

Product Name	JukeBlox Networked Media Module
Model No	CR870-2C
FCC ID.	PPQ-CR8702C

Applicant	Lite-On Technology Corp.
Address	4F, 90 , Chien 1 Road, Chung-Ho, Taipei Hsien 235, Taiwan, R.O.C.

Date of Receipt	Feb. 01, 2010
Issue Date	Feb. 06, 2010
Report No.	102098R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Feb. 06, 2010 Report No.: 102098R-RFUSP42V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	JukeBlox Networked Media Module		
Applicant	Lite-On Technology Corp.		
Address	4F, 90 , Chien 1 Road, Chung-Ho, Taipei Hsien 235, Taiwan, R.O.C.		
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD.		
Model No.	CR870-2C		
EUT Rated Voltage	DC 3.3V		
EUT testing Voltage	AC 120V/60Hz		
Trade Name	Micro Module		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2008		
	ANSI C63.4: 2003		
Test Result	Complied NVLAP Lab Code: 200533-0		

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Rita Fluang

Rita Huang)

Tested By

iang

(Engineer / Molin Huang)

Approved By

•

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	Description	
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	

7.	Occupied Bandwidth	46
7.1.	Test Equipment	46
7.2.	Test Setup	46
7.3.	Limits	46
7.4.	Test Procedure	46
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	53
8.1.	Test Equipment	53
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	54
8.5.	Uncertainty	54
8.6.	Test Result of Power Density	55
9.	EMI Reduction Method During Compliance Testing	61

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	JukeBlox Networked Media Module		
Trade Name	Micro Module		
Model No.	CR870-2C		
FCC ID.	PPQ-CR8702C		
Frequency Range	2412-2462MHz for 802.11b/g		
Number of Channels	802.11b/g: 11		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps		
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Antenna Type PIFA			
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	LITEON	N/A	PIFA	3.04 dBi in 2.4 GHz

Note: The antenna of EUT is conform to FCC 15.203

802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

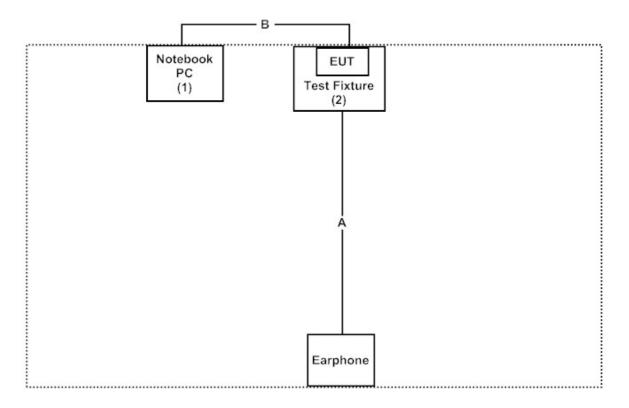
- 1. The EUT is JukeBlox Networked Media Module with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps 802.11g is 6Mbps)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

The EUT is an JukeBlox Networked Media Module with 11 channels. This device provided four kinds of transmitting speed 1, 2, 5.5 and 11Mbps and the device of RF carrier is DBPSK, DQPSK and CCK (IEEE 802.11b). The device provided of eight kinds of transmitting speed 6, 9, 12, 18, 24, 36, 48 and 54Mbps the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11g).

This JukeBlox Networked Media Module, compliant with IEEE 802.11b and IEEE 802.11g, is a high-efficiency Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing (OFDM) radio transmission, the JukeBlox Networked Media Module Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b and IEEE 802.11g network.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1.	Notebook PC	DELL	PP18L	42649348672	Non-Shielded, 0.8m
2.	Test Fixture	LITEON	N/A	N/A	N/A

Sign	al Cable Type	Signal cable Description
А	Earphone Cable	Non-Shielded, 1.5m
В	RS-232 Cable	Non-Shielded, 1.2m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute Command on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/tw/emc/accreditations/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

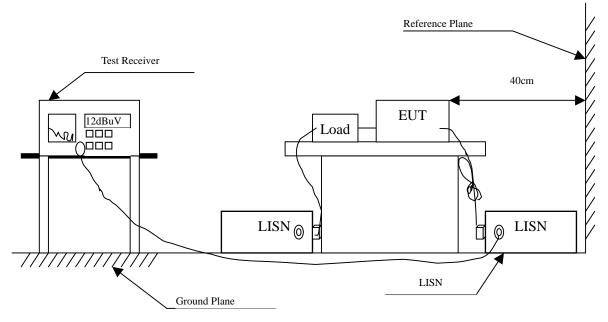
Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	ufacturer Type No./Serial No		Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2009	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2009	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2009	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2009	
5	No.1 Shielded Room	N/A			

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit							
Frequency	Limits						
MHz	QP	AVG					
0.15 - 0.50	66-56	56-46					
0.50-5.0	56	46					
5.0 - 30	60	50					

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	JukeBlox Networked Media Module
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.209	9.701	19.420	29.121	-35.193	64.314
0.603	9.632	22.700	32.332	-23.668	56.000
0.939	9.670	17.720	27.390	-28.610	56.000
1.580	9.680	20.630	30.310	-25.690	56.000
19.709	9.930	26.980	36.910	-23.090	60.000
24.521	10.110	26.650	36.760	-23.240	60.000
Average					
0.209	9.701	-0.850	8.851	-45.463	54.314
0.603	9.632	15.940	25.572	-20.428	46.000
0.939	9.670	4.710	14.380	-31.620	46.000
1.580	9.680	14.730	24.410	-21.590	46.000
19.709	9.930	20.940	30.870	-19.130	50.000
24.521	10.110	18.290	28.400	-21.600	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

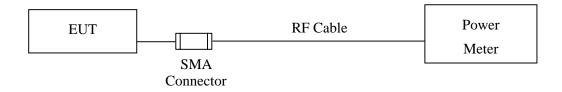
Product Test Item	: JukeBlox Networked Media Module							
Power Line	 Conducted Emission Test Line 2 							
		· Tromore: (002 11	$\sim (Mhm) (2427) MII$					
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps) (2437MHz	.)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV	dB	dBuV			
Line 2								
Quasi-Peak								
0.306	9.660	28.020	37.680	-23.863	61.543			
0.603	9.648	22.680	32.328	-23.672	56.000			
0.892	9.670	18.120	27.790	-28.210	56.000			
1.314	9.670	18.480	28.150	-27.850	56.000			
19.302	10.040	27.120	37.160	-22.840	60.000			
24.334	10.090	26.180	36.270	-23.730	60.000			
Average								
0.306	9.660	18.000	27.660	-23.883	51.543			
0.603	9.648	16.110	25.758	-20.242	46.000			
0.892	9.670	4.410	14.080	-31.920	46.000			
1.314	9.670	4.990	14.660	-31.340	46.000			
19.302	10.040	21.010	31.050	-18.950	50.000			
24.334	10.090	17.790	27.880	-22.120	50.000			

