

Product Name	Mozart II
Model No	AWOXMII2A64, AWOXMII2D64
FCC ID.	PPQ-AWOXMII2

Applicant	Lite-On Technology Corp.
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.

Date of Receipt	Dec. 20, 2011
Issue Date	Dec. 28, 2011
Report No.	11C377R-RFUSP29V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Dec. 28, 2011 Report No.: 11C377R-RFUSP29V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	Mozart II			
Applicant	Lite-On Technology Corp.			
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.			
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD			
Model No.	AWOXMII2A64, AWOXMII2D64			
FCC ID.	PPQ-AWOXMII2			
EUT Rated Voltage	DC 3.3V			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	AWOX S.A.			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010			
	ANSI C63.4: 2003			
Test Result	Complied			

The test results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

sanne lin

(Adm. Specialist / Joanne Lin)

Tested By

(Assistant Engineer / Jack Hsu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	10
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	15
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	21
4.1.	Test Equipment	21
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	45
5.1.	Test Equipment	45
5.2.	Test Setup	45
5.3.	Limits	45
5.4.	Test Procedure	45
5.5.	Uncertainty	46
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	71
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	72
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	73

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	104
9.	EMI Reduction Method During Compliance Testing	

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Mozart II
Trade Name	AWOX S.A.
Model No.	AWOXMII2A64, AWOXMII2D64
FCC ID.	PPQ-AWOXMII2
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 150Mbps
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	PIFA
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	MAG.LAYERS	MSA-1908-2G4C1-A1	PIFA	3.79 dBi for 2.4 GHz

Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

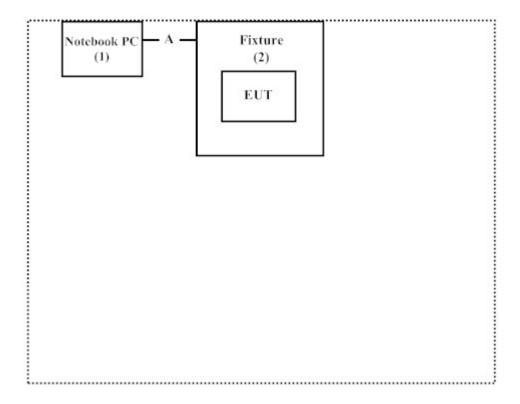
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11n-40M	Hz Center Fre	equency of Fa	ch Channel:				
002.1111 10101		equency of La	chi Chamier.				
Channel		1 2		Channel	Frequency	Channel	Frequency
Channel	Frequency	Channel	Frequency	Channel Channel 05:			1 2
Channel Channel 03:	Frequency 2422 MHz	Channel Channel 04:	Frequency 2427 MHz		2432 MHz		1 2
Channel Channel 03:	Frequency 2422 MHz	Channel Channel 04:	Frequency 2427 MHz	Channel 05:	2432 MHz		1 2

2. The different of the each model is shown as below:

Madalara		Description	
Model name	FM IC & circuit	Audio DAC	DAC Avdd 2.8V regulator IC
AWOXMII2A64	YES	YES	YES
AWOXMII2D64	NO	NO	NO

- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)	
	Mode 2: Transmit (802.11g 6Mbps)	
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)	
	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)	


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m
2	Fixture	Lite-On	N/A	N/A	N/A

Signal	Cable Type	Signal cable Description
А	Console Cable	Non-Shielded, 1.5m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT and peripherals as shown in Section 1.4
- (2) Execute "Jera Jerm.exe V4.67" on the Notebook.
- (3) Configure the test mode, the test channel, and the data rate to start the continuous transmit
- (4) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

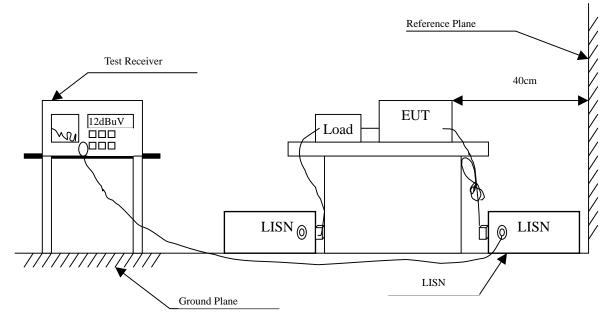
The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2011	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2011	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2011	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2011	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2011	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit					
Frequency	L	imits			
MHz	QP	AVG			
0.15 - 0.50	66-56	56-46			
0.50-5.0	56	46			
5.0 - 30	60	50			

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Mozart II
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)
		(AWOXMII2A64)

Frequency	Correct	Reading Measurement		Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.185	9.840	31.270	41.110	-23.890	65.000
0.220	9.840	29.390	39.230	-24.770	64.000
0.334	9.840	25.310	35.150	-25.593	60.743
0.443	9.840	41.030	50.870	-6.759	57.629
1.037	9.850	15.630	25.480	-30.520	56.000
11.752	10.051	15.840	25.891	-34.109	60.000
Average					
0.185	9.840	17.270	27.110	-27.890	55.000
0.220	9.840	27.040	36.880	-17.120	54.000
0.334	9.840	21.670	31.510	-19.233	50.743
0.443	9.840	31.280	41.120	-6.509	47.629
1.037	9.850	9.310	19.160	-26.840	46.000
11.752	10.051	9.690	19.741	-30.259	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Mozart II Conducted Emission Test Line 2 Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz) (AWOXMII2A64) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.166	9.840	36.320	46.160	-19.383	65.543	
0.224	9.840	30.560	40.400	-23.486	63.886	
0.357	9.840	24.480	34.320	-25.766	60.086	
0.494	9.840	44.810	54.650	-1.521	56.171	
0.591	9.840	26.100	35.940	-20.060	56.000	
1.587	9.850	16.130	25.980	-30.020	56.000	
Average						
0.166	9.840	27.650	37.490	-18.053	55.543	
0.224	9.840	29.770	39.610	-14.276	53.886	
0.357	9.840	16.470	26.310	-23.776	50.086	
0.494	9.840	34.140	43.980	-2.191	46.171	
0.591	9.840	19.990	29.830	-16.170	46.000	
1.587	9.850	10.200	20.050	-25.950	46.000	

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Mozart II Conducted Emission Test Line 1 Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz) (AWOXMII2D64) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 1						
Quasi-Peak						
0.177	9.840	31.150	40.990	-24.239	65.229	
0.224	9.840	30.700	40.540	-23.346	63.886	
0.478	9.840	38.550	48.390	-8.239	56.629	
0.611	9.840	23.150	32.990	-23.010	56.000	
1.103	9.850	15.890	25.740	-30.260	56.000	
11.150	10.040	14.730	24.770	-35.230	60.000	
Average						
0.177	9.840	20.640	30.480	-24.749	55.229	
0.224	9.840	29.420	39.260	-14.626	53.886	
0.478	9.840	30.160	40.000	-6.629	46.629	
0.611	9.840	13.920	23.760	-22.240	46.000	
1.103	9.850	9.740	19.590	-26.410	46.000	
11.150	10.040	8.240	18.280	-31.720	50.000	

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	 Mozart II Conducted Emission Test Line 2 Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz) (AWOXMII2D64) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV	dB	dBuV	
Line 2						
Quasi-Peak						
0.177	9.840	32.670	42.510	-22.719	65.229	
0.224	9.840	31.540	41.380	-22.506	63.886	
0.338	9.840	27.160	37.000	-23.629	60.629	
0.482	9.840	41.060	50.900	-5.614	56.514	
1.478	9.850	16.970	26.820	-29.180	56.000	
10.857	10.085	14.460	24.545	-35.455	60.000	
Average						
0.177	9.840	23.880	33.720	-21.509	55.229	
0.224	9.840	29.590	39.430	-14.456	53.886	
0.338	9.840	22.660	32.500	-18.129	50.629	
0.482	9.840	31.360	41.200	-5.314	46.514	
1.478	9.850	11.240	21.090	-24.910	46.000	
10.857	10.085	8.010	18.095	-31.905	50.000	

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.	
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2011	
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2011	
Note:					
1.	All equipments are calibrated with traceable calibrations. Each calibration is traceable to the				
	national or internation	ional standards.			
2.	The test instruments marked with "X" are used to measure the final test results.				

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

Channel No	Frequency	For d	-	e Power ata Rate (N	Abps)	Peak Power	Required	Result	
Channel No	(MHz)	1	2	5.5	11	1	Limit	Result	
			Measur						
01	2412	17.46				20.06	<30dBm	Pass	
06	2437	17.86	17.81	17.8	17.75	20.19	<30dBm	Pass	
11	2462	17.14				19.53	<30dBm	Pass	

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

Channel No	Enggyonay	6								Peak Power	Dequired	
	Frequency (MHz)	6	9	12	18	24	36	48	54	6	Required Limit	Result
			Measurement Level (dBm)									
01	2412	15.05								24.9	<30dBm	Pass
06	2437	15.67	15.65	15.63	15.62	15.6	15.59	15.57	15.55	25.23	<30dBm	Pass
11	2462	14.94								24.8	<30dBm	Pass

Note: Peak Power Output Value = Reading value on peak power meter + cable loss

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

	_	Average PowerPeakFor different Data Rate (Mbps)Power										
Channel No	Frequency (MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Required Limit	Result
			Measurement Level (dBm)									
01	2412	13.26								22.43	<30dBm	Pass
06	2437	13.79	13.78	13.76	13.75	13.73	13.71	13.7	13.68	23.7	<30dBm	Pass
11	2462	13.1								23.24	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

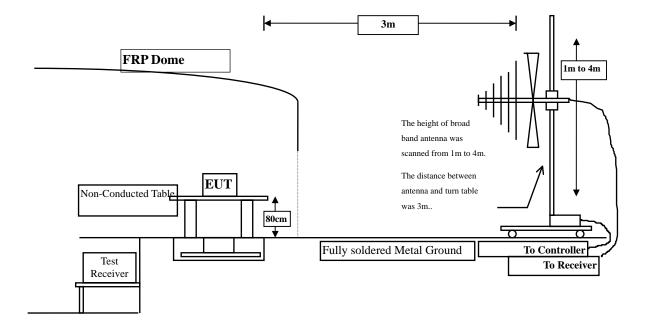
		Average Power								Peak		
	Frequency		F	or diffe	erent Da	ata Rate	e (Mbps	s)		Power	Required	
Channel No	(MHz)	15	30	45	60	90	120	135	150	15	Limit	Result
			Measurement Level (dBm)									
03	2422	13.27								22.43	<30dBm	Pass
06	2437	13.53	13.51	13.5	13.48	13.47	13.45	13.43	13.41	22.56	<30dBm	Pass
09	2452	13.05								22.19	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

