

Product Name	JukeBlox Networked Media Module
Model No	CR870-2S-B
FCC ID.	PPQ-CR8702SB

Applicant	Lite-On Technology Corp.
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.

Date of Receipt	Apr. 27, 2012
Issue Date	May 22, 2012
Report No.	125030R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: May 22, 2012 Report No.: 125030R-RFUSP42V01

Accredited by NIST (NVLAP)

NVLAP Lab Code: 200533-0

Product Name	JukeBlox Networked Media Module				
Applicant	Lite-On Technology Corp.				
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.				
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD				
Model No.	CR870-2S-B				
FCC ID.	PPQ-CR8702SB				
EUT Rated Voltage	DC 3.3V				
EUT Test Voltage	e AC 120V/60Hz				
Trade Name	Micro Module				
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010				
	ANSI C63.4: 2009				
Test Result Complied					

The test results relate only to the samples tested.

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Chen Jinn

(Senior Adm. Specialist / Jinn Chen)

Tested By

Vona Luo

(Assistant Engineer / Nowal Kuo)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	10
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	
3.1.	Test Equipment	16
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
4.1.	Test Equipment	
4.2.	Test Setup	20
4.3.	Limits	21
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	50

7. Occupied Bandwidth		58
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	65
8.1.	Test Equipment	65
8.2.	Test Setup	65
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	72

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	JukeBlox Networked Media Module
Trade Name	Micro Module
Model No.	CR870-2S-B
FCC ID.	PPQ-CR8702SB
Frequency Range	2412-2462MHz for 802.11b/g
Number of Channels 802.11b/g: 11	
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	Dipole
Antenna Gain Refer to the table "Antenna List"	
Channel Control	Auto

Antenna List

No.	Manufacturer	Model No.	Peak Gain
1	LITE-ON TECHNOLOGY CORP.	3010000223I7	2 dBi for 2.4GHz

Note: The antenna of EUT is conform to FCC 15.203.

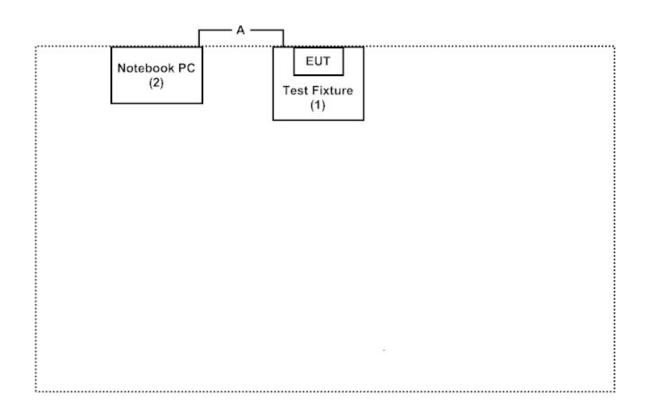
802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is a JukeBlox Networked Media Module with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps, 802.11g is 6Mbps)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 5. The JukeBlox Networked Media Module different of the each manufacturer is shown as below:

	Manufacturer			
SDRAM	ESMT	Winbond		

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Test Fixture	LITE-ON	N/A	N/A	N/A	Non-Shielded, 1.5m
2	Notebook PC	DELL	PPT	N/A	DoC	Non-Shielded, 0.8m

Signal Cable Type		Signal cable Description		
А	RS-232 Cable	Non-Shielded, 2m		

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4.
- (2) Execute command on the notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

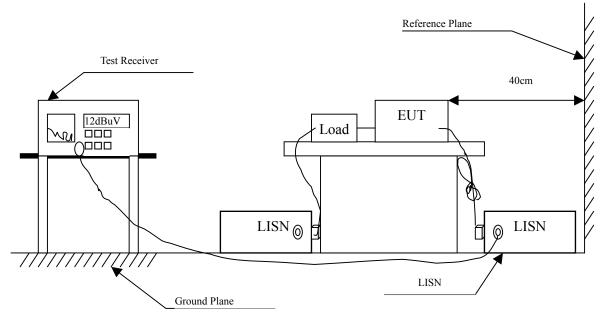
Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name:	Quietek Corporation			
Site Address:	No.5-22, Ruishukeng,			
	Linkou Dist. New Taipei City 24451,			
	Taiwan, R.O.C.			
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789			
	E-Mail : <u>service@quietek.com</u>			

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2012	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2012	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2012	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2012	
5	No.1 Shielded Room	m		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AVG				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	JukeBlox Networked Media Module
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz) – (ESMT)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.162	9.696	35.930	45.626	-20.031	65.657
0.181	9.768	33.590	43.358	-21.756	65.114
0.463	9.809	25.690	35.499	-21.558	57.057
0.521	9.800	16.660	26.460	-29.540	56.000
0.771	9.820	15.300	25.120	-30.880	56.000
13.970	10.111	17.280	27.391	-32.609	60.000
Average					
0.162	9.696	20.250	29.946	-25.711	55.657
0.181	9.768	22.480	32.248	-22.866	55.114
0.463	9.809	17.200	27.009	-20.048	47.057
0.521	9.800	10.860	20.660	-25.340	46.000
0.771	9.820	7.400	17.220	-28.780	46.000
13.970	10.111	11.150	21.261	-28.739	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line	 JukeBlox Networked Media Module Conducted Emission Test Line 2 					
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437MHz	z) – (ESMT)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.173	9.781	33.530	43.311	-22.032	65.343	
0.228	9.773	29.240	39.013	-24.758	63.771	
0.291	9.790	21.130	30.920	-31.051	61.971	
0.455	9.820	30.680	40.500	-16.786	57.286	
2.181	9.870	17.980	27.850	-28.150	56.000	
13.607	10.135	18.670	28.805	-31.195	60.000	
Average						
0.173	9.781	18.530	28.311	-27.032	55.343	
0.228	9.773	24.060	33.833	-19.938	53.771	
0.291	9.790	8.810	18.600	-33.371	51.971	
0.455	9.820	22.970	32.790	-14.496	47.286	
2.181	9.870	11.760	21.630	-24.370	46.000	
13.607	10.135	13.010	23.145	-26.855	50.000	

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 JukeBlox Networked Media Module Conducted Emission Test Line 1 Mode 2: Transmit (802.11g 6Mbps) (2437MHz) – (Winbond) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	-		
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 1						
Quasi-Peak						
0.150	9.697	38.000	47.697	-18.303	66.000	
0.177	9.754	33.940	43.694	-21.535	65.229	
0.185	9.782	32.710	42.492	-22.508	65.000	
0.459	9.810	29.940	39.750	-17.421	57.171	
0.505	9.800	25.220	35.020	-20.980	56.000	
11.603	10.068	18.250	28.318	-31.682	60.000	
Average						
0.150	9.697	24.450	34.147	-21.853	56.000	
0.177	9.754	21.820	31.574	-23.655	55.229	
0.185	9.782	19.730	29.512	-25.488	55.000	
0.459	9.810	22.010	31.820	-15.351	47.171	
0.505	9.800	16.560	26.360	-19.640	46.000	
11.603	10.068	11.910	21.978	-28.022	50.000	

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 JukeBlox Networked Media Module Conducted Emission Test Line 2 Mode 2: Transmit (802.11g 6Mbps) (2437MHz) – (Winbond) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.150	9.800	37.780	47.580	-18.420	66.000	
0.158	9.792	37.130	46.922	-18.849	65.771	
0.232	9.774	27.490	37.264	-26.393	63.657	
0.470	9.823	29.790	39.613	-17.244	56.857	
4.314	9.870	15.980	25.850	-30.150	56.000	
11.740	10.101	19.530	29.631	-30.369	60.000	
Average						
0.150	9.800	23.890	33.690	-22.310	56.000	
0.158	9.792	24.870	34.662	-21.109	55.771	
0.232	9.774	22.090	31.864	-21.793	53.657	
0.470	9.823	20.450	30.273	-16.584	46.857	
4.314	9.870	8.680	18.550	-27.450	46.000	
11.740	10.101	13.670	23.771	-26.229	50.000	

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2011
Note:				
1.	All equipments are national or internati		eable calibrations. Each calibr	ration is traceable to the
	national of internati	unai stanuarus.		

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)

Channel No	Frequency	For d	C C	e Power ata Rate (N	Peak Power	Required	Result	
Channel No	(MHz)	1	2	5.5	11	1	Limit	Result
			Measur					
01	2412	15.69				18.2	<30dBm	Pass
06	2437	15.85	15.81	15.79	15.77	18.31	<30dBm	Pass
11	2462	15.81				18.32	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)

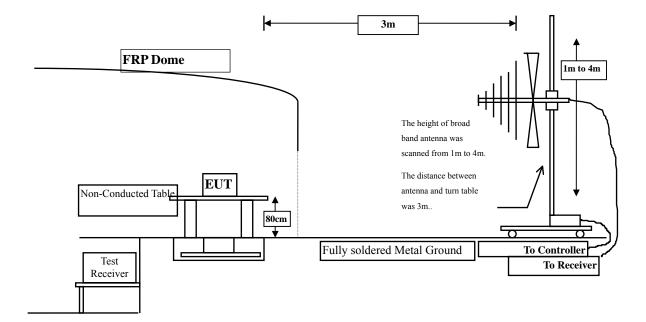
	Fraguarau	Average PowerPeakFor different Data Rate (Mbps)Power							Dequired			
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	6	Required Limit	Result
			Measurement Level (dBm)									
01	2412	12.68								23.21	<30dBm	Pass
06	2437	12.62	12.61	12.57	15.55	12.52	12.49	12.47	12.45	22.83	<30dBm	Pass
11	2462	12.41								22.52	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

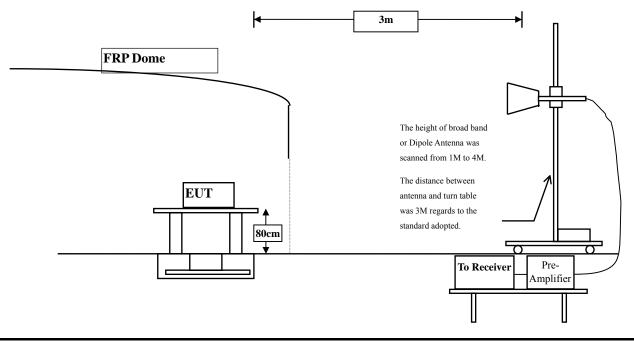
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	uV/m@3m	dBuV/m@3m						
30-88	100	40						
88-216	150	43.5						
216-960	200	46						
Above 960	500	54						