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

The following test equipments are used during the radiated emission tests:


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2009
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2009
Note:				

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

	Frequency (MHz)	Peak Power Output (dBm)							
Channel No		For d	Average ifferent Da	e Power ata Rate (N	(lbps)	Peak Power	Required Limit	Result	
		1	2	5.5	11	1	LIIIIIt		
01	2412	12.65				14.95	<30dBm	Pass	
06	2437	13.02	12.86	12.67	12.52	15.59	<30dBm	Pass	
11	2462	13.11				15.78	<30dBm	Pass	

Note: Peak Power Output Value = Reading value on peak power meter + cable loss

Product	:	JukeBlox Networked Media Module
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

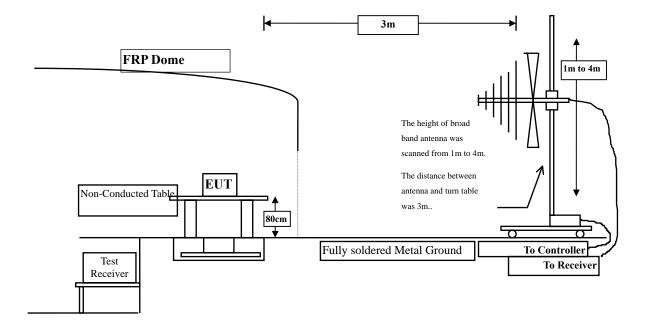
			Peak Power Output (dBm)									
Channel No	Frequency (MHz)		Average Power For different Data Rate (Mbps)							Peak Power	Required	
	(IVIIIZ)		1	or unit		ila Kale	e (mops	s)		rowei	T insit	Result
		6	9	12	18	24	36	48	54	6	Limit	
01	2412	11.21		-			-	-		21.51	<30dBm	Pass
06	2437	11.38	10.69	10.11	9.87	9.13	8.74	8.12	7.98	21.7	<30dBm	Pass
11	2462	11.41								21.43	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

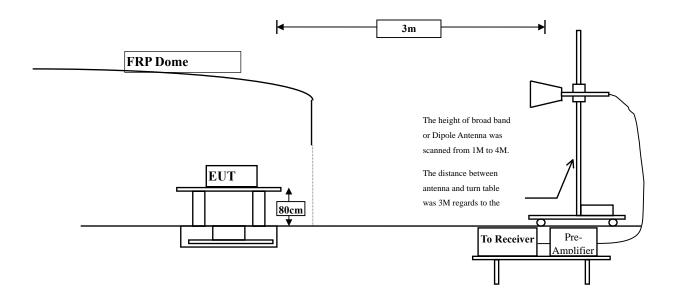
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits				
Frequency MHz	uV/m @3m	dBuV/m@3m		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	JukeBlox Networked Media Module
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	9.582	37.830	47.412	-26.588	74.000
7236.000	14.401	35.800	50.201	-23.799	74.000
9648.000	19.795	33.435	53.230	-20.770	74.000
Average					
Detector:					
Peak Detector:					
4824.000	8.462	38.500	46.962	-27.038	74.000
7236.000	15.412	36.040	51.452	-22.548	74.000
9648.000	19.005	33.945	52.950	-21.050	74.000

Average

Detector:

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: JukeBlox	Networked Med	dia Module		
Test Item	: Harmoni	c Radiated Emis	sion Data		
Test Site	: No.3 OA	TS			
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	Db	dBuV	dBuV/m	Db	dBuV/m
Horizontal					
Peak Detector:					
4874.000	9.473	37.530	47.003	-26.997	74.000
7311.000	14.540	34.240	48.779	-25.221	74.000
9748.000	20.024	33.690	53.715	-20.285	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	8.882	36.980	45.861	-28.139	74.000
7311.000	15.283	34.970	50.253	-23.747	74.000
9748.000	19.228	33.850	53.079	-20.921	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	: Harmon : No.3 OA			z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	Db	dBuV	dBuV/m	Db	dBuV/m
Horizontal					
Peak Detector:					
4924.000	9.487	39.290	48.776	-25.224	74.000
7386.000	14.798	35.010	49.808	-24.192	74.000
9848.000	20.005	33.780	53.786	-20.214	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	9.415	38.900	48.314	-25.686	74.000
7386.000	15.269	33.830	49.099	-24.901	74.000
9848.000	19.191	33.690	52.881	-21.119	74.000
Average					

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	: Harmonio : No.3 OA)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	Db	dBuV	dBuV/m	Db	dBuV/m
Horizontal					
Peak Detector:					
4824.000	9.582	37.340	46.922	-27.078	74.000
7236.000	14.401	34.480	48.881	-25.119	74.000
9648.000	19.795	33.250	53.045	-20.955	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	8.462	36.550	45.012	-28.988	74.000
7236.000	15.412	35.200	50.612	-23.388	74.000
9648.000	19.005	36.280	55.285	-18.715	74.000
Average Detector: 9648.000	19.005	26.260	45.265	-8.735	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: JukeBlox Networked Media Module					
Test Item	: Harmoni	: Harmonic Radiated Emission Data				
Test Site	: No.3 OA	: No.3 OATS				
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	z)		
_	_					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	Db	dBuV	dBuV/m	Db	dBuV/m	
Horizontal						
Peak Detector:						
4874.000	9.473	36.390	45.863	-28.137	74.000	
7311.000	14.540	34.660	49.199	-24.801	74.000	
9748.000	20.024	33.660	53.685	-20.315	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4874.000	8.882	36.910	45.791	-28.209	74.000	
7311.000	15.283	34.720	50.003	-23.997	74.000	
9748.000	19.228	36.450	55.679	-18.321	74.000	
Average						
Detector:						
9748.000	19.228	26.940	46.169	-7.831	54.000	