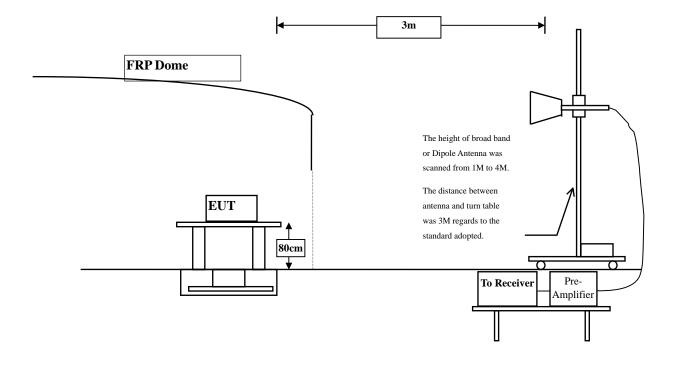
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits									
Frequency MHz	$\frac{1}{10}$								
30-88	100	40							
88-216	150	43.5							
216-960	200	46							
Above 960	500	54							

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz) (AWOXMII2A64)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	46.800	50.061	-23.939	74.000
7236.000	10.650	37.320	47.970	-26.030	74.000
9648.000	13.337	36.630	49.966	-24.034	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	47.290	53.711	-20.289	74.000
7236.000	11.495	36.780	48.275	-25.725	74.000
9648.000	13.807	36.870	50.676	-23.324	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart II								
Test Item		c Radiated Emiss	sion Data						
Test Site	: No.3 OATS								
Test Mode	: Mode 1: Transmit (802.11b 1Mbps) (2437 MHz) (AWOXMII2A64)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4874.000	3.038	45.170	48.207	-25.793	74.000				
7311.000	11.795	35.590	47.384	-26.616	74.000				
9748.000	12.635	37.010	49.645	-24.355	74.000				
Average Detector:									
 Vortical									
Vertical									
Peak Detector:									
4874.000	5.812	46.010	51.821	-22.179	74.000				
7311.000	12.630	35.920	48.549	-25.451	74.000				
9748.000	13.126	37.000	50.126	-23.874	74.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	ic Radiated Emiss ATS	sion Data b 1Mbps) (2462 MH	z) (AWOXMII2A	A64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	43.270	46.127	-27.873	74.000
7386.000	12.127	35.120	47.248	-26.752	74.000
9848.000	12.852	36.590	49.443	-24.557	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	43.250	48.770	-25.230	74.000
7386.000	13.254	35.280	48.534	-25.466	74.000
9848.000	13.367	36.620	49.987	-24.013	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	c Radiated Emiss TS	sion Data g 6Mbps) (2412MHz	z) (AWOXMII2A	64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	42.890	46.151	-27.849	74.000
7236.000	10.650	36.110	46.760	-27.240	74.000
9648.000	13.337	36.510	49.846	-24.154	74.000
Average Detector:					
 Vertical					
Peak Detector:					
4824.000	6.421	44.370	50.791	-23.209	74.000
7236.000	11.495	36.730	48.225	-25.775	74.000
9648.000	13.807	37.070	50.876	-23.124	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	ic Radiated Emiss	sion Data g 6Mbps) (2437 MH	z) (AWOXMII2A	A64)
Frequency MHz	Correct Factor dB	Reading Level dBuV	Measurement Level dBuV/m	Margin dB	Limit dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	41.690	44.727	-29.273	74.000
7311.000	11.795	36.060	47.854	-26.146	74.000
9748.000	12.635	37.280	49.915	-24.085	74.000
Average Detector:					
Peak Detector: 4874.000	5.812	41.050	46.861	-27.139	74.000
7311.000	12.630	36.450	49.079	-24.921	74.000
9748.000	13.126	37.530	50.656	-23.344	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	ic Radiated Emiss	sion Data g 6Mbps) (2462 MH	z) (AWOXMII2A	A64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	37.840	40.697	-33.303	74.000
7386.000	12.127	35.490	47.618	-26.382	74.000
9848.000	12.852	37.090	49.943	-24.057	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	39.120	44.640	-29.360	74.000
7386.000	13.254	36.760	50.014	-23.986	74.000
9848.000	13.367	37.000	50.367	-23.633	74.000

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

: Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz) (AWOXMII2A64)						
Limit						
BuV/m						
4.000						
4.000						
4.000						
4.000						
4.000						
4.000						
3						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz) (AWOXMII2A64)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	38.590	41.627	-32.373	74.000
7311.000	11.795	35.880	47.674	-26.326	74.000
9748.000	12.635	36.790	49.425	-24.575	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	41.650	47.461	-26.539	74.000
7311.000	12.630	35.720	48.349	-25.651	74.000
9748.000	13.126	36.970	50.096	-23.904	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz) (AWOXMII2A64)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	37.950	40.807	-33.193	74.000
7386.000	12.127	35.350	47.478	-26.522	74.000
9848.000	12.852	36.940	49.793	-24.207	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	38.140	43.660	-30.340	74.000
7386.000	13.254	35.330	48.584	-25.416	74.000
9848.000	13.367	37.020	50.387	-23.613	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2422MHz) (AWOXMII2A64)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4844.000	3.171	38.150	41.321	-32.679	74.000
7266.000	11.162	36.230	47.392	-26.608	74.000
9688.000	12.964	37.590	50.555	-23.445	74.000
Average Detector:					
Vertical					
Peak Detector:					
4844.000	6.178	38.160	44.338	-29.662	74.000
7266.000	11.982	36.180	48.162	-25.838	74.000
9688.000	13.507	37.640	51.148	-22.852	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart	II					
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	Cest Mode : Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437 MHz)						
	(AWOXM	II2A64)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
riequency	Factor	Level	Level	wargin	Linnt		
				JD	1DX//		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	37.440	40.477	-33.523	74.000		
7311.000	11.795	36.290	48.084	-25.916	74.000		
9748.000	12.635	36.990	49.625	-24.375	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	37.660	43.471	-30.529	74.000		
7311.000	12.630	35.790	48.419	-25.581	74.000		
9748.000	13.126	36.590	49.716	-24.284	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart I	Ι							
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2452 MHz)								
(AWOXMII2A64)									
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4904.000	2.914	37.810	40.725	-33.275	74.000				
7356.000	11.995	36.120	48.114	-25.886	74.000				
9808.000	12.475	36.970	49.445	-24.555	74.000				
Average Detector:									
Vertical									
Peak Detector:									
4904.000	5.530	38.300	43.831	-30.169	74.000				
7356.000	13.005	35.520	48.524	-25.476	74.000				
9808.000	12.901	37.680	50.581	-23.419	74.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Mozart II General Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) (AWOXMII2A64) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
109.540	-7.537	39.967	32.429	-11.071	43.500		
249.220	-6.216	37.169	30.953	-15.047	46.000		
433.520	0.841	31.632	32.473	-13.527	46.000		
532.460	3.099	31.107	34.206	-11.794	46.000		
796.300	6.389	27.265	33.654	-12.346	46.000		
897.180	5.487	30.997	36.484	-9.516	46.000		
Vertical							
134.760	-4.093	35.635	31.542	-11.958	43.500		
258.920	-4.900	36.938	32.038	-13.962	46.000		
398.600	-2.371	37.513	35.142	-10.858	46.000		
532.460	1.209	31.565	32.774	-13.226	46.000		
798.240	2.629	24.802	27.430	-18.570	46.000		
897.180	0.937	30.379	31.316	-14.684	46.000		

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O	Radiated Emissio	n Data g 6Mbps)(2437 MHz	z) (AWOXMII2A	64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
115.360	-7.390	40.331	32.942	-10.558	43.500
433.520	0.841	32.128	32.969	-13.031	46.000
532.460	3.099	30.808	33.907	-12.093	46.000
666.320	1.879	28.495	30.374	-15.626	46.000
800.180	6.417	29.979	36.396	-9.604	46.000
897.180	5.487	29.876	35.363	-10.637	46.000
Vertical					
117.300	-3.740	36.327	32.587	-10.913	43.500
256.980	-5.004	39.092	34.088	-11.912	46.000
383.080	0.195	32.582	32.777	-13.223	46.000
598.420	1.114	30.635	31.749	-14.251	46.000
798.240	2.629	31.266	33.894	-12.106	46.000
875.840	0.516	30.441	30.957	-15.043	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O.	Radiated Emissio ATS : Transmit (802.11	n Data n MCS0 7.2Mbps 20	M-BW)(2437 MI	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
111.480	-7.489	38.949	31.461	-12.039	43.500
249.220	-6.216	34.022	27.806	-18.194	46.000
383.080	1.305	28.644	29.949	-16.051	46.000
530.520	3.062	27.591	30.653	-15.347	46.000
625.580	1.419	24.913	26.333	-19.667	46.000
800.180	6.417	20.479	26.896	-19.104	46.000
Vertical					
258.920	-4.900	38.057	33.157	-12.843	46.000
396.660	-2.039	38.020	35.981	-10.019	46.000
530.520	1.192	30.958	32.150	-13.850	46.000
800.180	2.637	27.462	30.099	-15.901	46.000
875.840	0.516	29.650	30.166	-15.834	46.000
967.020	3.889	24.569	28.458	-25.542	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart	II			
Test Item	: General	Radiated Emissio	on Data		
Test Site	: No.3 O	ATS			
Test Mode	: Mode 4	: Transmit (802.11	n MCS0 15Mbps 401	M-BW)(2437 MH	Iz)
	(AWOXM	III2A64)			
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
115.360	-7.390	40.489	33.100	-10.400	43.500
249.220	-6.216	36.684	30.468	-15.532	46.000
400.540	0.942	35.230	36.172	-9.828	46.000
532.460	3.099	32.081	35.180	-10.820	46.000
798.240	6.409	28.242	34.650	-11.350	46.000
875.840	5.816	29.701	35.517	-10.483	46.000
Vertical					
258.920	-4.900	40.713	35.813	-10.187	46.000
348.160	-0.890	38.203	37.313	-8.687	46.000
532.460	1.209	31.415	32.624	-13.376	46.000
598.420	1.114	31.168	32.282	-13.718	46.000
842.860	2.378	29.753	32.131	-13.869	46.000
928.220	3.640	26.948	30.588	-15.412	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart	II			
Test Item	: General	Radiated Emissio	n Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 1	Transmit (802.11	b 1Mbps)(2437 MHz	z) (AWOXMII2D	64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
286.080	2.770	27.556	30.326	-15.674	46.000
367.560	2.982	26.222	29.204	-16.796	46.000
458.740	3.220	25.318	28.538	-17.462	46.000
604.240	3.537	21.656	25.193	-20.807	46.000
720.640	3.808	24.622	28.430	-17.570	46.000
893.300	3.896	27.434	31.330	-14.670	46.000
Vertical					
419.940	6.536	24.535	31.071	-14.929	46.000
509.180	6.732	24.027	30.759	-15.241	46.000
633.340	7.030	25.474	32.504	-13.496	46.000
757.500	7.311	26.475	33.786	-12.214	46.000
809.880	7.349	26.374	33.723	-12.277	46.000
916.580	7.304	26.405	33.709	-12.291	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart II	[
Test Item	: General I	Radiated Emissic	on Data		
Test Site	: No.3 OA				
Test Mode	: Mode 2: '	Transmit (802.11	g 6Mbps)(2437 MHz	z) (AWOXMII2D	64)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
326.820	2.829	27.371	30.201	-15.799	46.000
431.580	3.128	27.163	30.291	-15.709	46.000
534.400	3.376	27.133	30.509	-15.491	46.000
666.320	3.678	26.597	30.276	-15.724	46.000
771.080	3.912	26.812	30.724	-15.276	46.000
914.640	3.880	25.461	29.341	-16.659	46.000
Vertical					
266.680	6.087	27.303	33.390	-12.610	46.000
468.440	6.665	27.603	34.268	-11.732	46.000
598.420	6.951	27.216	34.167	-11.833	46.000
699.300	7.165	28.172	35.337	-10.663	46.000
802.120	7.381	28.870	36.251	-9.749	46.000
932.100	7.312	26.942	34.254	-11.746	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O	Radiated Emissio ATS : Transmit (802.11	n Data n MCS0 7.2Mbps 20	M-BW)(2437 M	Hz)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
127.000	2.150	26.949	29.099	-14.401	43.500
284.140	2.763	29.167	31.930	-14.070	46.000
431.580	3.128	28.065	31.193	-14.807	46.000
565.440	3.438	26.925	30.363	-15.637	46.000
741.980	3.862	28.264	32.126	-13.874	46.000
875.840	3.908	27.248	31.156	-14.844	46.000
Vertical					
163.860	5.736	31.917	37.653	-5.847	43.500
289.960	6.203	29.374	35.577	-10.423	46.000
433.520	6.558	27.874	34.432	-11.568	46.000
596.480	6.947	25.866	32.813	-13.187	46.000
732.280	7.262	26.653	33.915	-12.085	46.000
893.300	7.319	28.278	35.597	-10.403	46.000