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2009 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2009 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	JukeBlox Networked Media Module
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz) – (Winbond)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	36.510	39.771	-34.229	74.000
7236.000	10.650	36.770	47.420	-26.580	74.000
9648.000	13.337	39.480	52.816	-21.184	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	38.460	44.881	-29.119	74.000
7236.000	11.495	41.380	52.875	-21.125	74.000
9648.000	13.807	41.700	55.506	-18.494	74.000
Average Detector:					
9648.000	13.807	36.590	50.396	-3.604	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 JukeBlox Networked Media Module Harmonic Radiated Emission Data 						
Test Site							
Test Mode	 No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) – (Winbond) 						
Test Mode	. Mode I.	11alisiint (802.11	10 110ps) (2437 Mill	Z = (W moond)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	41.000	44.037	-29.963	74.000		
7311.000	11.795	35.710	47.504	-26.496	74.000		
9748.000	12.635	40.360	52.995	-21.005	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	39.440	45.251	-28.749	74.000		
7311.000	12.630	40.890	53.519	-20.481	74.000		
9748.000	13.126	42.680	55.806	-18.194	74.000		
Average Detector:							
9748.000	13.126	38.670	51.796	-3.004	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 JukeBlox Networked Media Module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) – (Winbond) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	2.858	37.520	40.377	-33.623	74.000		
7386.000	12.127	34.930	47.058	-26.942	74.000		
9848.000	12.852	36.880	49.733	-24.267	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	5.521	40.430	45.950	-28.050	74.000		
7386.000	13.254	40.070	53.324	-20.676	74.000		
9848.000	13.367	40.990	54.357	-19.643	74.000		
Average Detector:							
9848.000	13.367	35.850	49.217	-4.783	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 JukeBlox Networked Media Module Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps) (2412MHz) – (Winbond) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	3.261	37.600	40.861	-33.139	74.000		
7236.000	10.650	36.270	46.920	-27.080	74.000		
9648.000	13.337	36.530	49.866	-24.134	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4824.000	6.421	37.390	43.811	-30.189	74.000		
7236.000	11.495	44.530	56.025	-17.975	74.000		
9648.000	13.807	37.370	51.176	-22.824	74.000		
Average Detector: 7236.000	11.495	28.140	39.635	-14.365	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	 JukeBlox Networked Media Module Harmonic Radiated Emission Data No.3 OATS 							
Test Mode								
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4874.000	3.038	38.300	41.337	-32.663	74.000			
7311.000	11.795	35.780	47.574	-26.426	74.000			
9748.000	12.635	38.110	50.745	-23.255	74.000			
Average Detector:								
Peak Detector:								
4874.000	5.812	37.770	43.581	-30.419	74.000			
7311.000	12.630	43.700	56.329	2.329	74.000			
9748.000	13.126	38.870	51.996	-22.004	74.000			
Average Detector:	12 (20)	27.040	20.070	14.101	54.000			
7311.000	12.630	27.240	39.869	-14.131	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Harmon : No.3 OA			z) – (Winbond)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	37.750	40.607	-33.393	74.000
7386.000	12.127	35.150	47.278	-26.722	74.000
9848.000	12.852	36.480	49.333	-24.667	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	37.660	43.180	-30.820	74.000
7386.000	13.254	39.700	52.954	-21.046	74.000
9848.000	13.367	37.850	51.217	-22.783	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: General : No.3 OA			z) – (ESMT)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	-	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
507.240	0.759	35.561	36.320	-9.680	46.000
608.120	4.384	28.617	33.001	-12.999	46.000
720.640	3.511	32.077	35.588	-10.412	46.000
800.180	5.141	30.006	35.147	-10.853	46.000
901.060	5.591	26.103	31.694	-14.306	46.000
961.200	6.450	30.519	36.969	-17.031	54.000
Vertical					
68.800	-6.305	41.554	35.249	-4.751	40.000
507.240	-0.471	33.548	33.077	-12.923	46.000
608.120	-1.576	34.147	32.571	-13.429	46.000
749.740	2.510	35.411	37.921	-8.079	46.000
800.180	2.801	35.014	37.815	-8.185	46.000
961.200	7.260	29.515	36.775	-17.225	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item		x Networked Med Radiated Emissio			
Test Item Test Site	: General : No.3 OA		n Data		
Test Mode			g 6Mbps)(2437 MHz		
Test Widde	: Mode 2	. 11ansinit (802.11	g olviops)(2437 MHZ	L = (ESMT)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
425.760	-3.093	37.594	34.501	-11.499	46.000
507.240	0.759	34.136	34.895	-11.105	46.000
608.120	4.384	27.161	31.545	-14.455	46.000
720.640	3.511	33.091	36.602	-9.398	46.000
800.180	5.141	30.796	35.937	-10.063	46.000
961.200	6.450	30.014	36.464	-17.536	54.000
Vertical					
507.240	-0.471	30.316	29.845	-16.155	46.000
641.100	-3.972	33.090	29.118	-16.882	46.000
749.740	2.510	37.389	39.899	-6.101	46.000
800.180	2.801	34.471	37.272	-8.728	46.000
914.640	1.033	35.366	36.399	-9.601	46.000
961.200	7.260	28.306	35.566	-18.434	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: General : No.3 O			z) – (Winbond)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level	-	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
264.740	-4.991	39.699	34.708	-11.292	46.000
350.100	-2.332	31.819	29.487	-16.513	46.000
480.080	-0.329	31.058	30.729	-15.271	46.000
699.300	2.875	31.839	34.714	-11.286	46.000
800.180	5.141	30.941	36.082	-9.918	46.000
961.200	6.450	29.337	35.787	-18.213	54.000
Vertical					
125.060	-4.046	35.620	31.574	-11.926	43.500
749.740	2.510	35.585	38.095	-7.905	46.000
769.140	2.923	35.442	38.365	-7.635	46.000
809.880	3.279	31.471	34.750	-11.250	46.000
901.060	3.331	28.334	31.665	-14.335	46.000
961.200	7.260	28.802	36.062	-17.938	54.000

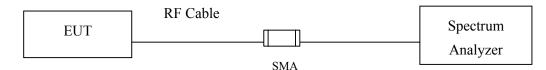
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: General : No.3 O			e) – (Winbond)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
350.100	-2.332	31.812	29.480	-16.520	46.000
592.600	3.767	28.130	31.897	-14.103	46.000
641.100	1.348	30.610	31.958	-14.042	46.000
720.640	3.511	31.815	35.326	-10.674	46.000
800.180	5.141	29.350	34.491	-11.509	46.000
961.200	6.450	31.076	37.526	-16.474	54.000
Vertical					
55.220	-4.699	32.762	28.063	-11.937	40.000
641.100	-3.972	32.727	28.755	-17.245	46.000
749.740	2.510	36.236	38.746	-7.254	46.000
782.720	3.035	34.323	37.358	-8.642	46.000
901.060	3.331	28.548	31.879	-14.121	46.000
961.200	7.260	28.798	36.058	-17.942	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment


_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	JukeBlox Networked Media Module
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)

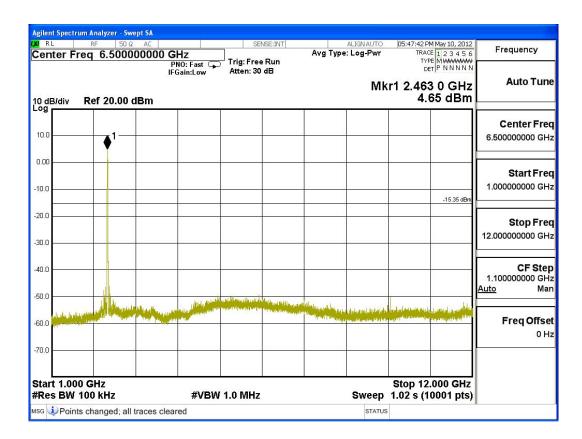
Channel 01 (2412MHz)

Agilent Spectru					2			<u></u>		
Center Fre			Z 10: Fast 😱]			ALIGNAUTO : Log-Pwr	TRAC	M May 10, 2012 E 1 2 3 4 5 6 PE M WWWWW T P N N N N N	Frequency
10 dB/div	Ref 20.00	IFG	iain:Low	Atten: 30			Mkı	1 748.8	67 MHz 29 dBm	Auto Tune
10.0										Center Freq 515.000000 MHz
-10.0									-16.65 dBm	Start Free 30.000000 MHz
-20.0										Stop Fred 1.000000000 GH;
-40.0							1			CF Step 97.000000 MH Auto Mar
07.8942.8-		na an bha ann an tha mann an t	an an taon an t	(1999) i filosofia aparada Antonio antonio	alebilia educer Presidente	en ann an Alma de cita (han d		al la transformation Al la transformation Al la transformation		Freq Offse
-70.0										
Start 30.0 I #Res BW 1			#VBW	1.0 MHz			Sweep 9		0000 GHz 0001 pts)	
мsg 🔱 File <i< td=""><td>mage.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>;</td><td></td><td></td></i<>	mage.png> s	aved					STATUS	;		

Frequency	05:35:28 PM May 10, 2012	ALIGN AUTO	EINT	SEN		50Ω AC	RF	U RL
Trequency	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	ype: Log-Pwr	un	Trig: Free Atten: 30	GHz PNO: Fast 😱 IFGain:Low	00000000	req 6.	enter l
Auto Tun	r1 2.409 1 GHz 3.35 dBm	Mk				.00 dBm	Ref 2	0 dB/div
Center Fre								800
6.500000000 GH							•	10.0
Start Fre).00
1.000000000 GH								10.0
Stop Fre	-16.65 dBm							20.0
12.000000000 GI								80.0
CF Ste								0.0
1.100000000 GH <u>Auto</u> Ma				<u>,</u>				50.0
0ff-	a la fano de antida de la companya de	Ulange de page anne de la del	hijelasen in entre the set of the		a line is a start of the second			a human
Freq Offs 0 H	A CONTRACTOR OF A CONTRACTOR	and the second					and a state of the	50.0
								70.0
	Stop 12.000 GHz 1.02 s (10001 pts)	Sween		1.0 MHz	#\/B\M		00 GHz 100 kH	tart 1.0
	1.02 S (10001 pts)	status				d; all traces cle	10 00 00 00 00 00 00 00 00 00 00 00 00 0	

RL RF 50 Ω enter Freq 18.50000	AC 00000 GHz PN0: Fast	SENSE:INT	ALIGNAUT	TRACE 123456	Frequency
dB/div Ref 20.00 dB	IFGain:Low	Atten: 30 dB	Mł	r1 23.631 1 GHz -41.26 dBm	Auto Tur
0.0					Center Fre 18.50000000 G
0.0				-16.65 dBm	Start Fr 12.000000000 G
.0					Stop Fr 25.00000000 G
.0		an tera biabat an dera an dera si	and the second		CF St 1.30000000 G <u>Auto</u> M
.0					Freq Off
tart 12.000 GHz Res BW 100 kHz	#VBW 1	.0 MHz	Swee	Stop 25.000 GHz 1.20 s (10001 pts)	