- Note:
 - 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
 - 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
 - 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
 - 4. "*", means this data is the worst emission level.
 - 5. Measurement Level = Reading Level + Correct Factor.
 - 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item	 JukeBlox Networked Media Module Harmonic Radiated Emission Data 					
Test Site						
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	Z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	Db	dBuV	dBuV/m	Db	dBuV/m	
Horizontal						
Peak Detector:						
4924.000	9.487	36.770	46.256	-27.744	74.000	
7386.000	14.798	34.880	49.678	-24.322	74.000	
9848.000	20.005	33.680	53.686	-20.314	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
4924.000	9.415	36.770	46.184	-27.816	74.000	
7386.000	15.269	34.860	50.129	-23.871	74.000	
9848.000	19.191	36.550	55.741	-18.259	74.000	
Average						
Detector:						
9848.000	19.191	26.780	45.971	-8.029	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product Test Item Test Site Test Mode	: Genera : No.3 O			z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
456.800	-0.521	27.008	26.487	-19.513	46.000
602.300	3.768	26.329	30.097	-15.903	46.000
707.060	2.458	25.496	27.954	-18.046	46.000
755.560	3.815	25.967	29.782	-16.218	46.000
871.960	4.770	26.424	31.194	-14.806	46.000
949.560	6.178	26.414	32.592	-13.408	46.000
Vertical					
365.620	-2.667	28.347	25.680	-20.320	46.000
542.160	-0.791	30.678	29.887	-16.113	46.000
712.880	-1.103	34.299	33.196	-12.804	46.000
809.880	2.960	31.493	34.453	-11.547	46.000
856.440	0.170	33.946	34.116	-11.884	46.000
922.400	5.055	27.705	32.760	-13.240	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

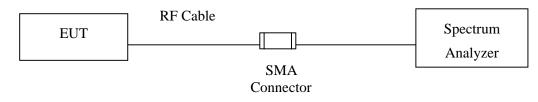
Product Test Item Test Site	 JukeBlox Networked Media Module General Radiated Emission Data No.3 OATS 				
Test Mode			g 6Mbps)(2437 MHz	2)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
542.160	2.489	30.678	33.167	-12.833	46.000
602.300	3.768	28.331	32.099	-13.901	46.000
687.660	2.852	30.617	33.469	-12.531	46.000
714.820	3.086	33.047	36.133	-9.867	46.000
802.120	4.729	32.170	36.899	-9.101	46.000
889.420	5.822	30.180	36.003	-9.997	46.000
Vertical					
542.160	-0.791	30.678	29.887	-16.113	46.000
687.660	2.002	30.617	32.619	-13.381	46.000
753.620	2.679	28.291	30.970	-15.030	46.000
807.940	3.256	30.978	34.234	-11.766	46.000
901.060	2.874	35.792	38.666	-7.334	46.000
959.260	6.430	28.867	35.297	-10.703	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5. **RF** antenna conducted test

5.1. Test Equipment

The following test equipments are used during the radiated emission tests:


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2009

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

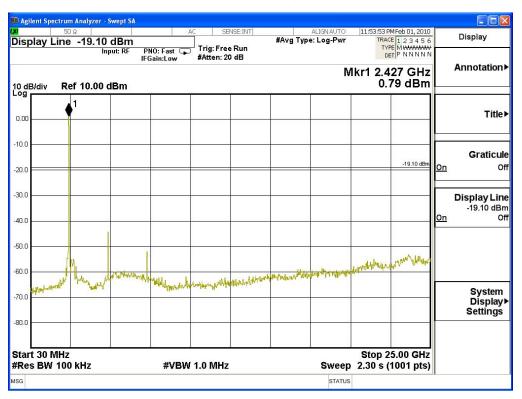
5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

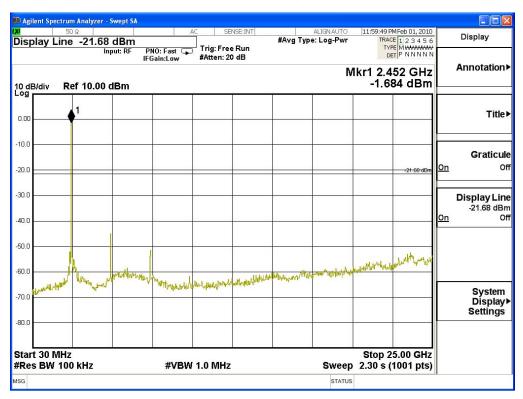
5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB


5.6. Test Result of RF antenna conducted test

Product	:	JukeBlox Networked Media Module
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz) 30-25GHz

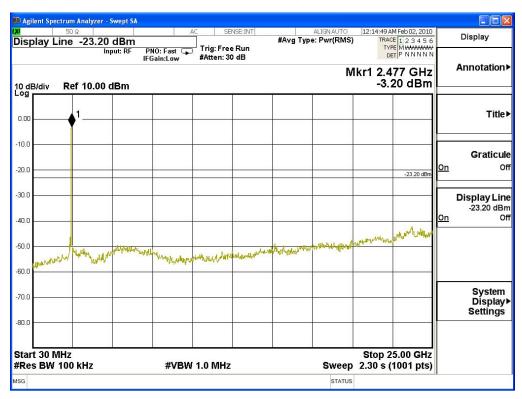

 splay Line -19.48 dBn	AC	SENSE:INT	ALIGNAUTO #Avg Type: Log-Pwr		Display
Input: RF	PN0: Fast 😱 Tri	g: Free Run ten: 20 dB	HANG TYPE. LOG-T WI	TYPE MWWWWW DET P N N N N N	
dB/div Ref 10.00 dBm			I	Mkr1 2.402 GHz 0.524 dBm	Annotatio
					Titl
.0				-19.48 dBm	Gratic
).0				-19.48 dBm	<u>On</u>
.0					Display Li -19.48 di <u>On</u>
1.0	PHMDA . I	أليبري محمد ا	An ulawa water water	and the today that the sould	
o wantally long and how	- Healthouthy Hallow	the phase of the second s			Syster Displa Setting
art 30 MHz Res BW 100 kHz	#VBW 1.0	MHz	Swee	Stop 25.00 GHz p 2.30 s (1001 pts)	

Channel 06 (2437MHz) 30-25GHz

Channel 11 (2462MHz) 30-25GHz

Product	:	JukeBlox Networked Media Module
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz) 30-25GHz


🕼 Agilent Spectrum Analyzer - Swe	≥pt SA				
M 50 Ω Display Line -24.45 d		SENSE:INT	ALIGNAUTO #Avg Type: Pwr(RMS)	12:07:57 AM Feb 02, 2010 TRACE 1 2 3 4 5 6	Display
Input 10 dB/div Ref 10.00 dB	IFGain:Low #A	ig: Free Run tten: 30 dB	М	kr1 2.402 GHz -4.453 dBm	Annotation►
0.00 1					Title
-10.0				-24.45 dBm	Graticul <u>On</u> O1
40.0					Display Line -24.45 dBn <u>On</u> O1
-50.0	dively and the operation of the second se	up which the shall be able to be a start of the start of	معر <u>انا روان مالارمو المعروف الم</u>	wanter with Dag for Mark read	
70.0					System Display Settings
-80.0 Start 30 MHz #Res BW 100 kHz	#VBW 1.0	MHz	Sweep	Stop 25.00 GHz 2.30 s (1001 pts)	
ISG			STATUS		0