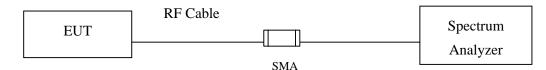
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart	II			
Test Item	: General	Radiated Emissio	on Data		
Test Site	: No.3 O	ATS			
Test Mode	: Mode 4	: Transmit (802.11	n MCS0 15Mbps 401	M-BW)(2437 MH	Iz)
	(AWOXM	(II2D64)			
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
431.580	3.128	28.170	31.298	-14.702	46.000
534.400	3.376	26.537	29.913	-16.087	46.000
666.320	3.678	27.245	30.924	-15.076	46.000
749.740	3.877	27.645	31.522	-14.478	46.000
796.300	3.948	29.682	33.630	-12.370	46.000
893.300	3.896	26.501	30.397	-15.603	46.000
Vertical					
363.680	6.397	27.858	34.255	-11.745	46.000
499.480	6.718	29.783	36.501	-9.499	46.000
596.480	6.947	27.333	34.280	-11.720	46.000
685.720	7.129	25.835	32.963	-13.037	46.000
749.740	7.300	28.361	35.661	-10.339	46.000
914.640	7.303	26.766	34.069	-11.931	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment


_	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2011

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	Mozart II
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

Channel 01 (2412MHz)

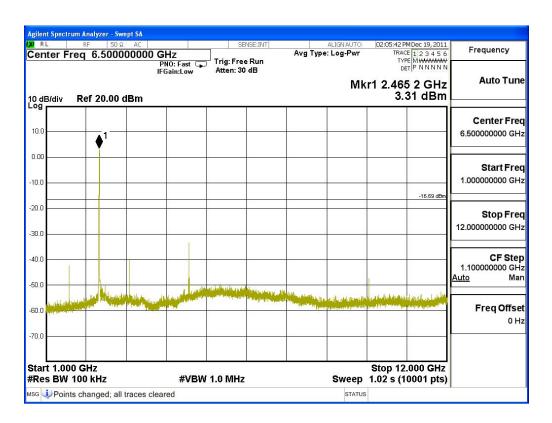
RL RF 50Ω		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	01:51:07 PMDec 19, 2011 TRACE 1 2 3 4 5 6	Frequency
enter Freq 515.0000 odB/div Ref 20.00 dB	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB		түре [Министранија туре [Министранија рет // NNNNN r1 802.023 MHz -51.87 dBm	Auto Tun
0.0					Center Fre 515.000000 MH
0.0				-16.80 dBm	Start Fre 30.000000 MH
0.0					Stop Fre 1.000000000 GF
0.0				1	CF Ste 97.000000 Mi <u>Auto</u> Mi
D.O Marine and A. Langer and M. Lang	n fad ben her en unter den in den sonther An en den sonther	yn yr fai i'r y feld yff o dan daebare	(and a particular point of an and a large the second second second second second second second second second se		Freq Offs
0.0					
tart 30.0 MHz Res BW 100 kHz	#VBW	1.0 MHz	Sweep 9	Stop 1.0000 GHz	

Agilent Spectrum Analyzer - Swept SA KI RL RF 50Ω AC		SENSE:INT	ALIGN AU	0 01:50:36 PMDec 19, 2011	1
Center Freq 6.5000000	PNO: East	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pw		Frequency
10 dB/div Ref 20.00 dBm			Ν	/kr1 2.409 1 GHz 3.20 dBm	
.09					Center Free
10.0					6.500000000 GH
0.00					Start Fre
10.0					1.000000000 GH
20.0				-16.80 dBm	
30.0					Stop Fre 12.000000000 GH
10.0					CF Ste
					1.100000000 GH Auto Ma
50.0			In the part of	الملافي والبادين والمتعالية والرار	
		in the second	fallen and the state of a state of a		Freq Offs
70.0					
Start 1.000 GHz		0.044-	<u> </u>	Stop 12.000 GHz	
Res BW 100 kHz	#VBW 1	.U IVIMZ		р 1.02 s (10001 pts) тиз	

	50Ω AC			NSE:INT		ALIGN AUTO		4Dec 19, 2011	
	00000000	PNO: Fast 😱] Trig: Free	Run	Avg Type		TRACE TYP	123456 MWWWWW PNNNNN	Frequency
dB/div Ref 20.0		FGain:Low	Atten: 30	dB		Mkr	1 24.285	a na seratar	Auto Tune
0.0									Center Free 18.50000000 GH
0.0								-16.80 dBm	Start Fre 12.000000000 G⊦
0.0									Stop Fre 25.000000000 GH
0.0			-11		والمعراء والمعالية	march 1 1 1 1 1 1 1 1 1			CF Ste 1.300000000 GF Auto Ma
0.0		en la constante de la constant La fil entre terrete de la constante de la const				an a lait th <mark>fittin</mark> ne attaca y d			Freq Offs
0.0 tart 12.000 GHz Res BW 100 kHz		#VBW	1.0 MHz			Sweep	Stop 25. 1.20 s (10	000 GHz 0001 pts)	

Agilent Spectrum Ar								
Zenter Fred	50 Ω AC	MHz]	NSE:INT	Avg Type	ALIGNAUTO	01:57:58 PMDec 19, 2011 TRACE 1 2 3 4 5 6	Frequency
	f 20.00 dBm	PNO: Fast 😱 IFGain:Low	¹ Trig: Free Atten: 30			Mki	r1 812.887 MHz -51.98 dBm	Auto Tune
10.0								Center Free 515.000000 MH
10.0							-16.41 dBm	Start Fre 30.000000 M⊢
30.0								Stop Fre 1.000000000 GH
40.0							A 1	CF Ste 97.000000 MH Auto Ma
		an a shi ya a shi ya shi a shi a shi a shi a shi a shi ya shi	n ha finn y hland	di ni di subarra	legebyer of beild	a miljana ye ha da		Freq Offs
70.0								
Start 30.0 MH Res BW 100		#VBW	1.0 MHz			Sweep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	
sg 🔱 File <ima< td=""><td>ge.png> saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>3</td><td></td></ima<>	ge.png> saved					STATUS	3	

Channel 06 (2437MHz)


tart 1.000 Res BW 1		#VB	W 1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
0.0						01
0.0	and the set		and a second second second second second second	¹ 11 and proved 10 pt at Names of a provident of	a a filiper de la della provincia de la compositiva de la compositiva de la compositiva de la compositiva de la Compositiva de la compositiva de la comp	Freq Offs
0.0						1.100000000 G <u>Auto</u> M
0.0				 		CF St
0.0				 _		Stop Fr 12.000000000 G
0.0					-16.41 dBm	Oton Fr
0.0				 		1.000000000 G
.00						Start Fr
0.0	1					6.500000000
						Center F
dB/div	Ref 20.00 d			Mk	r1 2.434 4 GHz 3.59 dBm	Auto Tu
enter Fr	eq 6.50000	10000 GHz PNO: Fast C IFGain:Low	Trig: Free Run Atten: 30 dB	'ype: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	
RL	RF 50 Ω	AC	SENSE:IN	ALIGN AUTO	01:57:27 PMDec 19, 2011	Frequency

Agilent Spectrum										
Center Fre	RF 50 Ω cq 18.500	000000 (Pl	GHz 10: Fast 😱 Gain:Low	Trig: Free Atten: 30		Avg Type	ALIGNAUTO : Log-Pwr	TRACI TYP	Dec 19, 2011 1 2 3 4 5 6 E MWWWWW T P N N N N N	Frequency
10 dB/div I	Ref 20.00 (3ain:Low	Allen. 30			Mkr	1 23.739 -40.4	0 GHz 44 dBm	Auto Tune
.og										Center Free 18.50000000 GH;
0.00										
10.0										Start Fre 12.000000000 GH
20.0									-16.41 dBm	Stop Fre
80.0	_									25.000000000 GH
0.0			5.4 						1	CF Ste 1.300000000 GH
50.0	Alternational And		Ling in growth of the staff of the	ngganlaggan ka	an Dan Anton an Dan Anton					<u>Auto</u> Ma
60.0			1							Freq Offse 0 H
70.0										
tart 12.000			#\/B\\/	1.0 MHz			Sween	Stop 25. 1.20 s (1	000 GHz	
sg 🜙 File <ir< td=""><td>144634 (1111) 111 114 (10)</td><td>aved</td><td><i>#</i> * w v</td><td>1.0 10112</td><td></td><td></td><td>STATUS</td><td>and the second second second</td><td> hra)</td><td></td></ir<>	144634 (1111) 111 114 (10)	aved	<i>#</i> * w v	1.0 10112			STATUS	and the second second second	hra)	