Channel 06 (2437MHz)


	RF 50 s req 515.00	00000 M	Hz PNO: Fast 🕞	SENS		Avg Type:	LIGNAUTO Log-Pwr	U5:42:26 F TRA TY	PM May 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Frequency
) dB/diu	Ref 20.00	J	FGain:Low	Atten: 30 c			Mkr	1 910.4	et PNNNN 169 MHz 46 dBm	Auto Tur
odB/div	Kei 20.00									
0.0				- <u>-</u>						Center Fr 515.000000 M
										Start Er
0.0				- ()						Start Fr 30.000000 M
0.0									-16.74 dBm	Stop Fr
0.0				- <u>6</u>						1.000000000 G
0.0										CF St
0.0									▲ 1	97.000000 M <u>Auto</u> M
0.0	lineagen des fanstelen	a the second	المراجعين البارجين الم	վ ինկուս գնուցնել Ա. ս. ա. է	nafamunan.	dult conflict la constant e p	ng phy th (child) may	the flag second space (* second to grad a space solation a space solation a space solation a space solation a s		Freq Offs
										0
0.0										
tart 30.0 Res BW	MHz 100 kHz		#VBV	V 1.0 MHz		S	weep 9		0000 GHz	
										1
G 🗼 File ·	<lmage.png> s</lmage.png>	saved					STATUS			
							STATUS			
ilent Spectr	r <mark>um Analyzer - Sv</mark> RF 50 S	wept SA Ω AC	Ĩ	SENS	6E:INT	A	LIGNAUTO		M May 10, 2012	Frequency
ilent Spectr	rum Analyzer - Sv	vept SA Ω AC DOOOOOO C	PNO: Fast 🕞		Run		LIGNAUTO	TRA	PM May 10, 2012 CE 1 2 3 4 5 6 PE M WWWWWW ET P N N N N N	Frequency
ilent Spectr RL enter F	r <mark>um Analyzer - Sv</mark> RF 50 S	vept SA Ω AC DOOOOOO (II		Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲	CE 1 2 3 4 5 6	
ilent Spectr	um Analyzer - Sv RF 50 4 req 6.5000	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲		Auto Tu
ilent Spectr RL enter F	um Analyzer - Sv RF 50 4 req 6.5000	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲		Auto Tu Center Fr
ilent Spectr RL enter F	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲		Auto Tu Center Fr 6.50000000 G
odB/div	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲	9 9 GHz 26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr
od B/div	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲		Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G
ilent Spectr RL enter F	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	vept SA Ω AC DOOOOOO (II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲	9 9 GHz 26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr
ilent Spectr RL enter F 0 dB/div 0.0 0.0 0.0	rum Analyzer - Sv RF 500 req 6.5000 Ref 20.00	vept SA Ω AC DOOOOOO C II	PNO: Fast 🕞	Trig: Free I	Run	A	LIGNAUTO Log-Pwr	۳۲ ۲۷ ۲۲	9 9 GHz 26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G
jlent Spectr RL enter F 0.0 0.0 0.0 0.0 0.0 0.0	req 6.5000 Ref 20.00 ↓ 1 ↓ 1 ↓	wept SA 2 AC D000000 C II III	PNO: Fast G	Trig: Free Atten: 30 c	Run B	Avg Type:	LIGNAUTO Log-Pwr Mk	r1 2.43 3.	9 9 GHz 26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G
jlent Spectr RL enter F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m Analyzer - Sv RF 500 req 6.5000 Ref 20.00 ↓ ↓	vept SA Ω AC DOOOOOO C II	PNO: Fast G	Trig: Free I	Run B	Avg Type:	LIGNAUTO Log-Pwr Mk	r1 2.43 3.	9 9 GHz 26 dBm	Auto Tur Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Sto 1.10000000 G Auto M
jient Spectr RL enter F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m Analyzer - Sv RF 500 req 6.5000 Ref 20.00 ↓ ↓	vept SA 2 AC D000000 C II dBm	PNO: Fast G	Trig: Free Atten: 30 c	Run B	Avg Type:	LIGNAUTO Log-Pwr Mk	r1 2.43 3.	9 9 GHz 26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Str 1.10000000 G Auto M
jlent Spectr RL enter Fi 0 dB/div 0 g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	xm Analyzer - Sv RF 500 req 6.5000 Ref 20.00 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	vept SA 2 AC D000000 C II dBm	PNO: Fast G	Trig: Free Atten: 30 c	Run B	Avg Type:	LIGNAUTO Log-Pwr Mk	r1 2.43 3.	23 4 5 6 6 PE MANNA 9 9 GHz 26 dBm -16.74 dBm -16.74 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF Sto 1.10000000 G Auto M
Jent Spectr RL enter F 0 dB/div 0 dB/div 0 d 0 dB/div 0 div 0 div 0 div	xm Analyzer - Sv RF 500 req 6.5000 Ref 20.00 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	vept SA 2 AC D000000 C II dBm	PNO: Fast G	Trig: Free Atten: 30 c	Run B	Avg Type:	LIGNAUTO Log-Pwr Mk	r1 2.43 3.	26 dBm	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF St 1.10000000 G Auto M

Center Freq 18.500000000 GHz Trig: Free Run IFGain:Low Avg Type: Log-Pwr Trace [12:3:4:5:6] Frequency 00 dB/div Ref 20.00 dBm Atten: 30 dB Mkr1 23.605 1 GHz Auto Tune 100 dB/div Ref 20.00 dBm Center Freq 18.500000000 GHz Auto Tune 100 dB/div Ref 20.00 dBm Start Freq 18.50000000 GHz 18.50000000 GHz 100 dB/div Image: Start Freq 18.50000000 GHz Start Freq 100 dB/div Image: Start Freq 18.50000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 12.00000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 12.00000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 12.000000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 12.00000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 13.00000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 13.00000000 GHz Image: Start Freq 100 dB/div Image: Start Freq 13.00000000 GHz I		Spectrum		er - Swe	pt SA		10				50		
Center Freq 18.0000000 GHz PN0: Fast IF Gaint.ow Trig: Free Run Atten: 30 dB Mkr1 23.605 1 GHz -41.415 dBm Auto Tune Od dB/div Ref 20.00 dBm Center Freq 18.50000000 GHz Start Freq 18.50000000 GHz 000 Image: Start Freq 12.00000000 GHz Start Freq 12.0000000 GHz Start Freq 12.0000000 GHz 000 Image: Start Freq 12.00000000 GHz Image: Start Freq 13.00000000 GHz Start Freq 12.0000000 GHz 000 Image: Start Freq 12.00000000 GHz Image: Start Freq 13.00000000 GHz Start Freq 13.0000000 GHz 000 Image: Start Freq 1.20 Start Freq 1.20 Start Freq 1.20 Start Start Start Freq 1.20 Start Start Start Freq 1.20 Start Start Start Freq 1.20 Start Start Start Start Start Start Freq 1.20 Start Sta	KN RL		RF				SE	NSE:INT	A				Frequency
Internation Atten: 30 dB Det/P NNNN Mkr1 23.605 1 GHz Auto Tune 10 dB/div Ref 20.00 dBm -41.415 dBm -41.415 dBm -41.415 dBm -41.415 dBm 100	Cent	er Fre	q 18	.5000			Tria: Free	Run	AVg Type	: Log-Pwr	TY	PE MWWWWW	
Wiki 1 23.000 1 GHZ -41.415 dBm Org -41.415 dBm Org Center Freq 18.50000000 GHz Out Start Freq 12.00000000 GHz Out Start Freq 13.00000000 GHz Out Start Freq 1.30000000 GHz Out Start Freq 1.30000000 GHz Out Start Freq 1.30000000 GHz Out Start Start Freq 1.30000000 GHz Out Start											D	ET P N N N N N	
Od BJdiv Ref 20.00 dBm -41.415 dBm 100 <										Mkr	1 23 60	5 1 GHz	Auto Tune
Construction Ref 20.00 dB/n 100 100	40 .00	F	1~F 1/	00.4	Dm								
10.0 Image: Center Freq 11 Image: Center Freq 12.00000000 GHz Image: Center Freq 13.00000000 GHz Image: Center Freq 10.0 Image: Center Freq 10.0			ter zu	uu u	ыш			() 					
100 100 18.50000000 GHz 000 18.50000000 GHz 100 1.674 dBn 100 1	377.												Contor From
0.00 Image: start freq 0.00 Image: start freq 10.0 Image: start freq 20.0 Image: start freq <td< td=""><td>10.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	10.0												
100 Start Freq 200 -16.74 dbm 200 -16.74 dbm 300 -16.74 dbm 400 -10.75 Stop Freq 500 -10.75 Stop Freq	10.0												18.500000000 GHz
100 Start Freq 200 -16.74 dBm 200 -16.74 dBm 300 -16.74 dBm 400 -10.75 Stop Freq 500 -10.75 Stop Freq													
10.0	0.00 -		-	-								-	
10.5 1.16.74 dBn 20.0 1.16.74 dBn 30.0 1 40.0 1 40.0 1 40.0 1 50.0 1 60.0 1 70.0 1 50.0 1 50.0 1 70.0 1 50.0 1 50.0 1 50.0 1 60.0 1 <td></td>													
200 300 300 1 Stop Freq 400 1 1 CF Step 400 1 CF Step 500 1 CF Step 500 1 CF Step 500 1 CF Step 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 1 500 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1	-10.0						<i>8</i>					-	12.00000000 GHz
200 300 300 1 Stop Freq 400 1 1 CF Step 400 1 CF Step 500 1 CF Step 500 1 CF Step 500 1 CF Step 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 500 1 1 1 500 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1 700 1 1 1 1												-16 74 dBm	
30.0 1 Stop Freq 25.00000000 GHz 40.0 1 CF Step 1.30000000 GHz 50.0 1 CF Step 1.30000000 GHz 60.0 1 Freq Offset 0 Hz 70.0 1 1 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)	20.0					1							
30.0 1 CF Step 40.0 1 CF Step 50.0 1 CF Step 50.0 1 1 60.0 1 1 70.0 1 1 50.0 1 1 50.0 1 1 50.0 1	20.0												Stop Freq
40.0 1 CF Step 1.30000000 GHz Auto -50.0 -													25.00000000 GHz
-50.0 -50.0 -60.0 -60.0 -7	-30.0						0						
-50.0 -50.0 -60.0 -60.0 -7												. I	
-50.0	-40.0		-	-					-				
-50.0									The second second	ALC: NO	No. of Strategy	des plantes at	
Freq Onset O Hz -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz	-50.0		_			distribution of the	Lagendella and Pell	All the second states of	Pileten geberheiten er	A second s	and	The Party of the Party of the	<u>Auto</u> Man
Freq Onset O Hz -70.0 Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz	00.0	a de seus	list.	a subsection of the	- (i) and the party	the sheet of the state of the state	and the strength of the	naur, einis delte systematic	al and a second second	N.S			
.70.0 O Hz Start 12.000 GHz #VBW 1.0 MHz Stert 12.000 GHz \$\$top 25.000 GHz)	A CONTRACTOR											Eron Offect
-70.0 C C C C C C C C C C C C C C C C C C	-60.0						9						
Start 12.000 GHz #Res BW 100 kHz #VBW 1.0 MHz Stop 25.000 GHz 1.20 s (10001 pts)													0 HZ
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)	-70.0		-										
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)													
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)													
tsg DAlignment Completed STATUS	#Res	BW 10	0 kH;	z		#VBW	1.0 MHz			Sweep	1.20 s (1	0001 pts)	
	MSG 🤳	Alignme	ent Cor	mplete	d					STATUS	5		