SG							STATUS				
Start 30 Res BW	MHz / 100 kHz		#VBW	1.0 MHz			Sweep		25.00 GHz (1001 pts)		
30.0											Display Settings
0.0											System
io.o	und have us		an war hal has	and the second sec	William William						
0.0	1 Augusta	W/Manuthan	hunner yest have		- Makery	www.www.html		WWWWWWWW	and the second second		
0.0										<u>On</u>	-24.59 dB C
0.0											Display Lir
20.0									-24.59 dBm	<u>On</u>	C
0.0											Graticu
0.00			0								The
											Title
0 dB/div	Ref 10.00) dBm					IV		l27 GHz 87 dBm		Amotución
			NO: Fast 😱 Gain:Low	#Atten: 30				D	ET P N N N N N		Annotation
isplay	Line -24.5	9 dBm	A	 Trig: Free			ALIGNAUTO Pwr(RMS)	TRA	M Feb 02, 2010 CE 1 2 3 4 5 6 PE M WWWWWW		Display
Agnem 5	ectrum Analyzer 50 Ω	- Swept SA		a	1000					0	

Channel 06 (2437MHz) 30-25GHz

Channel 11 (2462MHz) 30-25GHz

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

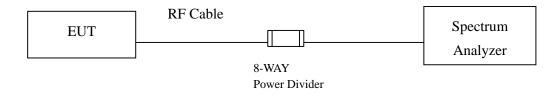
	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2009

Note:

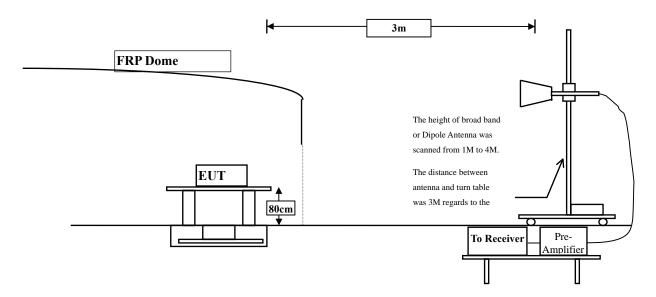
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- \pm 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2413.1	36.613	69.127	105.74	Peak
Horizontal	2412.8	36.613	63.352	99.965	Average
Vertical	2413	35.636	70.182	105.818	Peak
Vertical	2412.8	35.635	66.255	101.89	Average

Note: 1:Spectrum Analyzer setting:

```
Peak detector: RBW=1MHz, VBW=1MHz
```

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ(dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2384.8	105.74	51.037	54.703	Peak
Horizontal	2390	99.965	60.9	39.065	Average
Vertical	2384.8	105.818	51.037	54.781	Peak
Vertical	2390	101.89	60.9	40.99	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

		anu Euş					zer - Swept S			ilent S	
Marker	04:26:44 PMFeb 01, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	ALIGN AUTO e: Log-Pwr I:>100/100			Trig: Free	PNO: Fast C	00000000 Input: RF	50 Ω 2.3848		ker	lar
Select Markei 3	2.384 8 GHz -67.146 dBm	Mkr	22.27	0 dB	#Atten: 10	IFGain:Low	0 dBm	Def 0 (, 1	B/div	
		1				0					og
Norm		- Ling									0.0 0.0
-											0.0
Del			1								0.0 0.0
Dei	hong		¥		▲3			_			D.O
	hanna			m	- Marine Marine					 .	0.0
Fixed								_			0.0
											0.0
	Span 100.0 MHz 00 ms (1001 pts)	#Sween 4			N 1.0 MHz	#\/B		000 G			
C	EUNCTION VALUE	INCTION WIDTH	NCTION		Y	***	×		TRC		
					-16.109 di -55.795 di	412 9 GHz 400 0 GHz		f	1	N N	1
Properties				Bm	-67.146 di	384 8 GHz	2	f	1	N	1
Properue				-						_	5
				-							7
Мо				-						-	9
1 of				-							1
		STATUS									3

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

								- Swept SA			Spect	lent S	Agi
Marker	MFeb 01, 2010 E 1 2 3 4 5 6	TRAC	ALIGNAUTO : Log-Pwr	Avg Type	NSE:INT	AC SEI	GHz	000000		50Ω 2Δ'	1	ker	arl
Select Mark		1		Avg Hold:		Trig: Free #Atten: 10	PNO: Fast C IFGain:Low	Input: RF					
	36 dBm	-19.48						dBm	0.00	Ref	v	3/div	d
			_ 1										.0.C
Nori			V-10										D.O
				\sim						-			0.0
_		1		1									0.0
De				1									0.C 0.C
	γ	-vv		2	\sim								5.0 5.0
Fire	\square				D1						_	_	D.O
Fixe											in the	3	D.O
	00.0 MHz	Snan 1					50	8	0 GHz	0000	2 30	ter	en
	1001 pts)	7.80 s (Sweep			10 Hz	#VB			.0 N			
	IN VALUE	FUNCTIO	NCTION WIDTH	CTION FU		Y		×		SCL			
						-19.486 di -80.386 di	12 9 GHz 90 0 GHz			f f	1	NN	1 2
Propertie]		2				3
. ropord													5 6
									0				7 B
М											-		9
1													1

QuieTer

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2462.9	36.699	67.372	104.072	Peak
Horizontal	2461.2	35.029	62.992	99.687	Average
Vertical	2463	36.046	69.759	105.805	Peak
Vertical	2461.2	36.03	65.696	101.725	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ(dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2485.6	104.072	52.117	51.955	Peak
Horizontal	2485.6	99.687	60.827	38.86	Average
Vertical	2485.6	105.805	52.117	53.688	Peak
Vertical	2485.6	101.725	60.827	40.898	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