Frequency	MDec 19, 2011 2E 1 2 3 4 5 6 2E MWWWWWW ET P N N N N N	TRA	ALIGNAUTO : Log-Pwr	Avg Typ		SE Trig: Free Atten: 30	Z 10: Fast 😱 Gain:Low	0000 MH	r⊧ 50 q 515.00	enter Fre
Auto Tu	42 MHz 05 dBm	1 930.7	Mkr		40	Allen. 50	ain:Low		Ref 20.00	dB/div
Center Fr 515.000000 M										
Start Fr 30.000000 M	-16.69 dBm									.0
Stop Fr 1.000000000 G	-10.05 ubm									.0
CF St 97.000000 M Auto M							-			.0
Freq Offs		Lithuan had place	galleng på fordet for ber at den generationen for	ar laaf of saaddy gan argene da			Nullan Sandalited	Freinra filderatik, p.		.0 .0
										.0
	0000 GHz 0001 pts)		weep 9			1.0 MHz	#VBW			art 30.0 M les BW 1

Channel 11 (2462MHz)

Agilent Spect		alyzer - Swe	pt SA							
LXI RL	RF	50 Ω	AC		SE	NSE:INT		ALIGN AUTO	02:06:44 PM Dec 19, 2011	Frequency
Center F	req	18.5000) GHz PNO: Fast 🖵 IFGain:Low	Trig: Free		Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Trequency
10 dB/div	Ref	20.00 d		IFGain:Low	Atten: 50			Mkr	1 23.765 0 GHz -41.33 dBm	Auto Tune
10.0										Center Freq 18.500000000 GHz
-10.0									-16.69 dBm	Start Freq 12.000000000 GHz
-20.0										Stop Fred 25.00000000 GHz
-40.0		A Part of the local day				del antes antes				CF Step 1.30000000 GHz <u>Auto</u> Man
	andred ports Antonica a A									Freq Offsel 0 Hz
-70.0										
Start 12.0 #Res BW				#VBW	1.0 MHz			Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
мsg 🗼 File	<lmag< td=""><td>e.png> sa</td><td>ved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td></lmag<>	e.png> sa	ved					STATUS		

Product	:	Mozart II
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

Channel 01 (2412MHz)

Agilent Spectrum Analyzer - Swept					
X RL RF 50 Ω Center Freq 515.0000		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:15:37 PM Dec 19, 2011 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dB	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB	Mk	r1 811.723 MHz -54.61 dBm	Auto Tune
10.0					Center Fred 515.000000 MHz
-10.0					Start Free 30.000000 MH;
-20.0				-20.16 dBm	Stop Fred 1.000000000 GH2
40.0					CF Ster 97.000000 MH
-50.0	Allemant in a sum latitude source in	an a	atternessed have been place to be the st	1	Auto Mar Freq Offse
-70.0					0 H:
Start 30.0 MHz #Res BW 100 kHz	#VBW	1.0 MHz	Sweep 9	Stop 1.0000 GHz 90.0 ms (10001 pts)	
usg 🔱 File <lmage.png> save</lmage.png>	ed		STATU	s	

Agilent Spectrum Analyzer - Swept S					(r
X RL RF 50Ω A Center Freq 6.500000		SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:15:06 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 dBr	IFGain:Low	Atten: 30 dB	Mk	r1 2.420 1 GHz -0.16 dBm	Auto Tune
10.0					Center Fred 6.500000000 GHz
-10.0					Start Free 1.000000000 GH:
-20.0				-20.16 dBm	Stop Free 12.000000000 GH
40.0	1				CF Ste 1.100000000 GH
-50.0					<u>Auto</u> Mai
-60.0				to design of the second se	Freq Offse 0 H
-70.0					
Start 1.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
wsg iPoints changed; all trac	es cleared		STATUS		

RL RF 50 Ω enter Freq 18.5000	PNO: Fast 😱	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:16:08 PM Dec 19, 2011 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
dB/div Ref 20.00 d	IFGain:Low	Atten: 30 dB	Mkı	1 24.984 4 GHz -41.64 dBm	Auto Tun
0.0					Center Fre 18.500000000 G⊦
0.0					Start Fre 12.000000000 Gi
0.0				-20.16 dBm	Stop Fr 25.00000000 G
					CF Sto 1.300000000 G Auto M
	debeles de seten en en en en en de debeles en				Freq Offs 0
0.0					
tart 12.000 GHz Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	

gilent Spectrum Analyzer -	Swept SA IΩ AC	SENSE:INT	ALIGN AUTO	02:21:47 PMDec 19, 2011	(
Center Freq 515.0]	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.0			Mk	r1 812.596 MHz -53.81 dBm	Auto Tune
10.0					Center Free 515.000000 MH:
0.00					Start Free 30.000000 MH
30.0				21.43 dBm	Stop Fre 1.000000000 GH
10.0 50.0				▲1	CF Ste 97.000000 M⊢ <u>Auto</u> Ma
		ling depter of the legel	fan oa filme hej ersentoniken gestaande in de selen anges	a an	Freq Offse
70.0					
tart 30.0 MHz Res BW 100 kHz	#VBW	1.0 MHz	Sweep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	
sg 🕕 File <image.png></image.png>	saved		STATUS	3	11

Channel 06 (2437MHz)

0 dB/div Ref 20.00 dBm		tten: 30 dB	10 <u>1</u> 0000	DET P N N N N N	
og			Mk	r1 2.442 1 GHz -1.43 dBm	
10.0					Center Fre 6.50000000 GH
1.00 1					Start Fre 1.000000000 GF
0.0				21.43 dBm	Stop Fr 12.00000000 G
0.0					CF St 1.100000000 G Auto M
	New York Constrained		long little samtleri		Freq Offs 0
tart 1.000 GHz Res BW 100 kHz	#VBW 1.(Stop 12.000 GHz 1.02 s (10001 pts)	

Agilent Spec			ept SA							
LXI RL	RF				SE	NSE:INT		ALIGN AUTO	02:22:19 PM Dec 19, 201	
Center I	-req	18.500	00000	D GHZ PNO: Fast G IFGain:Low	Trig: Free Atten: 30		Avg Type	:: Log-Pwr Mkr	TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N 1 23.681 8 GHz	
10 dB/div Log	Ref	20.00	dBm						-41.71 dBm	
										Center Freq
10.0									<u></u>	18.500000000 GHz
0.00	_		2							Start Fred
-10.0	-		-							12.000000000 GHz
-20.0	_								-21.43 dBr	Stop Fred
-30.0				~	6					25.000000000 GH
-40.0			2						1	CF Step
-50.0				entry of the second state	and a second	hole stands	A CALLER AND A CALLER			Auto Mar
-60.0	al Longalle Anno 1994				T					Freq Offset
										0 H:
-70.0										
Start 12. #Res BW				#\(B)	N 1.0 MHz			Swaan	Stop 25.000 GHz 1.20 s (10001 pts	
	J 02 03 0000 03			#VDI						,
usg 🗼 File	<imag< td=""><td>e.png> s</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>5</td><td></td></imag<>	e.png> s	aved					STATUS	5	

	m Analyzer - Swept S								
Center Fr	RF 50 Ω A0 eq 515.00000	DO MHz PNO: Fast 😱] Trig: Free			ALIGNAUTO : Log-Pwr	TRACE TYPE	Dec 19, 2011 1 2 3 4 5 6 MWWWWW P N N N N N	Frequency
10 dB/div	Ref 20.00 dBn	IFGain:Low	Atten: 30	dB		Mkr	1 957.90	W. Hannang	Auto Tune
10.0									Center Freq 515.000000 MHz
-10.0									Start Freq 30.000000 MHz
-20.0								-21.57 dBm	Stop Fred 1.000000000 GHz
40.0								1-	CF Step 97.000000 MH: <u>Auto</u> Mar
60.0			Ng fini alguna balanda Ananda ang tanàna mang	an that has been a factor of the second s	ala kalan kasha a kash	a salata dhallan silan Manganan na dhalan	Mandadah		Freq Offse 0 Hz
-70.0									
Start 30.0 #Res BW 1		#VBW	1.0 MHz		\$	Sweep 90	Stop 1.00 0.0 ms (10		
⊿sg 🤑 File <	Image.png> saved	l.				STATUS			

Channel 11 (2462MHz)

RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	02:28:32 PMDec 19, 2011	Frequency
enter Fr	eq 6.5000000	PNO: Fast IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Trequency
0 dB/div	Ref 20.00 dBm			Mł	r1 2.459 7 GHz -1.57 dBm	Auto Tur
og						Center Fre
10.0	A 1					6.500000000 GI
0.0						Start Fr 1.000000000 G
0.0					-21.57 dBm	Stop Fr
0.0						12.000000000 G
0.0						CF St 1.10000000 G
0.0		and the second	an a		a second second second	<u>Auto</u> M
			A Second Control of the second se			Freq Offs 0
0.0						
tart 1.000 Res BW 1		#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
	nent Completed			STATUS		

Agilent Spec		alyzer - Sw	ept SA							
LXI RL	RF	50 Ω			SE	NSE:INT		ALIGN AUTO	02:29:35 PM Dec 19, 2011	Frequency
Center I	req	18.500) GHz PNO: Fast ⊂ IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Trequency
10 dB/div	Ref	20.00 (in Gam. Low				Mkr	1 23.648 0 GHz -41.52 dBm	Auto Tune
10.0				0						Center Freq 18.50000000 GHz
0.00										Start Freq 12.000000000 GHz
-20.0	_								-21.57 dBm	Stop Freq 25.000000000 GHz
-40.0					Antonio materia	e Lington (1997)		a para ten de la la la ten para para	1	CF Step 1.30000000 GHz <u>Auto</u> Man
-60.0	n frank spart y Andre same frank					n dalam kanalara				Freq Offse 0 Hz
-70.0										
Start 12. #Res BW				#VBV	V 1.0 MHz			Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
мsg 🗼 File	<lmag< td=""><td>e.png> sa</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td></lmag<>	e.png> sa	aved					STATUS		

:	Mozart II
:	RF Antenna Conducted Spurious
:	No.3 OATS
:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

RL RF 50Ω AC		SE	VSE:INT		ALIGN AUTO	02:36:54 PM D	er 19. 2011 🖡	
enter Freq 515.00000		Trig: Free Atten: 30	Run	Avg Type	: Log-Pwr	TRACE 1 TYPE	23456 10000000 1000000000000000000000000000	Frequency
dB/div Ref 20.00 dBm		Allen. 30			Mkr	1 894.949 -54.70		Auto Tune
).0								Center Free 515.000000 MH
.0								Start Fre 30.000000 MH
.0							-22.98 dBm	Stop Fre 1.000000000 GH
1.0						1-		CF Ste 97.000000 MH <u>Auto</u> Ma
	te for the same to the post of the formation (to prove the same to be a same to be a same to be a same to be a		enter aller		and the of the build of	tilletone (states - landare		Freq Offs 0 ⊦
art 30.0 MHz						Stop 1.000		
Res BW 100 kHz	#VBW	1.0 MHz			Sweep 9	0.0 ms (100		