Agilent Spectrum Analyzer - Swept SA XI RL UTO 05:48:12 PM May 10, 2012 SENSE:INT ALIGN A Frequency Center Freq 515.000000 MHz Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N Trig: Free Run PNO: Fast 🖵 IFGain:Low Atten: 30 dB Auto Tune Mkr1 890.972 MHz -54.39 dBm 10 dB/div Log Ref 20.00 dBm **Center Freq** 10.0 515.000000 MHz 0.00 Start Freq 30.000000 MHz -10.0 -15.35 dB -20.0 Stop Freq 1.000000000 GHz -30.0 CF Step 97.000000 MHz -40.0 Auto Man -50.0 ويتمار معلية بالطاط العلمان أسرور الما dillo at a day ا الدورالعما Los La M L.b **Freq Offset** -60.0 0 Hz -70.0 Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 1.0 MHz Sweep 90.0 ms (10001 pts) мsg 🔱 File <lmage.png> saved STATUS

Channel 11 (2462MHz)

Agilent Spectru		yzer - Swo	ept SA		-					50		
LXI RL	RF		AC			SE	NSE:INT		ALIGNAUTO		M May 10, 2012	Frequency
Center Fr	eq 1	8.500	00000	0 GHz	z ast 😱	Trig: Free	Run	Avg Type	: Log-Pwr	TY	CE 1 2 3 4 5 6 PE MWWWWW	Trequency
10 dB/div	Ref	20.00 a	dBm	IFGain:	Low	Atten: 30	dB		Mkr	1 23.63	et ^{P NNNNN} 2 4 GHz 80 dBm	Auto Tune
10.0												Center Freq 18.50000000 GHz
-10.0											-15.35 dBm	Start Freq 12.000000000 GHz
-20.0												Stop Fred 25.000000000 GH;
-30.0			alamba			le contribute da series						CF Step 1.300000000 GH; <u>Auto</u> Mar
-60.0					altib et	in et bien het tit dies						Freq Offse 0 H:
-70.0										O tom 25		
Start 12.00 #Res BW 1					#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
мsg 🗼 File <	Image	.png> sa	aved						STATUS		• • • • •	1

Product	:	JukeBlox Networked Media Module
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)

Channel 01 (2412MHz)

	um Analyzer - Swe					
XI RL	RF 50 Ω		SENSE:INT	ALIGNAUT Avg Type: Log-Pw		Frequency
Center Fi	req 515.000	JUUU MHZ PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB		TYPE WWWWW DET P N N N N N	Auto Tun
10 dB/div Log	Ref 20.00 d	Bm		M	kr1 919.005 MHz -54.23 dBm	Auto Tun
6672-						Center Fre
10.0			· · · · · · · · · · · · · · · · · · ·			515.000000 M⊢
0.00						Start Fre
10.0						30.000000 MH
20.0					-22.65 dBm	Stop Fre
30.0						1.000000000 GI
40.0						CF Ste 97.000000 MI
50.0					1	Auto M
50.0		ten la restitue paper de la tata compo	In specific public in the data series	he he was he was a start of the second second	The production of the law for the termination of the law of the second states of the law of the second states of t	Freq Offs
and the second second						01
70.0						
Start 30.0		40 /D14		 Suuran	Stop 1.0000 GHz	
Res BW	2014/06/06/01/2020/2020		(1.0 MHz	• • •	90.0 ms (10001 pts)	
- File	<lmage.png> sa</lmage.png>	veu		STA	103	

		ım Analyzer - Sw									
Cer		RF 50 S eq 6.5000		Hz		NSE:INT		ALIGNAUTO : Log-Pwr	TRAC	M May 10, 2012 E 1 2 3 4 5 6	Frequency
				PNO: Fast 🖵 Gain:Low	Trig: Free Atten: 30				DE		
								Mk		02 GHz 65 dBm	Auto Tune
10 d Log	B/div	Ref 20.00	dBm	Т					-2.		
10.0											Center Freq
10.0											6.500000000 GHz
0.00		_ ∳'	2								Start Freq
-10.0											1.000000000 GHz
-20.0						· · · · · · · · · · · · · · · · · · ·				-22.65 dBm	Stop Freq
-30.0											12.00000000 GHz
											05.0447
-40.0											CF Step 1.10000000 GHz
-50.0				Land de la Maria	and the state of the	Differ Fullet a role					<u>Auto</u> Man
-60.0	andunal		a share	and the second	and selected and a second	A Construction of the second	and a set of the set		a la la Collectiva de Collectiva Terror de Collectiva de Collectiva		Freq Offset
-60.0	and a set of the set of		i i i i i i i i i i i i i i i i i i i					- N			0 Hz
-70.0											
100 C C C C C C C C C C C C C C C C C C	rt 1.000 is BW 1) GHz 100 kHz		#VBW	1.0 MHz			Sweep	22 Sec. 34	.000 GHz 0001 pts)	
	-	s changed; all	traces clea	Street and the second				STATUS			
Agiler LXI R		m Analyzer - Sw RF 50 S		Ĩ	SEI	NSE:INT		ALIGN AUTO	05:53:33 P	M May 10, 2012	_
LXI R	L		2 AC					ALIGN AUTO : Log-Pwr	TRAC	M May 10, 2012 E 1 2 3 4 5 6 E M WWWWW	Frequency
LXI R	L	RF 50 S	2 AC 0000000 F	GHz PNO: Fast G Gain:Low		Run		: Log-Pwr	TRAC TYF Df	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	
Cer	ter Fr	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E123456	
Cer	L	RF 50 S	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	Auto Tune
10 d	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	
LXI R Cer 10 d Log	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	Auto Tune Center Freq
10 d Log	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	Auto Tune Center Freq
LXI R Cer 10 d Log	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	Auto Tune Center Freq 18.50000000 GHz
10 d Cer 10.0 10.0 -10.0	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	7 8 GHz 21 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq
10 d Log 10.0	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	E 123456 MWWWWW TPNNNN 7 8 GHz	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq
10 d Cer 10.0 10.0 -10.0	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr	TRAC TYP DE 1 24.35	7 8 GHz 21 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz
10 d 10.0 10.0 -10.0 -20.0	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast 😱	Trig: Free	Run		: Log-Pwr Mkr	1 24.35 -41.	7 8 GHz 21 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz
(X R Cer 10.0 10.0 -10.0 -20.0	B/div	RF 50 G eq 18.500	2 AC)000000 F IF	PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.:	-22.65 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz CF Step 1.300000000 GHz
10 d 10.0 10.0 -10.0 -20.0	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.:	E 1 2 3 4 5 6 A	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz
10.0 10.0 0.00 -10.0 -20.0 -30.0	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.:	-22.65 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz CF Step 1.300000000 GHz
10.0 10.0 10.0 10.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.:	-22.65 dBm	Start Freq 18.50000000 GHz 18.00000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz 1.30000000 GHz Auto
X R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.:	-22.65 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz <u>CF Step</u> 1.30000000 GHz <u>Auto</u> Man
200 R Cer 10.0 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	1 24.35 -41.	-22.65 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.00000000 GHz Stop Freq 25.00000000 GHz <u>CF Step</u> 1.30000000 GHz <u>Auto</u> Man
200 R Cer 10.0 10.0 -10.0 -20.0 -30.0 -30.0 -40.0 -50.0 -50.0 -70.0 Stal	B/div	Ref 20.00		PNO: Fast Gain:Low	Trig: Free Atten: 30	Run dB	Avg Type	: Log-Pwr Mkr	TRAC TYP TYP 1 24.35 -41.	-22.65 dBm	Auto Tune Center Freq 18.50000000 GHz Start Freq 12.000000000 GHz Stop Freq 25.00000000 GHz 1.30000000 GHz Auto Man Freq Offset 0 Hz