D Agi	lent S	pect	rum .	Analyzer -	Swept SA									5. 5		-	
w Mar	ker	2	50 s	856000					NSE:INT			pe:	ALIGNAUTO Log-Pwr 100/100		TRACE 1	eb 01, 2010 2 3 4 5 6 4 MMMMM	Marker
				In	put: RF	PNO: Fa: IFGain:Lo	st ⊂⊫ w	#Atten: 10			Avgino	10.2		_	DET	<u> </u>	Select Marker
10 di	B/div		Ref	⁻ 0.00 dl	Bm								Mk			6 GHz 8 dBm	2
-10.0						~1											Norma
-20.0 -30.0				/	<u> </u>		1										
-40.0 -50.0																	Delta
-60.0 -70.0	an surgery	,	A	$\sim \sim$			0	m	∮ ² -	~~~~	-lean in the	3	~~~~	angua sa	money	and the second	
-80.0																	Fixed⊳
-90.0																	
Cen #Re				0 GHz /IHz		#	VBW	(1.0 MHz				\$	#Sweep			0.0 MHz 01 pts)	Off
MKR 1	N	1	f			163 0 GHz		-13.741 d		FUNC	TION	FUN	CTION WIDTH	FUN	ICTION \	ALUE	
2 3 4	N N	1	f f			185 6 GHz 100 0 GHz		-65.858 d -67.180 d									Properties►
5 6 7																	Fropences
8		_															More
10 11 12									-								1 of 2
MSG													STATUS				1

Peak Detector of conducted Band Edge Delta

								Swept SA	Analyzer -	trum	nt Spec	ilen
Marker	MFeb 01, 2010 E 1 2 3 4 5 6 E MWWWWWW T P N N N N N	TRAC		Avg Type Avg Hold:		Trig: Free	NO: Fast G	00000 G	612000	50 s 2.4	er 1	ke
Select Marke	2 GHz	1	Mkr	80,07	0 dB	#Atten: 10	Gain:Low	IFO				
2	35 dBm				,			Bm	f 0.00 d	Ref	div	B/c
Norm								≬ 1		_		
Norm							N	N				
								1	/			
De									/			
					2	m	-		\sim	N		
57+7420	~		$\sim \Lambda$		12						~~	-
Fixe										_		
	00.0 MHz	Span 1							0 GHz	835	er 2.4	L
							#1/D1		MHz	108	DIM .	
(roor pisj	7.80 s (Sweep			V 10 Hz	#VD1				DVV	es l
		7.80 s ('	Sweep	CTION FUN	Bm	Y -16.935 dl	2 GHz			c scl	ide tri V 1	MOI N
		<u> </u>		CTION FUN	Bm Bm	Y		2.461 2.485		C SCL	ide Tri N 1 N 1	мос
12		<u> </u>		CTION FUN	Bm Bm	- <u>16.935</u> dl -77.762 dl	2 GHz 6 GHz	2.461 2.485		C SCL f	ide Tri N 1 N 1	MOI N N
12		<u> </u>		CTION FUN	Bm Bm	- <u>16.935</u> dl -77.762 dl	2 GHz 6 GHz	2.461 2.485		C SCL f	ide Tri N 1 N 1	MOI N N
Propertie		<u> </u>		CTION FUN	Bm Bm	- <u>16.935</u> dl -77.762 dl	2 GHz 6 GHz	2.461 2.485		C SCL f	ide Tri N 1 N 1	MOI N N
Propertie Mc		<u> </u>			Bm Bm	- <u>16.935</u> dl -77.762 dl	2 GHz 6 GHz	2.461 2.485		C SCL f	ide Tri N 1 N 1	MOI N N

Average Detector of conducted Band Edge Delta

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Emission Level [dBuV/m]	Detector		
Horizontal	2416.1	34.97	72.358	108.971	Peak
Horizontal	2406.4	36.606	55.195	91.801	Average
Vertical	2415.9	35.655	72.399	108.054	Peak
Vertical	2408	35.612	56.287	91.898	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390	108.971	40.092	68.879	Peak
Horizontal	2390	91.801	44.478	47.323	Average
Vertical	2390	108.054	40.092	67.962	Peak
Vertical	2390	91.898	44.478	47.42	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

	ilent S	Spect	rum .	Analyzer -	Swept SA			10			<i>v</i> .	age De		
ыл Mai	rker	1	50 s	160000	000000		AC		NSE:INT		ALIGN AUTO	TR	PMFeb 01, 2010 ACE 1 2 3 4 5 6 YPE MWWWWW	Peak Search
	B/div	,	Ref	In 7 0.00 dl		PNO: Fast IFGain:Lov		Frig: Free Atten: 10		Avgir	lold:>100/100 M	kr1 2.41	16 0 GHz 571 dBm	Next Peak
-10.0 -20.0 -30.0										1	1	~		Next Right
-40.0 -50.0 -60.0							للسلام	and a start	3	№ ²		- Lauton	the marken are	Next Left
-70.0 -80.0 -90.0	-				a clandra a faith									Marker Delta
#Re MKR	es Bi Mode N	W 1	.0 N SCL	0 GHz /IHz		60 GHz	-1	.0 MHz 1.571 de	3m	NCTION	#Sweep	500 ms	100.0 MHz (1001 pts) ION VALUE	Mkr→CF
2 3 4 5 6 7	N N	1	f			10 0 GHz 10 0 GHz		<u>3.996 de</u> 1.663 de						Mkr→RefLvl
9 9 10 11 12														More 1 of 2
MSG											STAT	US		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

💴 Agilent Spectrum Analyzer -	Swept SA				
	000000 GHz	AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 2/100	04:44:26 PM Feb 01, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Peak Search
10 dB/div Ref 0.00 d	put: RF PNO: Fast ⊂ IFGain:Low BM	#Atten: 10 dB	2.19	r1 2.417 0 GHz -29.355 dBm	Next Peak
-10.0 -20.0 -30.0			1-		Next Righ
-40.0 -50.0 -60.0		2			Next Le
-70.0					Marker Delt
Center 2.39000 GHz #Res BW 1.0 MHz	×		Sweep	Span 100.0 MHz 7.80 s (1001 pts) FUNCTION VALUE	Mkr→C
1 N 1 f 2 N 1 f 3 - - - 4 - - - 5 - - - 6 - - - 7 - - -	2.417 0 GHz 2.390 0 GHz	-29.355 dBm -73.833 dBm			Mkr→RefLv
1 1 11 1 12 1					Mor 1 of
MSG			STATUS		

Product	:	JukeBlox Networked Media Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2465.7	36.701	71.102	107.804	Peak
Horizontal	2463.4	36.7	54.951	91.651	Average
Vertical	2460.1	36.017	72.378	108.394	Peak
Vertical	2467.3	36.077	53.443	89.52	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2483.5	107.804	41.559	66.245	Peak
Horizontal	2483.5	91.651	44.336	47.315	Average
Vertical	2483.5	108.394	41.559	66.835	Peak
Vertical	2483.5	89.52	44.336	45.184	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