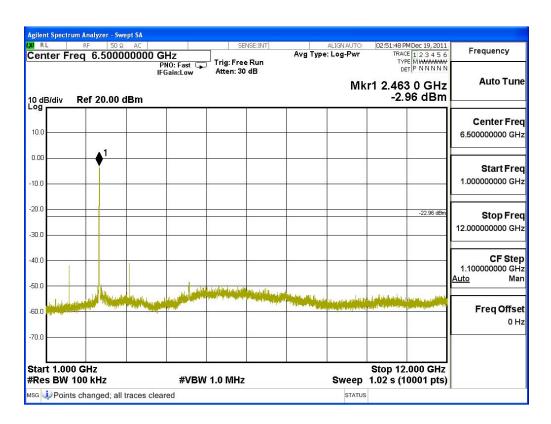
Channel 01 (2412MHz)

Agilent Spectrum Analyzer - Swept S				
Center Freq 6.500000	000 GHz	Avg Type: L	GNAUTO 02:36:22 PMDec 19, 3 og-Pwr TRACE 1 2 3 4	5.6 Frequency
10 dB/div Ref 20.00 dBr	PNO: Fast Trig: Free IFGain:Low Atten: 30		Mkr1 2.415 7 G -2.97 dE	Hz Auto Tune
10.0				Center Free 6.500000000 GH
10.0				Start Fre 1.000000000 G⊢
30.0			-22.96	dBm Stop Fre 12.000000000 GH
40.0				CF Ste 1.100000000 GF <u>Auto</u> Ma
50.0				Freq Offso 0 H
70.0 Start 1.000 GHz #Res BW 100 kHz	#VBW 1.0 MHz		Stop 12.000 G Sweep 1.02 s (10001 p	
usg 🔱 Points changed; all trac	ces cleared		STATUS	

Agilent Spectrum Analyzer - Swep					
	AC 00000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:37:25 PM Dec 19, 2011 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 db	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB		1 24.988 3 GHz -40.74 dBm	Auto Tune
10.0					Center Fred 18.50000000 GHz
-10.0					Start Free 12.000000000 GH:
-20.0				-22.98 dBm	Stop Free 25.000000000 GH
-40.0	in the state of th				CF Ste 1.300000000 GH <u>Auto</u> Ma
		e generalise die Alt Alt fan in eenschiere eenschijk die die Alt fan die Alt fan die Alt fan die Alt fan die A In die Alt fan d			Freq Offse 0 H
Start 12.000 GHz #Res BW 100 kHz #ss J File <image.png> sav</image.png>	#VBW 1	.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	

M2 RL RF 50Ω AC Center Freq 515.000000 MHz PN0:Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	02:44:50 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
			THE REAL PROPERTY IN A REAL PROPERTY INTERNAL PROPERTY INTE	
10 dB/div Ref 20.00 dBm	27 - 10 -	Mkr	1 798.628 MHz -54.27 dBm	Auto Tune
10.0				Center Freq 515.000000 MHz
10.0				Start Freq 30.000000 MHz
30.0			-22.99 dBm	Stop Freq 1.000000000 GHz
40.0			1	CF Step 97.000000 MHz <u>Auto</u> Man
60.0 Martin and the state state in a state of the state of the state of the	ala datuk dari katang basha datu ang basha datu ang basa datu ang basha datu ang basha datu ang basha datu ang Pangang basha datu ang	alpena dan kanta ta para dan d	the part of the second	Freq Offset 0 Hz
-70.0			Stop 1.0000 GHz	
	V 1.0 MHz		.0 ms (10001 pts)	

Channel 06 (2437MHz)


RL RF 50 (Center Freq 6.500)	000000 GHz PN0: Fast 🖵	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	02:44:19 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N	Frequency
0 dB/div Ref 20.00	IFGain:Low	Atten: 30 dB	Mk	r1 2.441 0 GHz -2.99 dBm	Auto Tun
10.0					Center Fre 6.50000000 GH
0.00					Start Fre 1.000000000 Gi
0.0				-22.99 dBm	Stop Fr 12.00000000 G
0.0					CF Ste 1.100000000 Gi <u>Auto</u> M
				a gy falaidh a fra an an Suite an Suite an Suite Anns fan Arthread Charles an Suite an Suite an Suite an Suite	Freq Offs
70.0 Start 1.000 GHz Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 12.000 GHz 1.02 s (10001 pts)	
sg Div Too kinz		1.0 10112	STATUS		

Agilent Spectrum Analyzer - Swe					
XIRL RF 50Ω Center Freq 18.5000	PNO: Fast 😱	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	02:45:22 PMDec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 d	IFGain:Low	Atten: 30 db	Mkr	1 23.685 7 GHz -40.66 dBm	Auto Tune
10.0					Center Fred 18.500000000 GHz
10.0					Start Free 12.000000000 GH
30.0				-22.99 dBm	Stop Fre 25.000000000 GH
40.0 50.0	. In the second second second	Mint I and Million			CF Ste j 1.300000000 GH <u>Auto</u> Ma
	(der j. 1944) ja die trippen tet werd 1944				Freq Offse 0 H
70.0 Start 12.000 GHz				Stop 25.000 GHz	
#Res BW 100 kHz Isg		1.0 MHz	Sweep		

Frequency	02:52:19 PMDec 19, 2011 TRACE 1 2 3 4 5 6	ALIGNAUTO		SENS	U7	50 Ω AC	RL RF
Auto Tu	TYPE MUMUU DET P NNNNN 1 802.605 MHz -54.58 dBm			Trig: Free Atten: 30 c	PNO: Fast 😱 FGain:Low	20.00 dBm	dB/div Ref
Center Fr 515.000000 Mi							g 0.0
Start Fre 30.000000 Mi							.0
Stop Fr 1.00000000 G	-22.96 dBm						.0
CF St e 97.000000 M <u>Auto</u> M	.1						.0
Freq Offs 0	en fan de syn de generaties de le lithe De syn de ser de ser An de syn de ser an en ser generaties de ser de ser anne	a da da a da da a da a da a da a da a	Malingdon (Likes, Lik	dual false parts		heres believe en presidenties en presidenties en presidenties en presidenties en presidenties en presidenties e	. U Markan da Markan da Kara
	Stop 1.0000 GHz 0.0 ms (10001 pts)	Sweep 9		1.0 MHz	#VBW		art 30.0 MHz

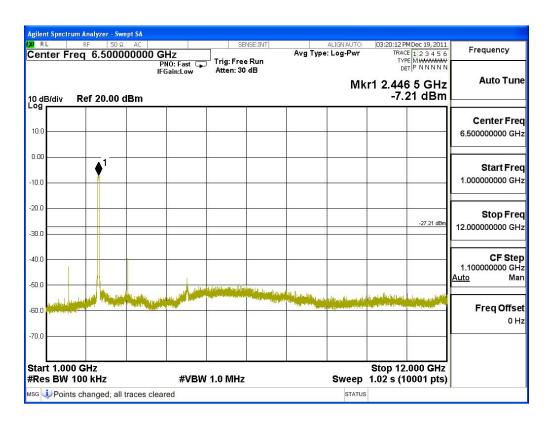
Channel 11 (2462MHz)

Agilent Spec			ept SA							
LXI RL	RF				SEI	VSE:INT		ALIGN AUTO	02:52:50 PMDec 19, 2011	
Center	Freq	18.500	00000	D GHz PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	1
10 dB/div Log	Ref	20.00	lBm					Mkr	1 23.624 6 GHz -40.32 dBm	
										Center Freq
10.0										18.500000000 GHz
0.00										Start Fred
-10.0										12.000000000 GHz
-20.0									-22.96 dBm	Stop Fred
-30.0										25.00000000 GHz
-40.0						-			1	CF Step
-50.0			A. CARLON			والمتعاول	New York Contraction of the last	and the local sector		1.300000000 GH: <u>Auto</u> Mar
ور مار م		a state of the sta	a dille a di bitta a		and the second second	And the second second				and an and a second second
-60.0	distingt par ed									Freq Offset 0 Hz
-70.0						<u>.</u>				
Start 12.									Stop 25.000 GHz	
#Res BM	100	kHz		#VBW	1.0 MHz			Sweep	1.20 s (10001 pts)	
usg 🗼 File	e <lmag< td=""><td>e.png> sa</td><td>aved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>5</td><td></td></lmag<>	e.png> sa	aved					STATUS	5	

Product	:	Mozart II
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

	um Analyzer - Swept SA								
XI RL Center Fr	RF 50 Ω AC]	SE:INT	Avg Type	LIGNAUT	r TRA	PMDec 19, 2011 ACE 1 2 3 4 5 6	Frequency
10 dB/div	Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free Atten: 30 d			М	kr1 919.:	296 MHz .82 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
-10.0									Start Freq 30.000000 MHz
-20.0								-26.93 dBm	Stop Freq 1.000000000 GHz
40.0								1	CF Step 97.000000 MH Auto Mar
a stal of a state		General Providence (1986)	en que a porte de la contra de la El tra porte de la contra de la co				an a		Freq Offset 0 Hz
70.0									
Start 30.0 #Res BW		#VBW	1.0 MHz			Sweep		.0000 GHz 10001 pts)	
ısg 🤳 File <	Image.png> saved					STAT	rus		0

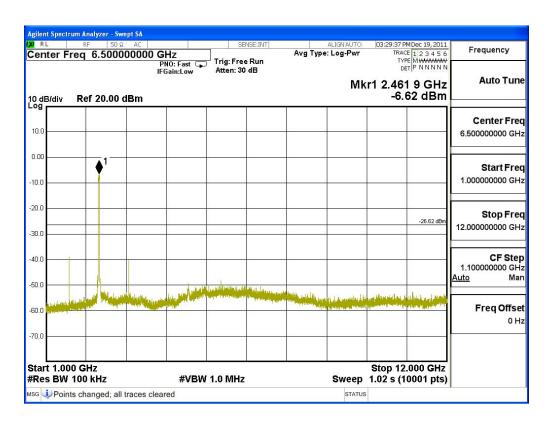
Channel 01 (2422MHz)


Agilent Spectrum Ana									
Center Frea	50 Ω AC	GH7	SEN	ISE:INT	Avg Type	ALIGNAUTO		MDec 19, 2011 E 1 2 3 4 5 6	Frequency
I	20.00 dBm	PNO: Fast IFGain:Low	Trig: Free Atten: 30			Mk	r1 2.43	B 8 GHz 93 dBm	Auto Tune
10.0									Center Fred 6.50000000 GHz
0.00									0.50000000 GH2
-10.0	♦ ¹								Start Fred 1.000000000 GH2
-20.0				-				-26.93 dBm	Stop Free 12.000000000 GH
-30.0									12.00000000 GH.
-40.0									CF Step 1.100000000 GH: Auto Mar
-50.0		The state of the s		The second of the second		المراجعة والمراجع		Land damath	
-60.0	and the second second second			- offerter	State of the State	na nelli na della filindana.	alateri da de la desta	Andrew have a state of the	Freq Offset 0 Hz
-70.0				2					
Start 1.000 GH #Res BW 100		#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
MSG 🗼 Points cha	nged; all traces c	leared				STATUS	;		H

