	-53.50	901.96M	-58.18	928.498M	-56.20	6.978223G	-48.94	1
925.6MHz_TnomVnom	Pass	923.424M	7.39	-22.61	462.887M	-51.89	901.198M	-56.52	928.002M	-56.01	6.977089G	-48.18	1
927.6MHz_TnomVnom	Pass	923.424M	7.39	-22.61	463.758M	-52.32	901.326M	-57.40	928.008M	-22.71	6.978223G	-49.76	1

RSE TX below 1GHz Result

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Factor (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
902-928MHz	-	-	-	-	-	-	-	-	-	-	-	-
GFSK_Nss1_1TX	Pass	PK	449.04M	40.29	46.00	-5.71	-2.85	3	Vertical	0	2.00	-

RSE TX below 1GHz Result

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
GFSK_Nss1_1TX	-	-	-	-	-	-	-	-	-	-	-	-
923.6MHz	Pass	PK	31.94M	33.02	40.00	-6.98	-5.45	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	99.84M	23.38	43.50	-20.12	-10.34	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	121.18M	21.91	43.50	-21.59	-8.77	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	449.04M	40.29	46.00	-5.71	-2.85	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	549.92M	33.43	46.00	-12.57	-0.73	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	650.8M	31.44	46.00	-14.56	-0.32	3	Vertical	0	2.00	-
923.6MHz	Pass	PK	31.94M	32.42	40.00	-7.58	-5.45	3	Horizontal	360	2.00	-
923.6MHz	Pass	PK	41.64M	24.88	40.00	-15.12	-10.41	3	Horizontal	360	2.00	-
923.6MHz	Pass	PK	148.34M	23.86	43.50	-19.64	-10.15	3	Horizontal	360	2.00	-
923.6MHz	Pass	PK	400.54M	34.48	46.00	-11.52	-3.53	3	Horizontal	360	2.00	-
923.6MHz	Pass	PK	449.04M	38.90	46.00	-7.10	-2.85	3	Horizontal	360	2.00	-
923.6MHz	Pass	PK	730.34M	40.11	46.00	-5.89	0.69	3	Horizontal	360	2.00	-

RSE TX above 1GHz Result

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Factor (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
902-928MHz	-	-	-	-	-	-	-	-	-	-	-	-
GFSK_Nss1_1TX	Pass	AV	2.7704G	40.52	54.00	-13.48	-1.16	3	Horizontal	123	2.65	-

RSE TX above 1GHz Result

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
GFSK_Nss1_1TX	-	-	-	-	-	-	-	-	-	-	-	-
923.6MHz	Pass	AV	2.77122G	37.49	54.00	-16.51	-1.16	3	Vertical	326	1.00	-
923.6MHz	Pass	PK	2.77134G	45.79	74.00	-28.21	-1.16	3	Vertical	326	1.00	-
923.6MHz	Pass	AV	2.7704G	40.52	54.00	-13.48	-1.16	3	Horizontal	123	2.65	-
923.6MHz	Pass	PK	2.77128G	47.38	74.00	-26.62	-1.16	3	Horizontal	123	2.65	-
927.6MHz	Pass	AV	2.78241G	35.71	54.00	-18.29	-1.13	3	Vertical	342	1.03	-
927.6MHz	Pass	PK	2.78328G	45.40	74.00	-28.60	-1.12	3	Vertical	342	1.03	-
927.6MHz	Pass	AV	2.78228G	40.05	54.00	-13.95	-1.13	3	Horizontal	125	2.68	-
927.6MHz	Pass	PK	2.78225G	47.31	74.00	-26.69	-1.13	3	Horizontal	125	2.68	-