DAgilent Spectrum Analyzer - Swept	SA		0	
x 50 Ω Marker 1 2.4659000000	AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:46:48 PM Feb 01, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Marker
Input: Ri	F PNO: Fast 🖵 Trig: Free Run IFGain:Low #Atten: 10 dB		DET PNNNN	Select Marker
10 dB/div Ref 0.00 dBm		Mk	r1 2.465 9 GHz -10.077 dBm	1
-10.0 -20.0 -30.0				Normal
-40.0 -50.0 -60.0 Made and a market and a ma	2 Lain mar 2	Man and a star and a strength of the strength of the star and a strength of	Jan marken and the market and and	Delta
-70.0				Fixed⊳
Center 2.48350 GHz #Res BW 1.0 MHz	#VBW 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) concion value	Of
1 N 1 f 2 N 1 f	2.465 9 GHz -10.077 dBm 2.483 5 GHz -51.636 dBm			
3 4 5 6				Properties▶
7 8 9 10				More 1 of 2
11 12 MSG		STATUS		1012

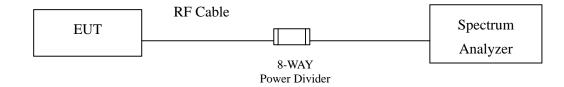
Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

							0	- Swept SA	m Analyzer	Spectr	Agiler
Peak Search	9:36 PM Feb 01, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWW		ALIGNAUTO	Avg Type Avg Hold:		1		000000			arke
NextPeak	460 1 GHz 6.518 dBm			Avginoid		#Atten: 1	'NO: Fast ⊂ Gain:Low		ef 0.00 (iv F	dB/d
Next Right							-	l			9 1.0
Next Lef					2).0
Marker Delt			^	<u>}³</u>	¥).0).0
	an 100.0 MHz 0 s (1001 pts) INCTION VALUE	p 7.80	Sweep	ICTION FU		/ 10 Hz Y		×		BW 1. E TRC	R MO
Mkr→RefLv					Bm	-26.518 d -70.854 d -75.547 d	1 GHz 5 GHz 0 GHz	2.483	f f f	1	N2 N 2 N 3 N 4 5
More 1 of:											7 3)) 1 2
		s	STATUS								6

7. Occupied Bandwidth

7.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2009

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	12450	>500	Pass

Figure Channel 1:

		AC SENSE:INT	ALIGN AUTO	11:40:41 PM Feb 01, 2010	N
arker 3 2.4179500 امبر	00000 GHz out: RF PNO: Fast IFGain:Low	Trig: Free Run #Atten: 20 dB	Avg Type: Log-Pwr	TYPE M WWWWW DET P N N N N N	Marker Select Marke
dB/div Ref 10.00 d	JBm		Mkr	3 2.417 95 GHz -4.76 dBm	Select Marke
			Jun ♦3	-5.72 dBm	Norm
0.0	مامل المراجع () مراجع ()		Mary .		Norm
0.0			\.		De
0.0	MM		MAN	W.M.	De
).0 att. Marine M				Wassone M	
0.0					Fixe
				Span 50.00 MHz	
enter 2.41200 GHz Res BW 100 kHz	#VI	BW 100 kHz	#Sweep		
Res BW 100 kHz	X		#Sweep	500 ms (1001 pts)	
Res BW 100 kHz				500 ms (1001 pts)	
Res BW 100 kHz I N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - -	× 2.411 50 GHz 2.405 50 GHz	0.28 dBm -5.44 dBm		500 ms (1001 pts)	22
Res BW 100 kHz I N 1 f 2 N 1 f 3 I f Image: second seco	× 2.411 50 GHz 2.405 50 GHz	0.28 dBm -5.44 dBm		500 ms (1001 pts)	Propertie
Res BW 100 kHz I N 1 f I N 1 f I N 1 f I N 1 f I N 1 f I I f Image: second	× 2.411 50 GHz 2.405 50 GHz	0.28 dBm -5.44 dBm		500 ms (1001 pts)	Propertie

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	11550	>500	Pass

Figure Channel 6:

50 Ω arker 3 2.44350		AC SENSE:INT	ALIGNAUTO #Avg Type: Log-Pwr	11:54:37 PM Feb 01, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWW	
	Input: RF PNO: Fast IFGain:Low			DET P N N N N N	Marker Tab
) dB/div Ref 10.0	0 dBm		Mkr	3 2.443 50 GHz -4.79 dBm	
Pg		2 1	3	4.00 - 10	Marker Coun
0.0	سليل ا	March March	May	-4.90 dBm	[Off
0.0	Market and Market	Ч	No and No.		
0.0	<u>/</u>				Cou
0.0	Mar A.A.		1 And 1	you	Marke
0.0	* VY Y		W W	- W While	On
D.O and have the second s			Sec. N. 199	Munu	
0.0					
0.0				· · · · · · · · · · · · · · · · · · ·	
enter 2.43700 GH				Span 50.00 MHz	
Res BW 100 kHz		BW 100 kHz	#Sweep	500 ms (1001 pts)	
KR MODE TRC SCL	×		NCTION FUNCTION WIDTH	FUNCTION VALUE	
1 N 1 f 2 N 1 f	2.437 45 GHz 2.431 95 GHz	1.10 dBm -2.81 dBm			
3 N 1 F 4	2.443 50 GHz	-4.79 dBm			
					All Markers (
5 6 7					and the second se
6 7 8					I Mo
6					M0 2 0

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	12000	>500	Pass

Figure Channel 11:

Marker	MFeb 01, 2010 E 1 2 3 4 5 6 E MWWWWW	TRACI	ALIGNAUTO e: Log-Pwr	#Avg Typ]	Hz	000000 G		-	er	ark
Marker Ta		DE				#Atten: 20	IO: Fast ⊊ Gain:Low	put: RF P IF(In			
<u>On</u>	95 GHz 93 dBm	3 2.467 -3.9	Mkr					dBm	f 10.00	R	/div	
Marker Cou	-4.76 dBm			♦ ³	1 Marchan		\bigcirc					9 00
	-4.76 dbm					- When we have a start of the s	will			_		.0
				" "	<i>c</i>		All I					.0
Cou							/					0
Mark		M. Auto	1. Ash					Arh All	1 and 1			0
On		* · · · · · · · · · · · · · · · · · · ·	H V.				-	an A	par v	12		0
	The Mary		-							Mans	m	0
			-		-		-	-			<u>81</u>	0
										_		0
	0.00 MHz	Snan 5			2		0	2	00 GHz	2 4 6 2	er 2	- L
	1001 pts)	500 ms (1	#Sweep			/ 100 kHz	#VBV			N 10		
	N VALUE	FUNCTIO	NCTION WIDTH	TION FL	FUN	Y		×		TRC S	IODE	R M
						1.24 d -4.08 d		2.461 4 2.455 9		1 1	N N	
						-3.93 d		2.467 9		1 1	N	
All Markers												
									-		_	
M												
2				j.			Ĵ		1			