RL RF	50 Ω AC		SEN	ISE:INT		ALIGN AUTO	03:13:31 PM	Dec 19, 2011	
Center Freq 18.) GHz PNO: Fast 😱 IEGain:Low	Trig: Free Atten: 30	Run	Avg Type	: Log-Pwr	TRACE TYPE	123456 M WWWWW PNNNNN	Frequency
0 dB/div Ref 20	.00 dBm	IFGain:Low	Atten: 30	60		Mkr	1 23.628	2010 1270-002	Auto Tune
10.0									Center Fre 18.50000000 GH
10.00									Start Fre 12.00000000 GF
80.0								-26.93 dBm	Stop Fre 25.00000000 Gi
10.0					d salas medicind	ng line state of the state of the	-		CF Ste 1.300000000 GF Auto Ma
50.0 50.0			tradit dan kalan			an an Anna Anna Anna Anna Anna Anna Ann			Freq Offs
70.0 Start 12.000 GHz Res BW 100 kHz	:	#VBW	1.0 MHz			Sweep	Stop 25.0 1.20 s (10		

Frequency	03:20:43 PMDec 19, 2011 TRACE 1 2 3 4 5 6	ALIGNAUTO		SEN	-		RF 50 s	RL
Auto Tu	DET P NNNN DET P NNNNN 1 982.152 MHz -54.42 dBm	-	n	Trig: Free Atten: 30 o	Z 10: Fast 😱 iain:Low	PN IFG	Ref 20.00	0 dB/div
Center Fr 515.000000 Mi								og 10.0
Start Fre 30.000000 Mi								0.0
Stop Fr 1.00000000 G	-27.21 dBm							0.0
CF St (97.000000 M <u>Auto</u> M	á							0.0
Freq Offs 0	alah di Japan kenandi di Kabul yang berbaran kenang kenang kenang kenang kenang kenang kenang kenang kenang ken Kenang pang kanang kenang k	ling and an an official and a stability of the state of the	ala da Uparta da Danas	ndag (Jacobert Harrent) Second Station of Assessment	alla frata illanta	nyak kin tan kin j	a Canada an Angelan (Angelan)	. I Felin alig
	Stop 1.0000 GHz .0 ms (10001 pts)			1.0 MHz				tart 30.0 Res BW

Channel 04 (2437MHz)



Agilent Spectrum								c.
XI RL Center Fred		0000 GHz PNO: Fast IFGain:Low	Trig: Free Atten: 30		ALIGNAUTO : Log-Pwr	TRAC TYP	MDec 19, 2011 2 1 2 3 4 5 6 PE MWWWWW TP N N N N N	Frequency
	ef 20.00 dB		Atten: 30	ab	Mkr	1 24.88	8 2 GHz 13 dBm	Auto Tune
- og 10.0								Center Fred 18.50000000 GHz
10.00								Start Free 12.000000000 GH
20.0 30.0							-27.21 dBm	Stop Free 25.000000000 GH
40.0			-local descention of the	n f stal produktion	Teleponenti di Lington			CF Step 1.300000000 GH <u>Auto</u> Mar
50.0								Freq Offse 0 H
70.0								
Start 12.000 #Res BW 10		#VBW	1.0 MHz		Sweep		.000 GHz 0001 pts)	
ısg 🤃 File <lm< td=""><td>age.png> save</td><td>d</td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></lm<>	age.png> save	d			STATUS			

Frequency	03:30:08 PM Dec 19, 2011 TRACE 1 2 3 4 5 6	ALIGNAUTO vpe: Log-Pwr	Ava T	ENSE:INT	SE	7		RF 50	RL
Auto Tur	түре Мулиций Det P N N N N N 1 905.619 MHz -54.14 dBm	Section du			Trig: Free Atten: 30	Z 10: Fast 😱 Sain:Low	Pi IFC	Ref 20.00	0 dB/div
Center Fre 515.000000 MH					5				
Start Fre 30.000000 Mi									0.0
Stop Fr 1.00000000 G	-26.62 dBm								
CF St e 97.000000 M <u>Auto</u> M	1								0.0 0.0
Freq Offs 0	and all polo all a state of a polo and a state of a	Ngana pilasona kaploti i Mga kapanganganganganganganganganganganganganga	den itin ten			n fi harroltan i hin marina i			0.0 <mark>111 111</mark>
	Stop 1.0000 GHz 0.0 ms (10001 pts)	Sween 9			1.0 MHz	#\/B\/		MHz 100 kHz	tart 30.0

Channel 07 (2452MHz)

Agilent Spec		ılyzer - Swe								
LXI RL	RF	50 Ω			SE	VSE:INT		ALIGN AUTO	03:30:39 PM Dec 19, 201	
Center I	req	18.500) GHz PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 30		Avg Type	: Log-Pwr	TRACE 1 2 3 4 5 1 TYPE MWWWWW DET P N N N N 1	р , , , , , , , , , , , , , , , , , , ,
10 dB/div	Ref	20.00 d	IBm					Mkr	1 23.631 1 GHz -40.90 dBm	
										Center Freq
10.0				<u>.</u>	0					18.50000000 GHz
0.00	_					-				Start Freq
-10.0				0						12.000000000 GHz
-20.0										Stop Fred
-30.0									-26.62 dBn	25.000000000 GHz
-40.0						8			↓ ¹	CF Step
			0.00		والبالية والمريد الم	an an late	and a ball of the state of the state	and the states of the		1.300000000 GHz <u>Auto</u> Mar
-50.0	يولد والل	Angener (1617 Part of	a fa fa se de la comise esta de la comise de	all to a second se	the second second sheet	in the second	and the second			1
-60.0	all success	1								Freq Offset
-70.0										
Start 12.	000 G	H7							Stop 25.000 GHz	ļ
#Res BW				#VBW	1.0 MHz			Sweep		
msg 🗼 File	<lmag< td=""><td>e.png> sa</td><td>ived</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>\$</td><td></td></lmag<>	e.png> sa	ived					STATUS	\$	

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

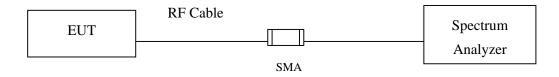
Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

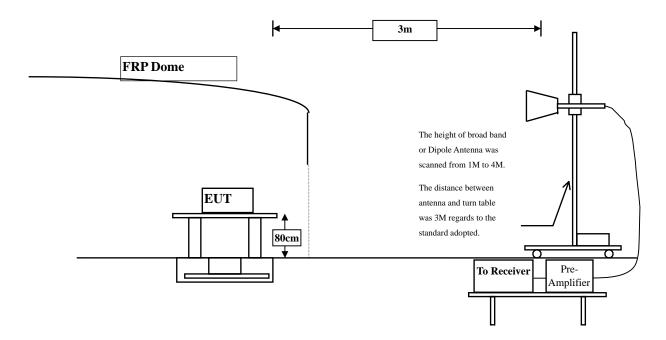
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

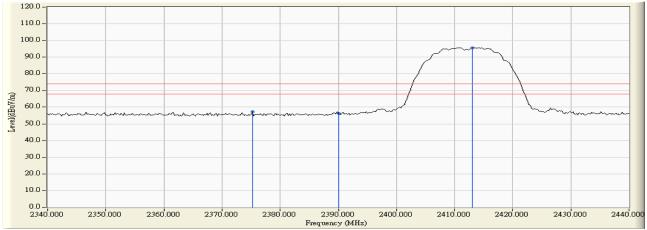
The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

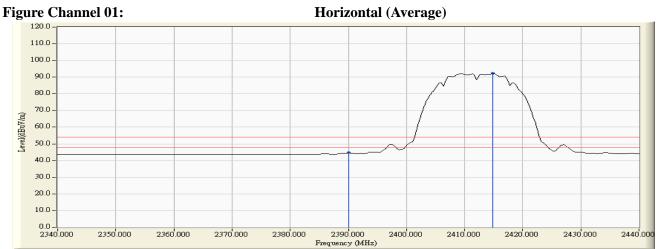
The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

- \pm 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge


Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

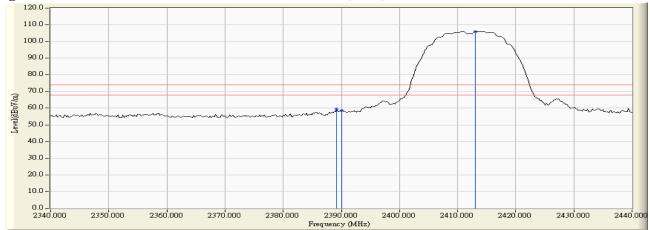

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2375.200	31.452	25.834	57.285	74.000	54.000	Pass
01 (Peak)	2390.000	31.509	24.770	56.279	74.000	54.000	Pass
01 (Peak)	2413.000	31.646	63.981	95.627			
01 (Average)	2390.000	31.509	13.053	44.562	74.000	54.000	Pass
01 (Average)	2414.800	31.660	60.571	92.231			

Figure Channel 01:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

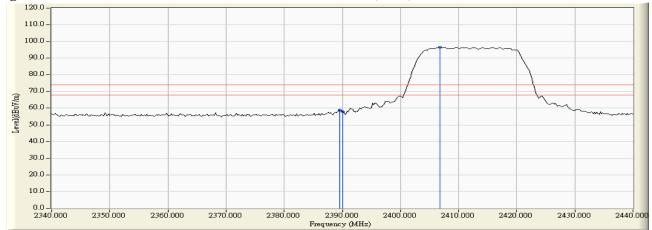
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2389.200	30.919	28.743	59.662	74.000	54.000	Pass
01 (Peak)	2390.000	30.915	27.574	58.489	74.000	54.000	Pass
01 (Peak)	2413.000	30.956	75.014	105.970			
01 (Average)	2390.000	30.915	18.240	49.155	74.000	54.000	Pass
01 (Average)	2414.800	30.968	71.645	102.613			

Figure Channel 01:

Vertical (Peak)

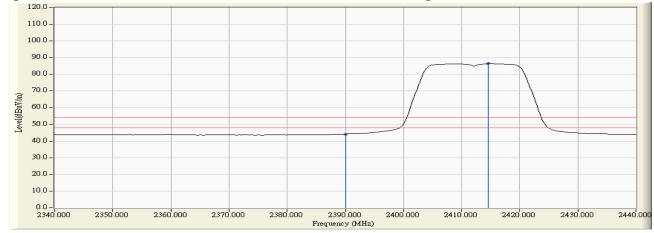
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



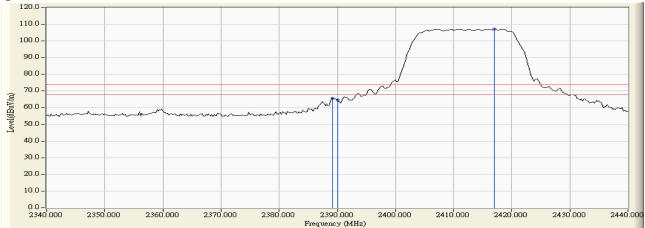
Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

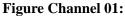
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2389.600	31.508	27.343	58.851	74.000	54.000	Pass
01 (Peak)	2390.000	31.509	26.270	57.779	74.000	54.000	Pass
01 (Peak)	2406.800	31.604	64.862	96.466			
01 (Average)	2390.000	31.509	12.680	44.189	74.000	54.000	Pass
01 (Average)	2414.600	31.659	54.755	86.413			


Figure Channel 01:

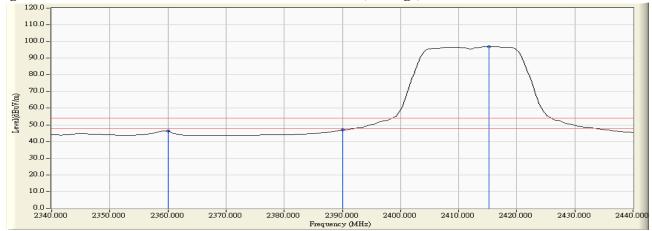
Horizontal (Peak)

Horizontal (Average)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

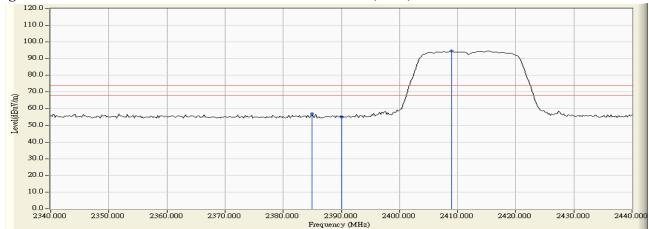

Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2389.200	30.919	34.567	65.486	74.000	54.000	Pass
01 (Peak)	2390.000	30.915	33.719	64.634	74.000	54.000	Pass
01 (Peak)	2417.000	30.983	76.013	106.996			
01 (Average)	2360.000	31.054	15.196	46.250	74.000	54.000	Pass
01 (Average)	2390.000	30.915	15.919	46.834	74.000	54.000	Pass
01 (Average)	2415.200	30.971	65.953	96.924			

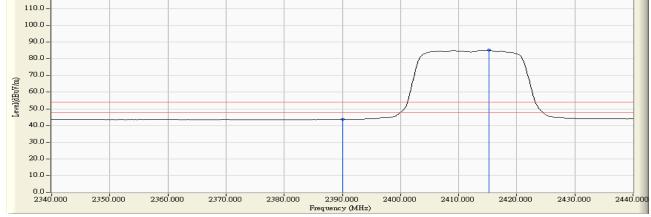

Figure Channel 01:

Vertical (Peak)

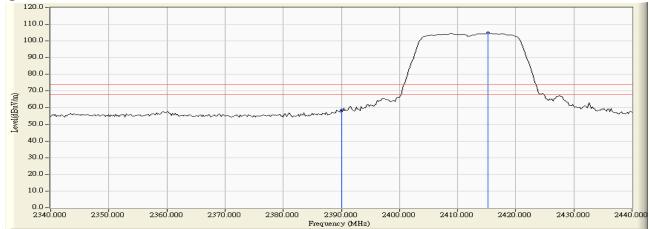
Vertical (Average)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

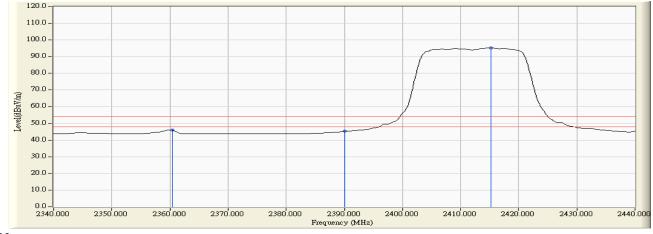

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2385.000	31.490	25.334	56.824	74.000	54.000	Pass
01 (Peak)	2390.000	31.509	23.634	55.143	74.000	54.000	Pass
01 (Peak)	2409.000	31.618	63.043	94.661			
01 (Average)	2390.000	31.509	12.223	43.732	74.000	54.000	Pass
01 (Average)	2415.200	31.662	53.431	85.094			

Horizontal (Peak)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

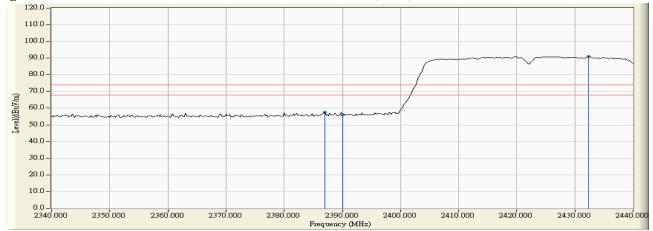
Channel No.	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Result
01 (Peak)	2390.000	30.915	27.742	58.657	74.000	54.000	Pass
01 (Peak)	2415.200	30.971	73.846	104.817			
01 (Average)	2360.400	31.052	14.837	45.889	74.000	54.000	Pass
01 (Average)	2390.000	30.915	14.296	45.211	74.000	54.000	Pass
01 (Average)	2415.200	30.971	64.356	95.327			


Figure Channel 01:

Vertical (Peak)

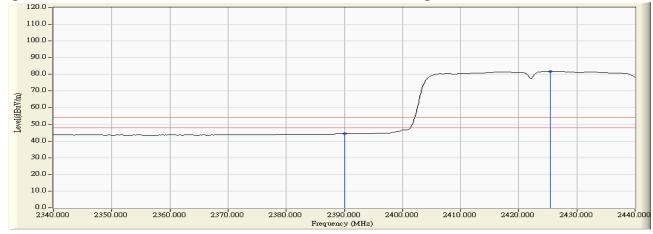
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

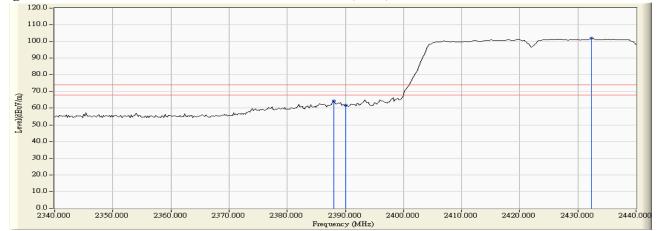
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2387.000	31.497	26.046	57.543	74.000	54.000	Pass
01 (Peak)	2390.000	31.509	24.452	55.961	74.000	54.000	Pass
01 (Peak)	2432.400	31.794	59.392	91.186			
01 (Average)	2390.000	31.509	12.795	44.304	74.000	54.000	Pass
01 (Average)	2425.400	31.741	50.024	81.765			


Figure Channel 01:

Horizontal (Peak)

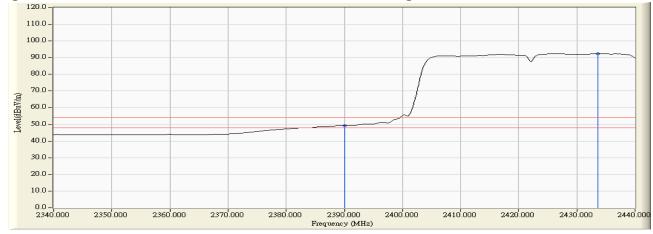
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

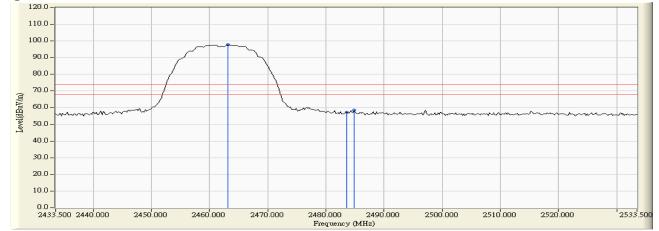
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2388.000	30.925	33.402	64.327	74.000	54.000	Pass
01 (Peak)	2390.000	30.915	30.852	61.767	74.000	54.000	Pass
01 (Peak)	2432.400	31.088	71.032	102.120			
01 (Average)	2390.000	30.915	18.351	49.266	74.000	54.000	Pass
01 (Average)	2433.600	31.096	61.195	92.291			


Figure Channel 01:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

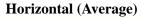
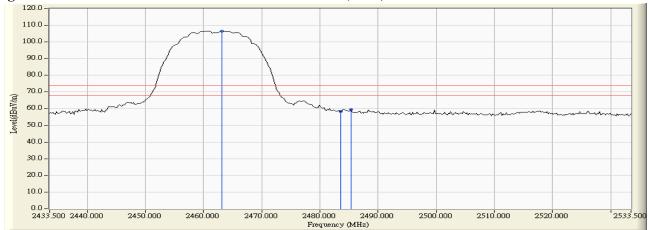

Channel No.	1 P	Correct Factor	U	Emission Level		U	Result
0114111011100	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	1005010
01 (Peak)	2463.100	32.028	65.613	97.641			
01 (Peak)	2483.500	32.182	25.091	57.273	74.000	54.000	Pass
01 (Peak)	2484.900	32.193	26.307	58.500	74.000	54.000	Pass
01 (Average)	2464.700	32.039	62.025	94.065			
01 (Average)	2483.500	32.182	13.309	45.491	74.000	54.000	Pass

Figure Channel 01:

Horizontal (Peak)

Figure Channel 01:


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.

Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (AWOXMII2A64)

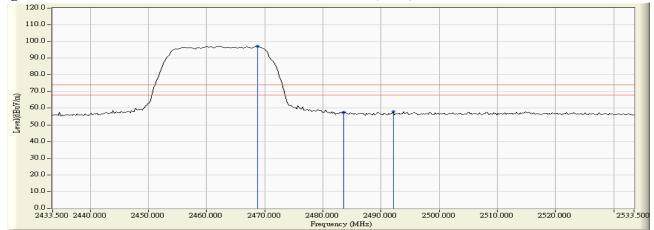
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2463.100	31.298	75.224	106.522			
01 (Peak)	2483.500	31.435	26.916	58.351	74.000	54.000	Pass
01 (Peak)	2485.300	31.448	27.974	59.422	74.000	54.000	Pass
01 (Average)	2459.300	31.272	71.666	102.938			
01 (Average)	2483.500	31.435	16.962	48.397	74.000	54.000	Pass

Figure Channel 01:

Vertical (Peak)

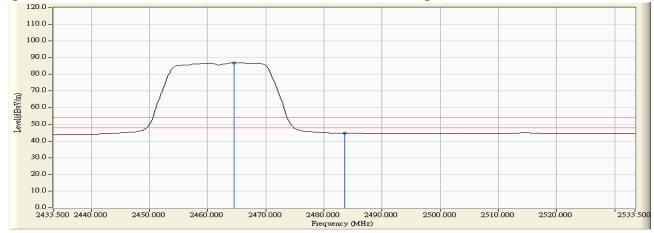
Figure Channel 01:

Vertical (Average)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2468.700	32.070	65.007	97.077			
01 (Peak)	2483.500	32.182	25.513	57.695	74.000	54.000	Pass
01 (Peak)	2492.100	32.247	25.508	57.755	74.000	54.000	Pass
01 (Average)	2464.500	32.038	54.862	86.900			
01 (Average)	2483.500	32.182	12.546	44.728	74.000	54.000	Pass

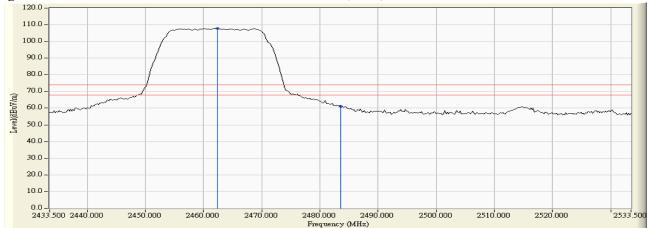

Figure Channel 01:

Horizontal (Peak)

Figure Channel 01:

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (AWOXMII2A64)

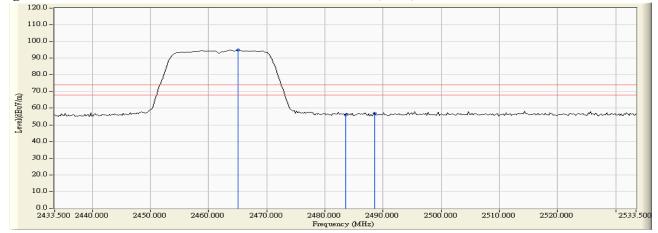
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2462.300	31.293	76.599	107.891			
01 (Peak)	2483.500	31.435	29.728	61.163	74.000	54.000	Pass
01 (Average)	2464.500	31.307	66.308	97.615			
01 (Average)	2483.500	31.435	15.642	47.077	74.000	54.000	Pass


Figure Channel 01:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2465.100	32.043	62.728	94.771			
01 (Peak)	2483.500	32.182	23.744	55.926	74.000	54.000	Pass
01 (Peak)	2488.500	32.219	24.612	56.832	74.000	54.000	Pass
01 (Average)	2465.100	32.043	53.226	85.269			
01 (Average)	2483.500	32.182	12.374	44.556	74.000	54.000	Pass

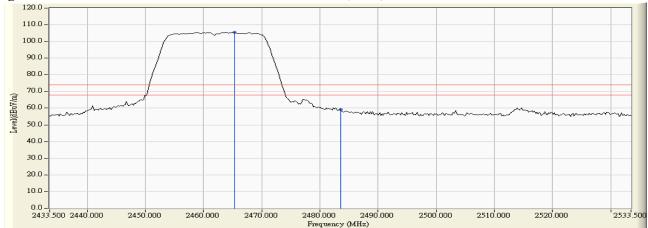

Figure Channel 01:

Horizontal (Peak)

Figure Channel 01:

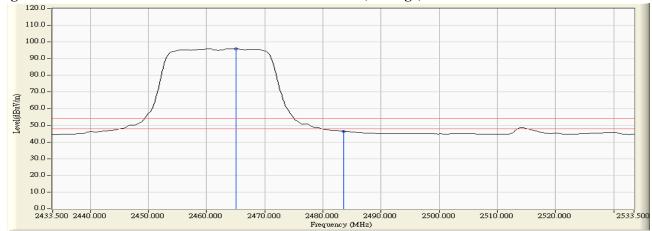
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (AWOXMII2A64)

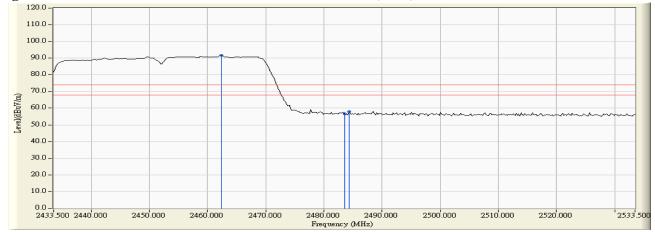
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2465.300	31.313	74.150	105.463			
01 (Peak)	2483.500	31.435	27.920	59.355	74.000	54.000	Pass
01 (Average)	2465.100	31.312	64.655	95.966			
01 (Average)	2483.500	31.435	15.049	46.484	74.000	54.000	Pass


Figure Channel 01:

Vertical (Peak)

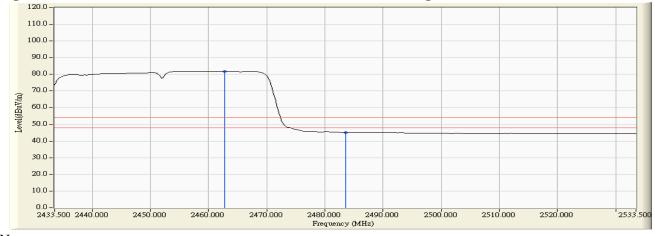
Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

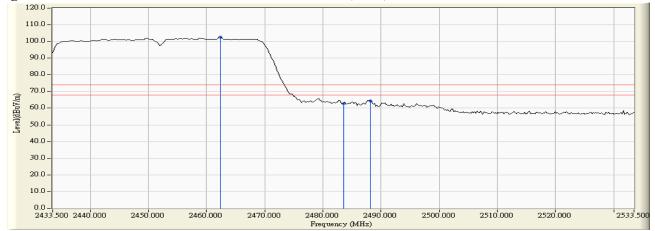
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2462.300	32.022	59.715	91.737			
01 (Peak)	2483.500	32.182	24.448	56.630	74.000	54.000	Pass
01 (Peak)	2484.300	32.187	25.613	57.801	74.000	54.000	Pass
01 (Average)	2462.700	32.025	49.801	81.826			
01 (Average)	2483.500	32.182	12.958	45.140	74.000	54.000	Pass


Figure Channel 01:

Horizontal (Peak)

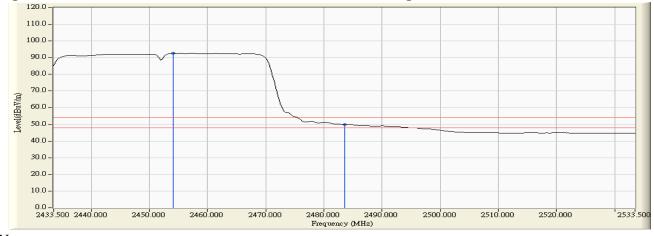
Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average etection.



Product	:	Mozart II
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (AWOXMII2A64)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Kesuit
01 (Peak)	2462.300	31.293	71.251	102.543			
01 (Peak)	2483.500	31.435	31.356	62.791	74.000	54.000	Pass
01 (Peak)	2488.100	31.466	32.803	64.269	74.000	54.000	Pass
01 (Average)	2454.100	31.236	61.281	92.517			
01 (Average)	2483.500	31.435	18.352	49.787	74.000	54.000	Pass


Figure Channel 01:

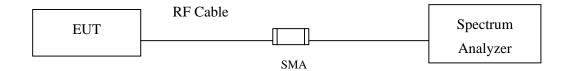
Vertical (Peak)

Figure Channel 01:

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2011

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	Mozart II
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz) (AWOXMII2A64)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	12250	>500	Pass

Figure Channel 1:

RL RF	50 Ω AC		SENSE:INT	Aug Typ.	ALIGNAUTO e: Log-Pwr	01:54:56 PM	Dec 19, 2011	Frequency
enter Freq 2	2.412000000	GHZ PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Typ	e. Log-r wi	TYPE	PNNNN PNNNNN	
dB/div Ref	20.00 dBm				Mkr	2 2.405 9 -4.9	0 GHz 1 dBm	Auto Tu
9 9 0.0		▲2		∧3				Center Fr
00		- And	providences presses	ton Lun			-3.82 dBm	2.412000000 G
.0		1 the second sec		- 1			I	Start Fr
.0	a de	«/			1 mg -	u .		2.387000000 G
.0 month and a second	M	V			V Why	Maria	w ~~~~	Stop Fr
.0								2.437000000 G
enter 2.41200 tes BW 100 k		#VBW 1			#Swoon		.00 MHz	CF St
r mode tro scl	хпz Х	#VBW		UNCTION FU	#Sweep	500 ms (1 FUNCTION		5.000000 N Auto N
N 1 f N 1 f	2.405	3 00 GHz 5 90 GHz	2.18 dBm -4.91 dBm					
8 N 1 f	2.418	3 15 GHz	-4.55 dBm					Freq Offs 0
3								
2								

Product	:	Mozart II
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz) (AWOXMII2A64)

Channel No. Frequency		Measurement Level	Required Limit	Result
(MHz)		(kHz)	(kHz)	
6	2437	12350	>500	Pass

Figure Channel 6:

RL RF 50 Ω	AC	SENSE:INT	ALIGN AUTO	02:01:47 PMDec 19, 2011	Fragmance
enter Freq 2.43700	10000 GHz PNO: Fast G IFGain:Low	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00 d	Bm		Mkr	2 2.430 90 GHz -4.48 dBm	Auto Tun
Pg 0.0 .00 .00		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	w A3		Center Fre 2.437000000 G⊦
0.0	and -		- Van	wy A as	Start Fre 2.412000000 GF
0.0 Here and a construction of the constructio	V				Stop Fre 2.462000000 GH
enter 2.43700 GHz Res BW 100 kHz	#VBV	V 100 kHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	CF Ste 5.000000 MI
KR MODE TRC SCL 1 N 1 f 2 N 1 f	× 2.438 00 GHz 2.430 90 GHz	2.68 dBm -4.48 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
3 N 1 f 4 5 6 6	2.443 25 GHz	-3.96 dBm			Freq Offs 01
7 8 9 0 1					
2					

Product	:	Mozart II
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz) (AWOXMII2A64)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	12250	>500	Pass

Figure Channel 11:

gilent Spectrum Analyzer - Swe	pt SA	an a			
RL RF 50 Ω Center Freq 2.4620	AC 00000 GHz PNO: Fast	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	02:10:01 PM Dec 19, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 20.00 c	IFGain:Low	Atten: 30 dB	Mkr	DET P NNNNN 2 2.455 90 GHz -4.84 dBm	Auto Tun
• 0 g 10.0 0.00 10.0	2 Area V	- same paramen	3	-3.74 tiBm	Center Fre 2.462000000 GH
0.0	nort				Start Fr 2.437000000 Gi
0.0	V V ·			V. Martinez Martenne	Stop Fr 2.487000000 G
enter 2.46200 GHz Res BW 100 kHz		100 kHz	-	Span 50.00 MHz 500 ms (1001 pts)	CF Sto 5.000000 M
R MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f	× 2.463 00 GHz 2.455 90 GHz 2.468 15 GHz	2.26 dBm -4.84 dBm -4.39 dBm	NCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
4 5 6 6 7 9					Freq Offs 0
8 9 0 1					
1 2			STATUS		