	06:01:47 PM May 10, 2012			SENSE:INT	S		OΩ AC	and the second	RL
	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	g-Pwr	Avg Type: Log) Trig: Fre	PNO: Fast 😱	1	req 515.0	enter F
A	276.671 MHz -54.28 dBm	Mkr1		30 dB	Atten: 3	FGain:Low		Ref 20.00) dB/div
Contor Er									^{og}
Center Fr 515.000000 M									0.0
Start Fr 30.000000 M									.00
Stop Fr 1.000000000 G	-22.28 dBm								0.0
CF Sto 97.000000 M <u>Auto</u> M							1-		0.0
Freq Offs 0	hanganan fi beli ji ang b ^a ng kanan katanan kang-kang palamanan kanananan kang bahari palaming kang 	ng s plan et fillt () s angeliet et gedarted	a yan dan seria a badan ya	edd yn heferiad yn yw	the attract to the free			an a	0.0 *****
	Stop 1.0000 GHz 0 ms (10001 pts)		Swe	z	1.0 MHz	#VBW	> saved	100 kHz	
		eep 90.	Swe	lz	1.0 MH2	#VBW		100 kHz <image.png></image.png>	Res BW
	0 ms (10001 pts)	eep 90. status	ALIGN	SENSE:INT			Swept SA Ο Ω AC	100 kHz <image.png> um Analyzer - S RF 50</image.png>	Res BW G Pile File Ilent Spectr
Frequency	0 ms (10001 pts)	eep 90. status		SENSE:INT	Sing: Fre	GHz PNO: Fast 😱	<mark>Swept SA</mark> Ο Ω ΑC DOOOOOOO C	100 kHz <lmage.png> um Analyzer - S</lmage.png>	Res BW G Pile File Ilent Spectr
Frequency	0 ms (10001 pts)	EEP 90. STATUS MAUTO g-Pwr	ALIGN	SENSE:INT		GHz	Swept SA 0 Ω AC D000000 C I IF	100 kHz <image.png> um Analyzer - S RF 50</image.png>	Res BW G File ilent Spectr RL enter F
Auto Tu Center Fr	0 ms (10001 pts) 0 ms (10001 pts) 1764CE 123456 TYPE MWWWW DET P NNNN 1 2.431 1 GHz	EEP 90. STATUS MAUTO g-Pwr	ALIGN	SENSE:INT	Sing: Fre	GHz PNO: Fast 😱	Swept SA 0 Ω AC D000000 C I IF	100 kHz <image.png> um Analyzer - S RF S0 req 6.500 Ref 20.00</image.png>	Res BW
Auto Tu Center Fr 6.50000000 G Start Fr	0 ms (10001 pts) 0 ms (10001 pts) 1764CE 123456 TYPE MWWWW DET P NNNN 1 2.431 1 GHz	EEP 90. STATUS MAUTO g-Pwr	ALIGN	SENSE:INT	Sing: Fre	GHz PNO: Fast 😱	Swept SA 0 Ω AC D000000 C I IF	100 kHz <image.png> um Analyzer - S RF 50 req 6.500</image.png>	dB/div dB/div dB/div dB/div dB/div dB/div
Frequency	0 ms (10001 pts) 0 ms (10001 pts) 1764CE 123456 TYPE MWWWW DET P NNNN 1 2.431 1 GHz	EEP 90. STATUS MAUTO g-Pwr	ALIGN	SENSE:INT	Sing: Fre	GHz PNO: Fast 😱	Swept SA 0 Ω AC D000000 C I IF	100 kHz <image.png> um Analyzer - S RF S0 req 6.500 Ref 20.00</image.png>	Res BW
Auto Tu Center Fr 6.500000000 G Start Fr 1.000000000 G Stop Fr	0 ms (10001 pts)	status status snauto g.Pwr Mkr1	ALIGN Avg Type: Log	SENSE:INT	Trig: Fre Atten: 3	3Hz PNO: Fast G	Swept SA 0 Ω AC 0000000 C 1 0 dBm	100 kHz <image.png> RF 50 req 6.500</image.png>	Res BW a File File a General Spectr RL a Gener
Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF St 1.100000000 G	0 ms (10001 pts)	eep 90. status status g.Pwr Mkr1	ALIGN Avg Type: Log	SENSE:INT	Trig: Fre Atten: 3	3Hz PNO: Fast G	Swept SA 0 Ω AC D000000 C I IF	100 kHz <image.png> RF 50 req 6.500</image.png>	Res BW a File a File a G a G b
Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF St 1.100000000 G Freq Offs 0	0 ms (10001 pts)	eep 90. status status	ALIGN Avg Type: Log	SENSE:INT	Trig: Fre Atten: 3	3Hz PNO: Fast G	Swept SA 0 Ω AC 0000000 C 1 0 dBm	100 kHz <image.png> Image.png> RF 50 req 6.500 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1</image.png>	Res BW Ilent Spectry RL enter F 0.0 .00

Channel 06 (2437MHz)

Agilent Spectrum Ar	alyzer - Sv	vept SA								A.
CXI RL RF		2 AC		SEI	NSE:INT		ALIGNAUTO		M May 10, 2012	Frequency
Center Freq	18.500	00000	0 GHZ PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TY	CE 123456 PE MWWWWW ET P N N N N N	
10 dB/div Re	f 20.00	dBm					Mkr		37 GHz 80 dBm	Auto Tune
										Center Freq
10.0										18.500000000 GHz
0.00										Start Freq
-10.0										12.000000000 GHz
-20.0		-			1				-22.28 dBm	Stop Freq
-30.0										25.00000000 GHz
-40.0									1	CF Step
			a du a majores a da tarda a	. India allas		الالبارية أولار والموسال ور	a geol ^{geol} ^a the logice	and the second second	the destation of	1.300000000 GHz Auto Man
-50.0		an an ing pananan an	in the providence of the second		a la sur la s	definition (second labor				
-60.0										Freq Offset
-70.0		_								0 H2
Start 12.000 0 #Res BW 100			#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
мsg 🗼 File <imag< td=""><td>ge.png> s</td><td>saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></imag<>	ge.png> s	saved					STATUS			

	Analyzer - Swe			SEN	ISE:INT		ALIGN AUTO	06:12:07	PM May 10, 2012	ſ
	g 515.000		z			Avg Type	: Log-Pwr	TRA	CE 1 2 3 4 5 6	Frequency
		P	NO: Fast 😱 Gain:Low	Trig: Free Atten: 30				TY	PE MWWWWW ET P N N N N N	
			Gam.cow				Mkr	1 171 9	342 MHz	Auto Tu
d D/din E	Ref 20.00 d	Rm					IVINI	-54	31 dBm	
) dB/div F	(ci 20.00 u		1	r r		1	1			
										Center F
0.0				2						515.000000 N
.00	-									
										Start Fr 30.000000 M
).0										30.000000 W
									-20.08 dBm	
).0										Stop Fr
0.0										1.000000000
J.U										
0.0										CF St
				T						97.000000 N
0.0	_			1						<u>Auto</u> N
		5 M 6		Leasters and talkale		encla	I DE LE LE DE L	at the set of the	And the state of t	
	hiller de la de La de la d	hell of the latter to a	last stantalis	Paradala 2.2 pt Indian	eri ere ere mit ere er ere ere er bruser fekti	The second second second	to a site the site back		As So Deside of the second second second	Freq Off
										0
0.0			<u>.</u>							<u> </u>
ant 30 0 M								Cton 1	0000 CH2	
			#VBW	1.0 MHz			Sweep 9		0000 GHz 10001 pts)	
ilent Spectrum		pt SA	#VBW	1.0 MHz	ISE:INT		Sweep 9 status alignauto	0.0 ms (1	0000 GHz 10001 pts)	
Res BW 10 File <in< td=""><td>DO KHz nage.png> sa Analyzer - Swe</td><td>pt SA AC</td><td>Hz</td><td> SEN</td><td></td><td></td><td>STATUS</td><td>0.0 ms (1</td><td>10001 pts)</td><td>Frequency</td></in<>	DO KHz nage.png> sa Analyzer - Swe	pt SA AC	Hz	SEN			STATUS	0.0 ms (1	10001 pts)	Frequency
Res BW 10 File <in< td=""><td>DO KHZ nage.png> sa Analyzer - Swe RF 50 Ω</td><td>pt SA AC D0000 G P</td><td></td><td> SEN</td><td>Run</td><td></td><td>STATUS ALIGN AUTO</td><td>0.0 ms (1</td><td>10001 pts)</td><td></td></in<>	DO KHZ nage.png> sa Analyzer - Swe RF 50 Ω	pt SA AC D0000 G P		SEN	Run		STATUS ALIGN AUTO	0.0 ms (1	10001 pts)	
Res BW 10 File <in< td=""><td>DO KHZ nage.png> sa Analyzer - Swe RF 50 Ω</td><td>pt SA AC D0000 G P</td><td>Hz NO: Fast 😱</td><td>SEN</td><td>Run</td><td></td><td>ALIGN AUTO</td><td>0.0 ms (1 06:11:36 P TRA TY C r1 2.46</td><td>10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz</td><td></td></in<>	DO KHZ nage.png> sa Analyzer - Swe RF 50 Ω	pt SA AC D0000 G P	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	
Res BW 1()) File <in RL PL PL PL PL PL PL PL PL PL P</in 	DO KHZ nage.png> sa Analyzer - Swe RF 50 Ω	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) M May 10, 2012 CE 123456 PE M WWWWW ET P N N N N	
Res BW 10 ilent Spectrum RL enter Fre dB/div	00 kHz nage.png> sa (Analyzer - Swe RF 50 Ω q 6.50000	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu
Res BW 10 S File < In RL enter Fre dB/div F	00 kHz nage.png> sa (Analyzer - Swe RF 50 Ω q 6.50000	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu Center Fi
Res BW 10 a DFile < In RL enter Fre dB/div F	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu
Res BW 10 a File < In RL enter Fre dB/div F s a a b	00 kHz nage.png> sa (Analyzer - Swe RF 50 Ω q 6.50000	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu Center Fi
Res BW 10 a File < In RL enter Fre dB/div F s a a b	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu Center Fr 6.50000000 c Start Fr
Res BW 10 a File < In RL enter Fre dB/div P 00 00	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu Center Fr 6.50000000 c
Res BW 10 a File < In RL enter Fre dB/div P 00 00	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts)	Auto Tu Center Fr 6.50000000 c Start Fr
dB/div F dB/div F dB/div F g 0.0	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts) MMay 10, 2012 CE 1 2 3 4 5 6 PE MWWWWW ET P NNNN 8 5 GHz	Auto Tu Center Fi 6.50000000 c Start Fi 1.00000000 c
Res BW 10 S File < In RL enter Fre dB/div F C C C C C C C C C C C C C	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts)	Auto Tu Center Fi 6.50000000 C Start Fi 1.00000000 C
dB/div F dB/div F g 0.0 0.0	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts)	Auto Tu Center Fi 6.50000000 c Start Fi 1.00000000 c
Res BW 10 Sector un RL enter Fre dB/div F C C C C C C C C C C C C C	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c
Res BW 10 Sector un RL enter Fre dB/div F C C C C C C C C C C C C C	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast 😱	SEN	Run		ALIGN AUTO	0.0 ms (1 06:11:36 P TRA TY C r1 2.46	10001 pts)	Auto Tu Center Fi 6.50000000 c Start Fi 1.00000000 c Stop Fi 12.00000000 c
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DOOOOO G IF4	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC D00000 G P IF1 Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.50000000 C Start Fr 1.00000000 C Stop Fr 12.00000000 C CF St 1.100000000 C
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fi 6.50000000 c Start Fi 1.00000000 c Stop Fi 12.00000000 c CF St 1.10000000 c Auto
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC D00000 G P IF1 Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c Auto M
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fi 6.50000000 c Start Fi 1.00000000 c Stop Fi 12.00000000 c CF St 1.10000000 c Auto
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Ref 20.00 d	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c Auto M
Res BW 10 a File < In	00 kHz nage.png> sa Analyzer - Swe ℝF 50 Ω q 6.50000 Aref 20.00 d	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c Auto M
Res BW 10 a File < In	00 kHz hage.png> sa 1 Analyzer - Swe ℝF 50 Ω Q 6.50000 Q 6.500000 Q 6.50000 Q 6.500000 Q 6.50000 Q 6.500000 Q 6.500000 Q 6.5000000 Q 6.50000000000 Q 6.5000000000000000000000000000000000000	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30 -	Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c CF St 1.100000000 c Auto N Freq Off
Res BW 10 a File < In	00 kHz hage.png> sa 1 Analyzer - Swe ℝF 50 Ω Q 6.50000 Q 6.500000 Q 6.50000 Q 6.500000 Q 6.50000 Q 6.500000 Q 6.500000 Q 6.5000000 Q 6.50000000000 Q 6.5000000000000000000000000000000000000	pt SA AC DO0000 G P IFi Bm	Hz NO: Fast Gain:Low	SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGNAUTO :: Log-Pwr Mk	0.0 ms (1	10001 pts)	Auto Tu Center Fr 6.500000000 c Start Fr 1.000000000 c Stop Fr 12.000000000 c CF St 1.100000000 c Auto N Freq Off

Channel 11 (2462MHz)

Agilent Spectrum Ar	nalyzer - Sv	vept SA								
LXI RL RF		AC AC		SEI	NSE:INT		ALIGN AUTO		M May 10, 2012	Frequency
Center Freq	18.500	00000	D GHZ PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TY	CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Trequency
10 dB/div Re	f 20.00	dBm					Mkr		1 5 GHz 09 dBm	Auto Tune
10.0										Center Freq
										18.500000000 GHz
-10.0										Start Freq 12.000000000 GHz
-20.0									-20.08 dBm	Stop Freq
-30.0		8							A 1	25.000000000 GHz
-40.0			and a second		n a sette subabi	an and house for the	AND IN THE REAL OF		•	CF Step 1.300000000 GHz <u>Auto</u> Man
-50.0	The state of the s	In the second	elentration and a second second	and particular for parts	a second second second	all and the second s	alau mining this sector and	an ab		
-60.0	100 C 100									Freq Offset 0 Hz
-70.0										
Start 12.000 0 #Res BW 100			#\/D\M	1.0 MHz			Curson		.000 GHz 0001 pts)	
			# 1011	1.0 10112					0001 pts)	
мsg 🤹 File <ima< td=""><td>ge.png>s</td><td>saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></ima<>	ge.png>s	saved					STATUS			

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

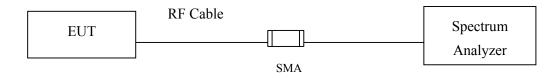
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

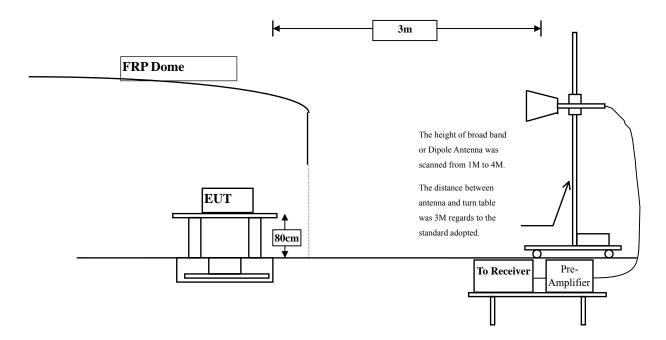
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2009 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

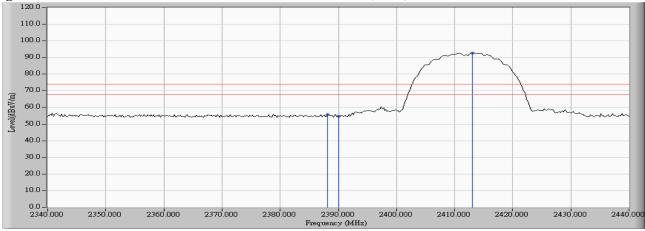
The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2009 on radiated measurement.

6.5. Uncertainty

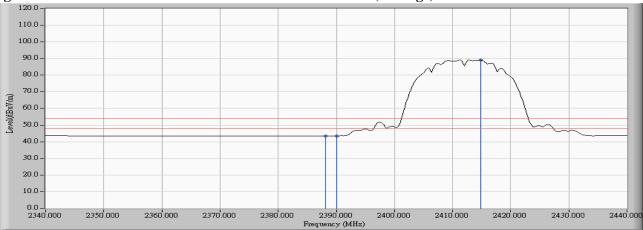
- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2388.200	31.502	24.271	55.773	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	23.319	54.828	74.00	54.00	Pass
01 (Peak)	2413.000	31.646	61.097	92.743			Pass
01 (Average)	2388.200	31.502	12.006	43.508	74.00	54.00	Pass
01 (Average)	2390.000	31.509	12.004	43.513	74.00	54.00	Pass
01 (Average)	2414.800	31.660	57.392	89.052			Pass


Figure Channel 01:

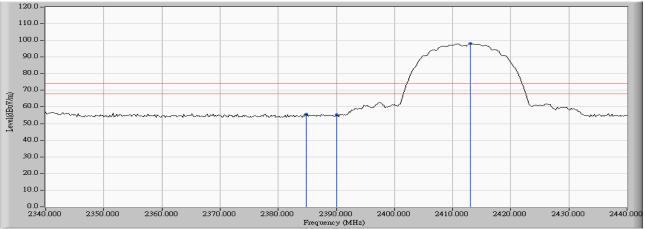
Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

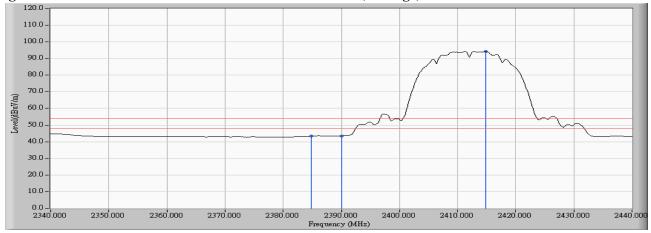
Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)


RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2384.800	30.939	24.869	55.808	74.00	54.00	Pass
01 (Peak)	2390.000	30.915	24.324	55.239	74.00	54.00	Pass
01 (Peak)	2413.000	30.956	67.039	97.995			Pass
01 (Average)	2384.800	30.939	12.464	43.403	74.00	54.00	Pass
01 (Average)	2390.000	30.915	12.486	43.401	74.00	54.00	Pass
01 (Average)	2414.800	30.968	63.309	94.277			Pass

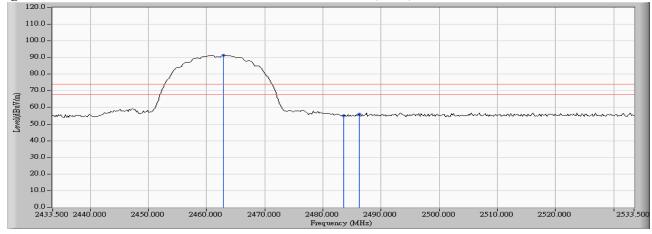

Figure Channel 01:

Vertical (Peak)

Vertical (Average)

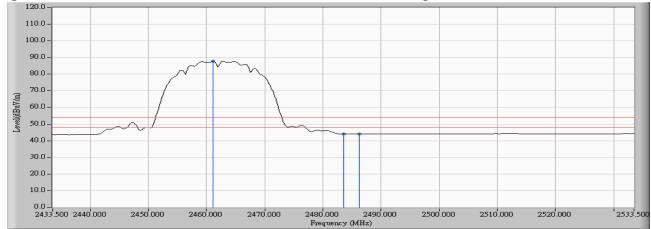
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)
1000 111000	•	

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2462.900	32.026	59.494	91.520			Pass
11 (Peak)	2483.500	32.182	22.862	55.044	74.00	54.00	Pass
11 (Peak)	2486.300	32.203	23.808	56.011	74.00	54.00	Pass
11 (Average)	2461.100	32.013	55.829	87.842			Pass
11 (Average)	2483.500	32.182	11.976	44.158	74.00	54.00	Pass
11 (Average)	2486.300	32.203	11.932	44.135	74.00	54.00	Pass


Figure Channel 11:

Horizontal (Peak)

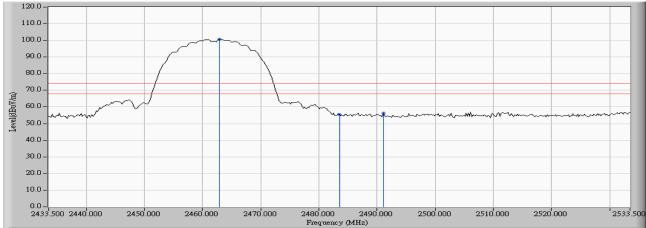
Figure Channel 11:

Horizontal (Average)

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

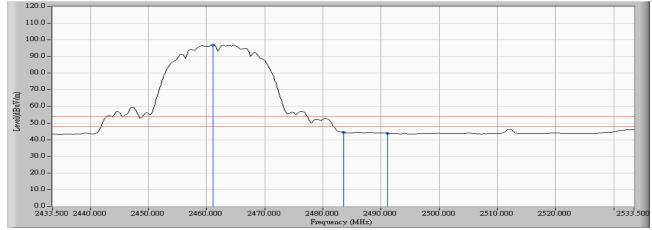
2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (Winbond)

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2462.900	31.296	69.304	100.600			Pass
11 (Peak)	2483.500	31.435	23.821	55.256	74.00	54.00	Pass
11 (Peak)	2491.100	31.487	24.859	56.346	74.00	54.00	Pass
11 (Average)	2461.100	31.285	65.618	96.902			Pass
11 (Average)	2483.500	31.435	13.012	44.447	74.00	54.00	Pass
11 (Average)	2491.100	31.487	12.413	43.900	74.00	54.00	Pass


Figure Channel 11:

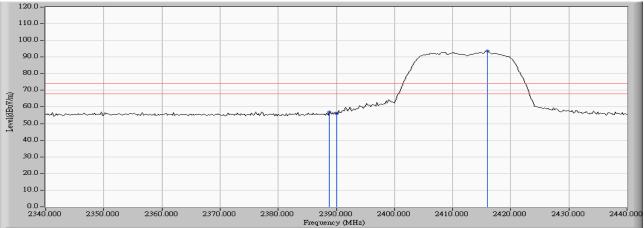
Vertical (Peak)

Figure Channel 11:

Vertical (Average)

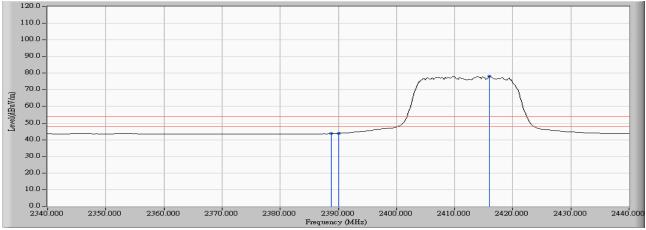
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2388.800	31.505	25.509	57.013	74.00	54.00	Pass
01 (Peak)	2390.000	31.509	24.559	56.068	74.00	54.00	
01 (Peak)	2416.000	31.670	62.048	93.717			
01 (Average)	2388.800	31.505	12.169	43.673	74.00	54.00	Pass
01 (Average)	2390.000	31.509	12.377	43.886	74.00	54.00	Pass
01 (Average)	2416.000	31.670	46.468	78.137			

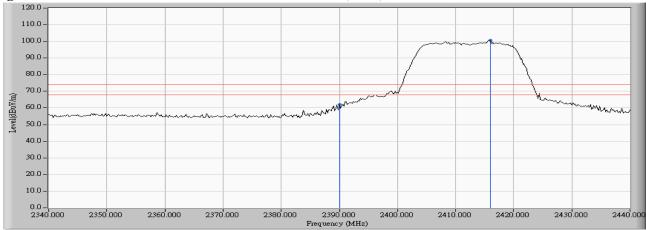

Figure Channel 01:

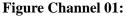
Horizontal (Peak)

Horizontal (Average)

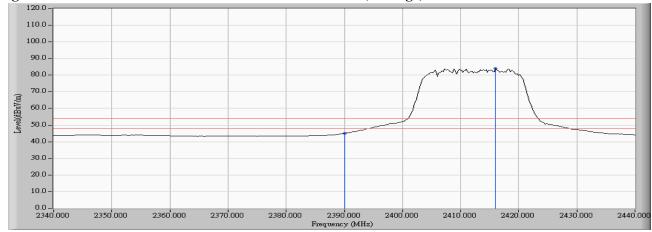
Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	30.915	31.093	62.008	74.00	54.00	Pass
01 (Peak)	2416.000	30.977	69.855	100.831			Pass
01 (Average)	2390.000	30.915	14.133	45.048	74.00	54.00	Pass
01 (Average)	2416.000	30.977	53.086	84.062			Pass

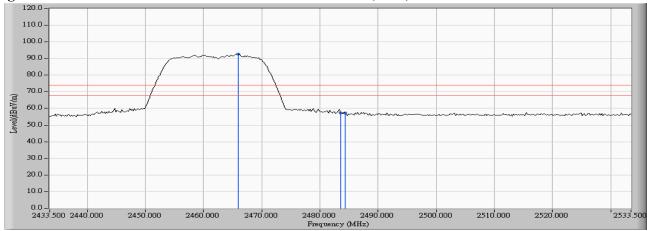

Figure Channel 01:

Vertical (Peak)

Vertical (Average)

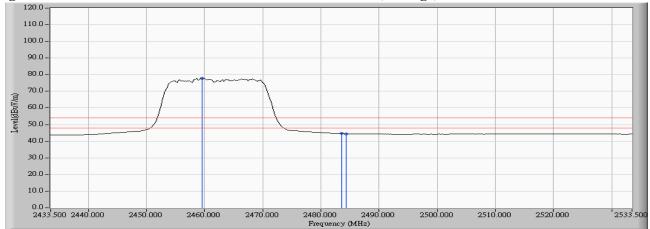
Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)

RF Radiated Measurement (Horizontal):

Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
11 (Peak)	2465.900	32.049	60.727	92.776			Pass
11 (Peak)	2483.500	32.182	25.052	57.234	74.00	54.00	
11 (Peak)	2484.300	32.187	25.164	57.352	74.00	54.00	
11 (Average)	2459.500	32.001	46.000	78.000			Pass
11 (Average)	2483.500	32.182	12.430	44.612	74.00	54.00	Pass
11 (Average)	2484.300	32.187	12.316	44.504	74.00	54.00	


Figure Channel 11:

Horizontal (Peak)

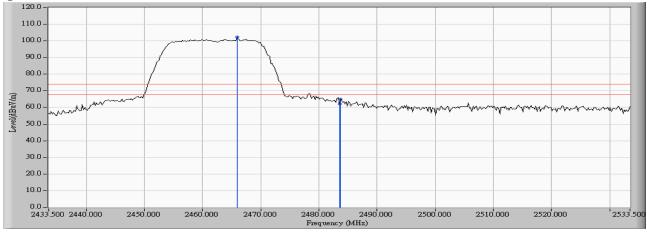
Figure Channel 11:

Horizontal (Average)

Note: 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

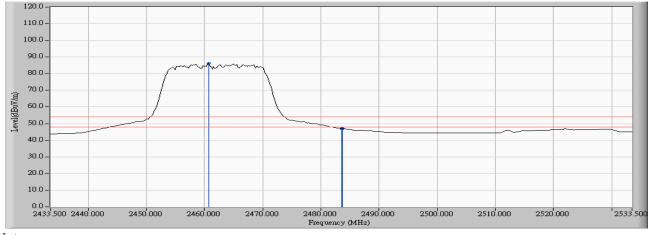
2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.

- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (Winbond)

RF Radiated Measurement (Vertical):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesult
11 (Peak)	2465.900	31.317	70.895	102.212			Pass
11 (Peak)	2483.500	31.435	30.535	61.970	74.00	54.00	Pass
11 (Peak)	2483.700	31.437	33.564	65.001	74.00	54.00	
11 (Average)	2460.700	31.281	54.857	86.138			Pass
11 (Average)	2483.500	31.435	15.694	47.129	74.00	54.00	Pass
11 (Average)	2483.700	31.437	15.637	47.074	74.00	54.00	


Figure Channel 11:

Vertical (Peak)

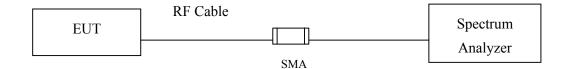
Figure Channel 11:

Vertical (Average)

Note:

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result	
1	2412	12700	>500	Pass	

Figure Channel 1:

Marker	M May 10, 2012 E 1 2 3 4 5 6	TRAC	ALIGNAUTO		NSE:INT		GHz	AC 00000 0	50 Ω 117500	RF 1 2.4	ker	L ark
Select Marke	E MWWWWW T P N N N N N	TYP DE	>100/100	Avg Hold		Trig: Free Atten: 30	PNO: Fast (=Gain:Low					
	75 GHz 91 dBm	2.411 5.39	Mkr1					lBm	20.00 c	Rei	3/div	
				3	1	2						9 0.0
Norn	-0.61 dBm		-	1 million	······	mm	- And					00
-				V W			r N					0.0
<u></u>			Nam				1).0
De	and manufactures	~VYMP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M. Barner M.				#	աստղո չել վելի	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			.0
	-											.0
Fixe					1							.0
Fixe				-			-			-		.0
	0.00 MHz	Span 5							0 GHz	.4120	ter 2	L ent
(1001 pts)	1.00 ms (*	Sweep 1			N 1.0 MHz	#VB		kHz	300	s BV	les
<i>b</i>	IN VALUE	FUNCTIO	NCTION WIDTH	NCTION FL		y 5.391 dE	75.011-	×		RC SCL	40DE N	
	F				3m	-1.338 dE	75 GHz 85 GHz	2.405 8		1 f 1 f	N	2
Propertie				1	3m	-1.066 dE	55 GHz	2.418	-	T	N	I.
												1
Mc 1 c)
10									-			2

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	12250	>500	Pass

Figure Channel 6:

L RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	06:38:01 PM May 10, 2012	N
arker 1 2.43650000	0000 GHz PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Marker Select Marker
dB/div Ref 20.00 dE	3m		Mkr	1 2.436 50 GHz 7.034 dBm	3elect Marker 1
Pg	m		A A A A A A A A A A A A A A A A A A A	1.03 dBm	Norm
0.0 0.0 0.0 	rlvdland			Hundellallander	Del
0.0					Fixed
enter 2.43700 GHz Res BW 300 kHz R MODE TRC SCL	#VB\	V 1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts) FUNCTION VALUE	c
N 1 N 1 F 2 N 1 f	2.436 50 GHz 2.430 85 GHz 2.443 10 GHz	7.034 dBm -0.993 dBm -0.236 dBm			Properties
7 8 8 9 0 1					Mo 1 o
0			STATUS		6

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	12650	>500	Pass

Figure Channel 11:

						0					
								pt SA	nalyzer - Swe	t Spectrum A	Agilent
Manhan	M May 10, 2012		ALIGNAUTO		NSE:INT	SE		AC	F 50 Ω	- F	KI L
Marker	E123456	TRAC	: Log-Pwr						4617000	ker 1 2.4	Narl
		TYP	>100/100	Avg Hold		Trig: Free	IO: Fast 🖵	PN			
Select Marke		DE			dB	Atten: 30	iain:Low	IFG			
	70 GHz	1 2.461	Mkr'								
2	35 dBm							Bm	ef 20.00 d	B/div R	
				2	1				20.00 0		og
				. 2	1						10.0
Norr	0.04 dBm			3	mm	mmm	\wedge				10.10
	010 / 00011			1 miles		00	www				0.00
	-			" vy			N				0.0
				Ľ			گر				0.0
Abril			.	1	· · · · · · · · · · · · · · · · · · ·		1	ſ			0.0
De		Winter						Imr			0.0
	DL FAM AADI	MAR. HAVA						And how a	i nun niñ più	հառ ուս որը	0.0
	V1 U11 00	1							LIUL M		
	LAN NULL								-	r sautur	0.0
											0.0
Fixe											0.0
											0.0
	0.00.0411	0				0.				L	
	0.00 MHz	Span 5	-				10 (m. 14)			ter 2.462	
j.	1001 pts)	1.00 ms ('	Sweep '			1.0 MHz	#VBW) KHZ	s BW 300	Res
8	IN VALUE	FUNCTIO	NCTION WIDTH	TION FU	FLIN	Y		×		MODE TRC SO	(BÌ K
						6.035 d) GHz	2.461 7		N 1 f	
					Зm	-0.660 dl		2.455 8		N 1 f	2
				1	3m	-0.364 dl) GHz	2.468 5		N 1 f	
Propertie							2				4
									-		5 6
											7
				0			0				8
M											9
1					_	-	1	-	1		0
									-		1
											2
			STATUS								G

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	16500	>500	Pass

Figure Channel 1:

	06:47:17 PM May 10, 2012	ALIGN AUTO		NSE:INT	SE		er - Swept SA 50 Ω AC	RF	L
Select Marker	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N		Avg Typ Avg Hold		Trig: Free Atten: 30) GHz PNO: Fast IFGain:Low	250000000	r 1 2.40	larker
	2.407 25 GHz 3.632 dBm	Mkr1).00 dBm	v Ref	0 dB/di
Norm	2.37 dBm		~~~~{ ³	mm	1	2~~			
		N							0.0 20.0
De	Marriel and a grant of the same of the sam	human	-			4	warman	Anthony work the Case	0.0
Fixe									0.0
									0.0
	Span 50.00 MHz 00 ms (1001 pts)	Sweep 1			W 1.0 MHz	#VI		2.41200 W 300 k	
	FUNCTION VALUE	NCTION WIDTH	NCTION	Bm	Y <u>3.632 d</u> -2.792 d	07 25 GHz 03 70 GHz		TRC SCL	e Mode 1 N 2 N
Propertie					-2.014 di	20 20 GHz		1 f	3 N 4 5 5
M c 1 c									7 8 9 0 1
		STATUS							2 G

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	16450	>500	Pass

Figure Channel 6:

					0						
							ept SA	alyzer - Sw	um An	Spectru	ilent
Mankan	50:09 PM May 10, 2012			NSE:INT	SE		AC	50 Ω	RF		L
Marker	TRACE 1 2 3 4 5 6		Avg Type			Hz	00000 G	346500	2.4	(er 1	ark
	DET P N N N N N	100/100	Avg Hold:		Trig: Free	NO: Fast 🔾	Р				
Select Marke	berp minin			dB	Atten: 30	Gain:Low	IF				
	434 65 GHz	Mkr1 2.4									
	4.150 dBm						Rm	f 20.00 (Doi	8/div	이어머
		1						1 20.00	Ke	Salv	bg r
					≜ 1	-					0.0
Norn	-1.85 dBm		man 3	man	mannen	()2mm					10.00
	-1.85.dHm					+ γ [.]					.00
			+			1					0.0
		×	<u>۲</u>			d'					0.0
6145		<u>۲</u>					1				
De		Varmen -	-						-		D.O
	manumenter	· where					-Turky UN	www.www.arh		nha.	0.0
	- march								de autor de la	The A. No	
											D.O
Fixe											0.0
FIXE					0						0.0
											0.0
	an 50.00 MHz	Sr		9-	10	93		0 GHz	1370	er 24	enf
	ms (1001 pts)	Sween 100			1.0 MHz	#V/B)				BW	
					1.0 11112						
	UNCTION VALUE	CTION WIDTH	ICTION FUN		Y		X			IODE TR	
					4.150 d		2.434 6		f	N 1	
					-0.973 d		2.428 7		f	N 1 N 1	
Propertie					-1.004 0	0 0112	2.445 2	1		14	4
Fioperue											5
											6
									_	_	7
M									-	-	8
10000										-	0
1 0						<u> </u>					1
											2
		STATUS									G

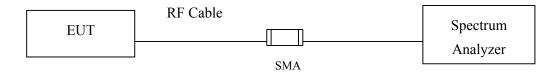
Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	16550	>500	Pass

Figure Channel 11:

				8				
						Swept SA	um Analyzer - !	gilent Spect
Marker	06:53:14 PM May 10, 2012	ALIGN AUTO		SENSE:II		OΩ AC		L
Marker	TRACE 1 2 3 4 5 6 TYPE MWWWWW	pe: Log-Pwr		T		0000000	2.45950	larker 1
	DET P N N N N N	ld:>100/100	AVGIH	Trig: Free Rui Atten: 30 dB	PNO: Fast (IFGain:Low	1		
Select Marke				Atten. 50 dB	IFGain:Low	11		
	2.459 50 GHz	Mkr1						
	4.049 dBm					0 dBm	Ref 20.00	0 dB/div
		1		4				og
		3		 ♦'	2			0.0
Norn	-2.02 dBm	3	monorman	mulan	()En			.00
			X		1			1000
					1			0.0
		<u>}</u>			-f			0.0
De					1	1		0.0
De	when a c	mont			2	a a fairly	- Martin Martine	0.0
	man man and and and and and and and and and a						Carry to Martina	0.0 month
								0.0
								10.08
Fixe		-						0.0
		-						0.0
	Span 50.00 MHz	17 - 17 - 17 -		<u>20</u> %-		z	16200 GHz	enter 2.
	.00 ms (1001 pts)	Sweep 1		V 1.0 MHz	#VB		300 kHz	Res BW
2								
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y I D I D		×	f SCL	R MODE T
				4.049 dBm -2.426 dBm	3 50 GHz 3 70 GHz	2.459	f	1 N 2 N
				-2.476 dBm	0 25 GHz		f	2 N 3 N
Propertie								4
Troperde				-				5
								6
	h							7 B
M								9
								Ō
1 0								1
								2
		STATUS						G

8. Power Density


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, VBW \geq 300KHz, SPAN to 5-30 % greater than the EBW, Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).

8.5. Uncertainty

± 1.27 dB

8.6. Test Result of Power Density

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-10.367	< 8dBm	Pass

Figure Channel 1:

Agilent Spectrum Analyzer - Swept SA							
	0.011-	SENSE:INT		ALIGNAUTO : Log-Pwr		May 10, 2012	Frequency
Center Freq 2.41200000	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold: Ext Gain:	>100/100 15.20 dB	TYPE DE 1 2.411	T P N N N N N	Auto Tun
-10.0	mmm	nn mr	m	ίλως ,	1 -0 -		Center Fre 2.412000000 GH
20.0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		V				M M	Start Fre 2.402000000 G⊦
50.0							Stop Fre 2.422000000 GH
50.0							CF Ste 2.000000 Mi <u>Auto</u> Ma
30.0							Freq Offs 0 H
90.0							
Center 2.41200 GHz Res BW 100 kHz	#VBW	300 kHz	1	Sweep	Span 20 1.93 ms (1).00 MHz 1001 pts)	
ISG				STATUS	;		1

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-10.193	< 8dBm	Pass

Figure Channel 6:

L RF 50 Ω AC		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr		
enter Freq 2.43700000 dB/div Ref 0.00 dBm	IU GHZ PNO: Fast 🌩 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Hold:>100/100 Ext Gain: 15.20 dB	r1 2.436 46 GHz -10.193 dBm	Auto Tur
0.0	www	-rrf mr	many	Aa	Center Fre 2.437000000 GI
0.0 MAAN		V			Start Fr 2.427000000 G
0.0					Stop Fr 2.447000000 G
.0					CF St 2.000000 M <u>Auto</u> M
.0					Freq Offs 0
enter 2.43700 GHz Res BW 100 kHz		300 kHz		Span 20.00 MHz 1.93 ms (1001 pts)	

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-9.950	< 8dBm	Pass

Figure Channel 11:

L RF 50 Ω	AC	SENSE:INT			1 May 10, 2012	Frequency
enter Freq 2.46200	IOOOO GHZ PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log Avg Hold:>100/ Ext Gain: 15.20	100 TYP	123456 E M WWWWW T P N N N N N	
dB/div Ref 0.00 dB	m			Mkr1 2.462 -9.95	46 GHz 50 dBm	Auto Tur
NO 25		▲ 1				Center Fre
0.0	man	my jur	man	1 Aug		2.462000000 G
D.O.	\bigvee			Vin	4	Start Fr
0.0					- M	2.452000000 G
D.0 2					\	Stop Fr
0.0						2.472000000 G
0.0						CF St 2.000000 M
0.0						<u>Auto</u> M
0.0						Freq Offs
0.0						0
enter 2.46200 GHz Res BW 100 kHz	#VBW	300 kHz	Sw	Span 20 eep 1.93 ms (*	0.00 MHz 1001 pts)	
3	9, constitution (1994-1994)		-1999 0.0000	STATUS		

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-14.604	< 8dBm	Pass

Figure Channel 1:

enter F	RF 50 Ω req 2.41200		SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAU Avg Type: Log-P Avg Hold:>100/10 Ext Gain: 15.20 dl	Wr TRACE 123456 0 TYPE MWWWWW	Frequency
) dB/div	Ref 0.00 dB		Atten of the	1975	lkr1 2.414 48 GHz -14.604 dBm	
	. Nam An		nowline on the	1-		Center Fre 2.412000000 GH
).0).0	N		W		Market Colored	Start Fre 2.402000000 G⊦
).0 //~						Stop Fre 2.422000000 GH
).0						CF Ste 2.000000 MH <u>Auto</u> Ma
).0						Freq Offs 0 H
0.0						
	41200 GHz 100 kHz	#VB	N 300 kHz	Swee	Span 20.00 MHz p 1.93 ms (1001 pts)	
G				ST	ATUS	

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-14.243	< 8dBm	Pass

Figure Channel 6:

enter Fre	eq 2.4370	AC 00000 0	Hz NO: Fast 😱	1	ISE:INT		ALIGNAUTO : Log-Pwr >100/100	TYPE M	23456	Frequency
) dB/div	Ref 0.00 di	11	Gain:Low	Atten: 30	dB	Ext Gain:	10010-00000	¤∎¤ 1 2.438 24 -14.243		Auto Tui
	η Λ	0	۵.	0.	∳1	- Λ Λ	walarm	0.0		Center Fr 2.437000000 G
0.0 0.0	J	(1_1. Mar)	Marah	rul barring	proved been	ላ ኪሜሪያነ ኦ	www.		2.25 S	Start Fr 2.427000000 G
).0 m ^{mm}).0										Stop Fr 2.447000000 G
).0).0										CF St 2.000000 M <u>Auto</u> M
.0										Freq Off
0.0										
enter 2.43 Res BW 1	3700 GHz 00 kHz	1	#VBW	300 kHz			Sweep	Span 20.0 1.93 ms (10		

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz) – (Winbond)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-14.208	< 8dBm	Pass

Figure Channel 11:

L RF 50 Ω AG arker 1 2.463240000		SENSE:INT Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Ext Gain: 15.20 dB		Peak Search
dB/div Ref 0.00 dBm			Mk	r1 2.463 24 GHz -14.208 dBm	Peak Criteria
.0		↓ 1			Peak Table
1.0 mlmmlin	Mundharada	walking provides	nontrantonalien	<u> </u>	Continuou Peak Searc
1.0 And and a start of the star				- Handred	
.0					
					Pk-Pk Sear
.0					Min Searc
.0					Мо
enter 2.46200 GHz tes BW 100 kHz	#VBW	300 kHz	Sweep	Span 20.00 MHz 1.93 ms (1001 pts)	2 01

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.