:	JukeBlox Networked Media Module
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)
	:

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	16100	>500	Pass

Figure Channel 1:

50 Ω larker 3 2.4200	000000000 GHz			ALIGN AUTO pe: Pwr(RMS)	12:05:48 AM Feb 02, 20: TRACE 1 2 3 4 5 TYPE MWWWW	6 Marker
	Input: RF PNO: Fa IFGain:L				DET PNNNN	Marker Tab
	.00 dBm			Mkr3	2.420 00 GH -6.88 dBr	zon c
og 0.00		2		-		Marker Coun
0.0	¥	amalanderstrateraling	andrealaighenanthenthe		-7.70 dE	[Off
0.0			V	(
0.0	L. Last Marth			Way		Cour
	endulared block when the			Whitelidoory	WMMMan Myolutand upt	Marke
D.O Malacenter					Manufal app.	On <u>i</u>
0.0						
0.0						-
0.0			× +		· · · · · ·	
enter 2.41200 G	Hz				Span 50.00 MH	z
				#Sweep 5	500 ms (1001 pts	
Res BW 100 kHz	: #	VBW 100 kHz			(bu	21
Res BW 100 kHz R Mode TRC SCL	×	Y		UNCTION WIDTH	FUNCTION VALUE	-
Res BW 100 kHz R MODE TRC SCL N 1 f 2 N 1 f	× 2.414 50 GH 2.403 90 GH	z -1.70 dE z -7.05 dE	3m 3m			2
Res BW 100 kHz R MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f	× 2.414 50 GH	z -1.70 dE z -7.05 dE	3m 3m			
Res BW 100 kHz I N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - -	× 2.414 50 GH 2.403 90 GH	z -1.70 dE z -7.05 dE	3m 3m			
Res BW 100 kHz I N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 7 - - -	× 2.414 50 GH 2.403 90 GH	z -1.70 dE z -7.05 dE	3m 3m			
Res BW 100 kHz I N 1 f 1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - - - 7 - - - 9 - - -	× 2.414 50 GH 2.403 90 GH	z -1.70 dE z -7.05 dE	3m 3m			All Markers (
Res BW 100 kHz I N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 7 - - - 3 - - -	× 2.414 50 GH 2.403 90 GH	z -1.70 dE z -7.05 dE	3m 3m			All Markers C Ma 2 o

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	16250	>500	Pass

Figure Channel 6:

arker 3 2.445150	000000 GHz	SENSE:INT ALIGN AUT #Avg Type: Pwr(R) ree Run	MS) TRACE 1 2 3 4 5 6	Marker
	IFGain:Low #Atten:		(r3 2.445 15 GHz	Marker Tab
dB/div Ref 10.00	dBm		-6.56 dBm	
Pg	2 Maximum particular			Marker Coun
0.0	Alacalow and montered	an water low the and a start a	-7.31 dBm	[Off
0.0	1			
0.0				Cour
0.0 0.0	Janahalanahan	Sam	New Jose	Marke
0.0 marchadent			Mr. Why Month and a post of the standing	0n <u>(</u>
0.0				
0.0				
0.0				
enter 2.43700 GHz			Span 50.00 MHz	
Res BW 100 kHz	#VBW 100 kH	lz #Swee	p 500 ms (1001 pts)	
KR MODE TRC SCL	XY	FUNCTION FUNCTION WID	TH FUNCTION VALUE	
1 N 1 f 2 N 1 f		dBm dBm		
3 N 1 F		dBm		
5				All Markers C
6 7				
8				Мо
9 0 1	1			20

Product	:	JukeBlox Networked Media Module
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

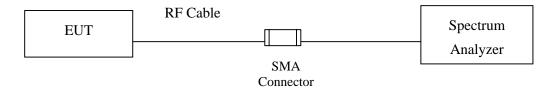
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	16200	>500	Pass

Figure Channel 11:

Marker	4 Feb 02, 2010 E 1 2 3 4 5 6		ALIGNAUTO	#Avg T	NSE:INT	AC SEI		000000		50	(er '	ark
Marker Tak		TYP	, ,	•		Trig: Free #Atten: 30	NO: Fast Gain:Low	nput: RF		, 7.4		urr
	10 GHz 69 dBm	3 2.470 -5.6	Mkr					dBm	f 10.00	Re	3/div	
Marker Coun							2					00 P
[Off	-7.01 dBm		-	hundrunk	wabrahan	mannestration	Yulmahar			_		0.0
-				-			1					0.0
Coup					-		p ^r	, de				0.0
Marke		and provident	" What working to					www.		-		D.O
On <u>i</u>	Marca apadopyquar	1 MANUL MAN							Maria .	Henry	worth your	0.0
								3		-		D.O
												0.0
												0.0
	0.00 MHz	Span 5							0 GHz	4620	ter 2	ent
	1001 pts)	500 ms (1	#Sweep			100 kHz	#VBN		kHz	100	S BW	Res
	N VALUE	FUNCTIO	JNCTION WIDTH	CTION		Y		X		RC SCL		
· · · · · · · · · · · · · · · · · · ·					Зm	<u>-1.01 d</u>	50 GHz 90 GHz	2.453		1 f 1 f	N	2
All Markers (Зm	-5.69 di	10 GHz	2.470		1 f	N	3 4
All Markers												5
												7
Mo				-								8 9
				1					3			0

8. **Power Density**

8.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2009

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

8.5. Uncertainty

± 1.27 dB

8.6. Test Result of Power Density

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412.00	-12.463	< 8dBm	Pass

Figure Channel 1:

- D	MFeb 01, 2010		ALIGN AUTO		NSE:INT	AC SEI	A	and press	<mark>im Analyzer -</mark> 50 Ω	Gren obec
Peak Search	CE 123456 PE MWWWWW ET P NNNNN	TYP	: Log-Pwr 1/100	Avg Type Avg Hold:		Trig: Free #Atten: 20	Hz NO: Far 😱 Gain:Low	put: RF F	.411402	arker 1
NextPea	2 5 GHz 63 dBm		Mkr1 2.4						lef 10.00	dB/div
Next Rig										9
Next Le	kanderander	hhalamara	≠∙นาง¥+ะป _ี ปไขปุ _่ งไง	uhillynundur	ur-yr-wahad	๛ _๛ ฟ๛ุพุษษูป	+ b - ₁ -1-10-14-14-14-14-14-14-14-14-14-14-14-14-14-	แม่งาาใหม่อย่างใ	Mp=1	.0 Litrapytyriven .0
Marker De										.0
Mkr→0										.0
Mkr→RefL										.0
Mo 1 o	300.0 kHz		#Sweep			10 kHz	#VBW	z	15000 GH	enter 2.4
	(4004 m4n)	100 c (#Sween			10 kHz	#VBW		î kHz	oc BM S

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437.000	-11.940	< 8dBm	Pass

Figure Channel 6:

Peak Search	PMFeb 01, 2010 ACE 1 2 3 4 5 6 YPE MWWWWWW	TRAC	ALIGNAUTO e: Log-Pwr 1/50	#Avg Typ Avg Hold	e Run		GHz		^{50 Ω} 2.437586	rker 1
NextPe	6 5 GHz 40 dBm	37 586				#Atten: 2	PNO: Far 🔾 Gain:Low		Ref 10.00	IB/div
Next Rig					2					
Next L	1 เทพระงุณหุ่งไม่เค	har an	โะฟุก เหนานางไหงได	Yyxxyayayayayayayayayayayayayayayayayaya	นหารุประเ ป ษาในแหน	alais-Manylas+yraa-'	hunderstation	upperformation	arnboulantwo) V-1/44/4-1
Marker De										
Mkr→)
Mkr→Refl								-)
Ма										
	000 0 1 I I	Span 3						17	374500 GH	ator 2 A

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462.00	-11.042	< 8dBm	Pass

Figure Channel 11:

arker 1		nput: RF		Trig: Free #Atten: 20		#Avg Typ Avg Hold	ALIGN AUTO ee: Log-Pwr I: 1/50	TRACE	1 2 3 4 5 6 MWWWWW P NNNNN	Peak Search		
0 dB/div	Ref 10.00	dBm					Mkr1 2.4		9 GHz 2 dBm	NextPea		
).00										Next Rig		
10.0 Muliji in 20.0	umiliAlise/Indianig/A/	herrowenty fan yw hol	wanipatentekatika	urunh-robaliya	Magerlandigenergelge	hallther filter	alay Alay Withouth	┡╾ ϯ ╷┢ ┦ ╘┝ ═ ╡ <mark>┝</mark> _┲ ╺┿ ╼ ╝ _┪	พษฟลุง	Next L		
10.0										Marker De		
io.o										Mkr→(
'0.0										Mkr→RefL		
enter 2.4	4614500 GH 3.0 kHz	łz	#VBW	10 kHz			#Sweep		00.0 kHz 001 pts)	M o 1 o		

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412.00	-13.872	< 8dBm	Pass

Figure Channel 1:

Peak Search	12:07:40 AM Feb 02, 2010 TRACE 1 2 3 4 5 6	ALIGNAUTO Type: Pwr(RMS)				3400000	50 Ω . 414478		l Iark
NextPeak	DET P N N N N N	Hold: 1/50	un Avg 3	Trig: Free #Atten: 30	PNO: Far 😱 FGain:Low	Input: RF			
NEXLEE	14 478 4 GHz -13.872 dBm	Mkr1 2.4				dBm	Ref 10.00	S/div R	
Next Rig									.00
				_ _ 1					0.0
Next L	water of law the	-	w plan he make	ult Meduna Art	http://www.ana.ana	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	w a Ma kapo	^ለ ነካየ ^ለ ህም ^ለ ን).O
Marker De									D.O
Walkel De							<		0.0
Mkr→									D.O -
									D.O
Mkr→Refl									D.O
									D.O -
М с 1 о	Span 300.0 kHz 100 s (1001 pts)	#Sween		10 kHz		Hz	45000 G	êr 2.414 8 BW 3.0	
	100 3 (1001 pt3)	STATUS		17 8112	<i></i>		* 11112		G

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437.000	-15.166	< 8dBm	Pass

Figure Channel 6:

AC	SENSE:INT		2:11:12 AM Feb 02, 2010	Peak Search
RE PNO: Far 🕟 Trig: F	ree Run Avg Hol		TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	I ear Search
n				Next Pea
				Next Rig
etrail defenned the firmed	1-	the manue	~~~~~	Next Le
				Marker De
			[Mkr→(
				Mkr→RefL
				Мо
#VBW 10 kH	,			1 0
	000 GHz RF PNO: Far File IFGain:Low #Atten n	000 GHz #Avg Ty RF PN0: Far Trig: Free Run IFGain:Low #Atten: 30 dB	000 GHz Trig: Free Run #Avg Type: Pwr(RMS) Avg Hold: 1/50 Mkr1 2.43 n 1 1 <td>000 GHz Trig: Free Run #Avg Type: Pwr(RMS) Trace 123456 RF PN0: Far Trig: Free Run #AvglHold: 1/50 Tree I123456 Mkr1 2.439 478 2 GHz -15.166 dBm u -15.166 dBm u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/</td>	000 GHz Trig: Free Run #Avg Type: Pwr(RMS) Trace 123456 RF PN0: Far Trig: Free Run #AvglHold: 1/50 Tree I123456 Mkr1 2.439 478 2 GHz -15.166 dBm u -15.166 dBm u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/u/

Product	:	JukeBlox Networked Media Module
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462.00	-14.392	< 8dBm	Pass

Figure Channel 11:

				Sure on				
						5A	Analyzer - Swept SA	Agilent Spec
Peak Search	12:14:29 AM Feb 02, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWW	ALIGN AUTO ce: Pwr(RMS) d: 1/50	#Avg T Avg Ho	SENSE:INT			Ω 16447870000	w Marker 1
Next Pea	L64 478 7 GHz -14.392 dBm					PNO: Far (IFGain:Low	Input: RF	
Next Righ							f 10.00 dBm	0 dB/div -og 0.00
Arro distante di					1			10.0
Next Let	water tomographite	and the second	ry meno	whener the	ang	de made in the second	strand for the second	
Marker Del								40.0
Mkr→C								50.0
Mkr→RefL								70.0
Ma								30.0
Mor 1 of	Span 300.0 kHz 100 s (1001 pts)	#Sweep		z	BW 10 kHz	#VB		Centêr 2.4 #Res BW 3
		STATUS						ISG

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs