

Product Name	Mozart II
Model No	AWOXMII0A32, AWOXMII0D32
FCC ID.	PPQ-AWOXMII0

Applicant	Lite-On Technology Corp.
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.

Date of Receipt	Dec. 09, 2011
Issue Date	Dec. 28, 2011
Report No.	11C203R-RFUSP29V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Dec. 28, 2011 Report No.: 11C203R-RFUSP29V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	Mozart II			
Applicant	Lite-On Technology Corp.			
Address	4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.			
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD			
Model No.	AWOXMII0A32, AWOXMII0D32			
FCC ID.	PPQ-AWOXMII0			
EUT Rated Voltage	DC 3.3V			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	AWOX S.A.			
Applicable Standard FCC CFR Title 47 Part 15 Subpart C: 2010				
	ANSI C63.4: 2003			
Test Result	Complied			

The test results relate only to the samples tested.

•

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

even Huang

(Senior Adm. Specialist / Leven Huang)

Tested By

Isu

(Engineer / Jack Hsu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5. 1.6.	Test Facility	
2.	Conducted Emission	
2.		
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	16
3.1.	Test Equipment	16
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	21
4.1.	Test Equipment	21
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	45
5.1.	Test Equipment	45
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	71
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
	Less Rebuit of Duild Dage minimum minimum	

7.	Occupied Bandwidth	
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	104
9.	EMI Reduction Method During Compliance Testing	116

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Mozart II			
Trade Name	AWOX S.A			
Model No.	AWOXMII0A32, AWOXMII0D32			
FCC ID.	PPQ-AWOXMII0			
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW			
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7			
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 150Mbps			
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)			
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)			
Antenna Type	PIFA			
Antenna Gain	Refer to the table "Antenna List"			
Channel Control	Auto			

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	MAG.LAYERS	MSA-1908-2G4C1-A1	PIFA	3.79dBi for 2.4 GHz

Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

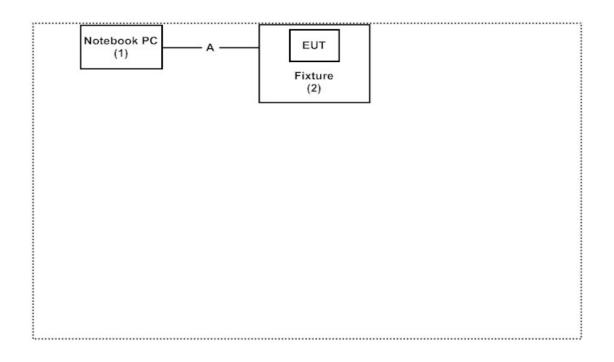
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11n-40M	Hz Center Fre	equency of Ea	ch Channel:				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 03:	2422 MHz	Channel 04:	2427 MHz	Channel 05:	2432 MHz	Channel 06:	2437 MHz
Channel 07:	2442 MHz	Channel 08:	2447 MHz	Channel 09:	2452 MHz		

- 1. The EUT is a Mozart II with a built-in 2.4GHz WLAN transceiver.
- 2. The different of the each model is shown as below:

Madalarana		Description	
Model name	FM IC & circuit	Audio DAC	DAC Avdd 2.8V regulator IC
AWOXMII0A32	YES	YES	YES
AWOXMII0D32	NO	NO	NO

- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps 802.11g is 6Mbps 802.11n(20M-BW) is 7.2Mbps and 802.11n(40M-BW) is 15Mbps)
- 5. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)			
	Mode 2: Transmit (802.11g 6Mbps)			
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)			
	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)			


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m
2	Test Fixture	Lite-On	N/A	N/A	N/A

	Signal Cable Type	Signal cable Description
А	Console Cable	Non-Shielded, 1.5m

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT and peripherals as shown in Section 1.4
- (2) Execute "Jera Jerm.exe V4.67" on the Notebook.
- (3) Configure the test mode, the test channel, and the data rate to start the continuous transmit
- (4) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

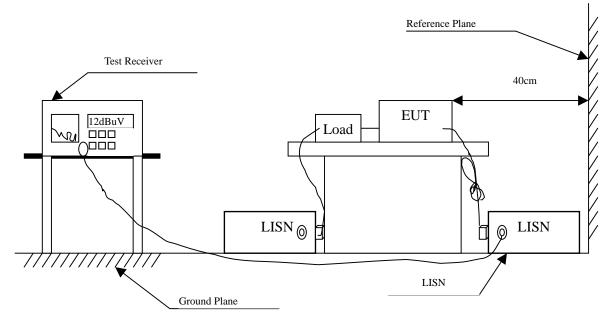
Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2011	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2011	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2011	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2011	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2011	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit				
Frequency	L	imits		
MHz	QP	AVG		
0.15 - 0.50	66-56	56-46		
0.50-5.0	56	46		
5.0 - 30	60	50		

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Mozart II
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz) (AWOXMII0A32)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.177	9.840	31.050	40.890	-24.339	65.229
0.228	9.840	24.680	34.520	-29.251	63.771
0.494	9.840	38.240	48.080	-8.091	56.171
0.666	9.840	15.440	25.280	-30.720	56.000
1.373	9.850	15.690	25.540	-30.460	56.000
12.009	10.056	14.580	24.636	-35.364	60.000
Average					
0.177	9.840	19.760	29.600	-25.629	55.229
0.228	9.840	21.600	31.440	-22.331	53.771
0.494	9.840	28.420	38.260	-7.911	46.171
0.666	9.840	9.790	19.630	-26.370	46.000
1.373	9.850	10.240	20.090	-25.910	46.000
12.009	10.056	8.340	18.396	-31.604	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product Test Item Power Line Test Mode	: : :	Mozart II Conducted En Line 2 Mode 4: Trans		S0 15Mbps 40M-BW) (2437MHz) (AV	WOXMII0A32)
Frequency		Correct	Reading	Measurement	Margin	Limit
		Factor	Level	Level		
MHz		dB	dBuV	dBuV	dB	dBuV
Line 2						
Quasi-Peak						
0.170		9.840	33.180	43.020	-22.409	65.429
0.224		9.840	29.520	39.360	-24.526	63.886
0.478		9.840	34.380	44.220	-12.409	56.629
1.447		9.850	16.520	26.370	-29.630	56.000
10.732		10.082	14.270	24.352	-35.648	60.000
25.822		10.340	16.930	27.270	-32.730	60.000
Average						
0.170		9.840	22.350	32.190	-23.239	55.429
0.224		9.840	26.000	35.840	-18.046	53.886
0.478		9.840	24.980	34.820	-11.809	46.629
1.447		9.850	10.980	20.830	-25.170	46.000
10.732		10.082	7.920	18.002	-31.998	50.000
25.822		10.340	10.990	21.330	-28.670	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Test Item:Power Line:Test Mode:	Mozart II Conducted Em Line 1 Mode 4: Transı		0 15Mbps 40M-BW)	(2437MHz) (AW	/OXMII0D32)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.158	9.841	32.740	42.581	-23.190	65.771
0.224	9.840	27.010	36.850	-27.036	63.886
0.482	9.840	34.600	44.440	-12.074	56.514
0.662	9.840	19.470	29.310	-26.690	56.000
1.267	9.850	18.170	28.020	-27.980	56.000
12.619	10.077	17.410	27.487	-32.513	60.000
Average					
0.158	9.841	20.070	29.911	-25.860	55.771
0.224	9.840	25.190	35.030	-18.856	53.886
0.482	9.840	25.590	35.430	-11.084	46.514
0.662	9.840	13.060	22.900	-23.100	46.000
1.267	9.850	12.180	22.030	-23.970	46.000
12.619	10.077	11.680	21.757	-28.243	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product:Test Item:Power Line:Test Mode:	Mozart II Conducted Em Line 2 Mode 4: Trans		S0 15Mbps 40M-BW) (2437MHz) (AV	WOXMII0D32)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 2					
Quasi-Peak					
0.166	9.840	32.660	42.500	-23.043	65.543
0.220	9.840	24.440	34.280	-29.720	64.000
0.494	9.840	38.240	48.080	-8.091	56.171
0.666	9.840	14.990	24.830	-31.170	56.000
1.580	9.850	18.780	28.630	-27.370	56.000
13.646	10.165	16.250	26.415	-33.585	60.000
Average					
0.166	9.840	22.350	32.190	-23.353	55.543
0.220	9.840	21.960	31.800	-22.200	54.000
0.494	9.840	28.310	38.150	-8.021	46.171
0.666	9.840	6.280	16.120	-29.880	46.000
1.580	9.850	12.980	22.830	-23.170	46.000
13.646	10.165	10.720	20.885	-29.115	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2011
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2011
Note:				
1.	All equipments are o	calibrated with trac	eable calibrations. Each calibrations	ation is traceable to the
	national or internation	onal standards.		

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No	Frequency	For d	C C	e Power ata Rate (N	Abps)	Peak Power	Required	Result
	(MHz)	1	2	5.5	11	1	Limit	Kesun
			Measur	ement Lev	vel (dBm)			
01	2412	17.09				19.58	<30dBm	Pass
06	2437	17.04	17.03	17.01	17	19.55	<30dBm	Pass
11	2462	17.32				19.6	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	Engeneration	Ũ								Peak Power	Description	
Channel No	Frequency (MHz)	6	9	12	18	24	36	48	54	6	Required Limit	Result
			Measurement Level (dBm)									
01	2412	15.17								23.53	<30dBm	Pass
06	2437	14.97	14.96	14.64	14.63	14.61	14.6	14.58	14.57	23.36	<30dBm	Pass
11	2462	15.36								23.76	<30dBm	Pass

Note: Peak Power Output Value = Reading value on peak power meter + cable loss

:	Mozart II
:	Peak Power Output Data
:	No.3 OATS
:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)
	: :

	Energy and an		Average PowerPeakFor different Data Rate (Mbps)Power								Dequired	
Channel No	Frequency (MHz)	7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Required Limit	Result
			Measurement Level (dBm)									
01	2412	13.62	-		-		-			22.37	<30dBm	Pass
06	2437	13.44	13.42	13.41	13.39	13.38	13.37	13.35	13.34	22.78	<30dBm	Pass
11	2462	13.09								21.87	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	Mozart II
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

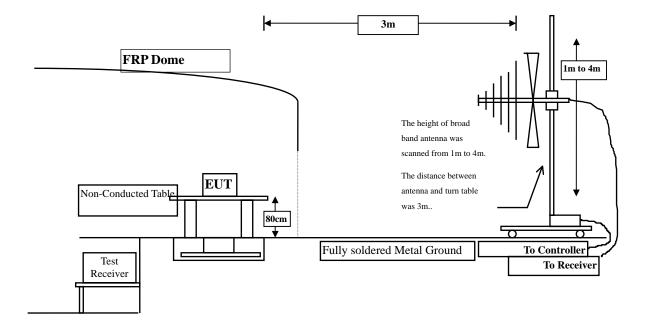
		Average Power								Peak		
	Frequency		F	or diffe	erent Da	ata Rate	e (Mbps	s)		Power	Required	
Channel No	(MHz)	15	30	45	60	90	120	135	150	15	Limit	Result
			Measurement Level (dBm)									
03	2422	13.9								22.3	<30dBm	Pass
06	2437	13.68	13.67	13.66	13.64	13.63	13.61	13.6	13.59	22.79	<30dBm	Pass
09	2452	13.42								21.87	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

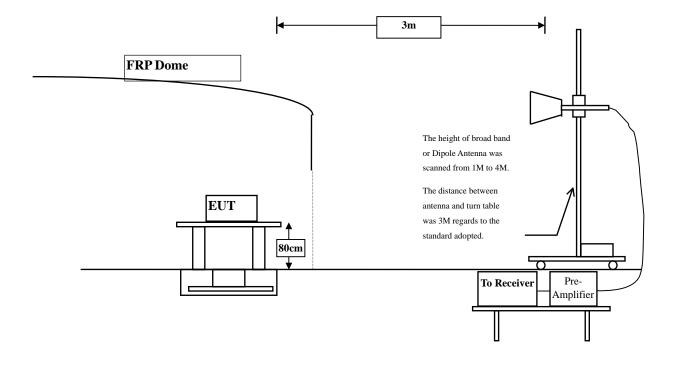
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2011
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits									
Frequency MHz	uV/m @3m	dBuV/m@3m							
30-88	100	40							
88-216	150	43.5							
216-960	200	46							
Above 960	500	54							

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	49.950	53.211	-20.789	74.000
7236.000	10.650	37.820	48.470	-25.530	74.000
9648.000	13.337	37.060	50.396	-23.604	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	47.750	54.171	-19.829	74.000
7236.000	11.495	36.750	48.245	-25.755	74.000
9648.000	13.807	37.160	50.966	-23.034	74.000
Average Detector:					
4824.000	6.421	44.820	51.241	-2.759	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart II									
Test Item	: Harmoni	ic Radiated Emiss	sion Data							
Test Site	: No.3 OATS									
Test Mode	: Mode 1: Transmit (802.11b 1Mbps) (2437 MHz)									
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
Peak Detector:										
4874.000	3.038	47.390	50.427	-23.573	74.000					
7311.000	11.795	36.180	47.974	-26.026	74.000					
9748.000	12.635	37.170	49.805	-24.195	74.000					
Average Detector:										
Vertical										
Peak Detector:										
4874.000	5.812	47.900	53.711	-20.289	74.000					
7311.000	12.630	35.740	48.369	-25.631	74.000					
9748.000	13.126	36.870	49.996	-24.004	74.000					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Mozart II Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps) (2462 MHz) 					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal Peak Detector:						
4924.000	2.858	46.580	49.437	-24.563	74.000	
7386.000	12.127	35.320	47.448	-26.552	74.000	
9848.000	12.852	36.730	49.583	-24.417	74.000	
Average Detector:						
Vertical Peak Detector:						
4924.000 7386.000	5.521 13.254	46.630 35.640	52.150 48.894	-21.850 -25.106	74.000 74.000	
9848.000	13.367	36.830	50.197	-23.803	74.000	

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart II						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2412MHz	2)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	3.261	46.090	49.351	-24.649	74.000		
7236.000	10.650	36.820	47.470	-26.530	74.000		
9648.000	13.337	37.020	50.356	-23.644	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4824.000	6.421	45.650	52.071	-21.929	74.000		
7236.000	11.495	37.320	48.815	-25.185	74.000		
9648.000	13.807	37.260	51.066	-22.934	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	· Mozart II						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: Transmit (802.11g 6Mbps) (2437 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	44.400	47.437	-26.563	74.000		
7311.000	11.795	36.440	48.234	-25.766	74.000		
9748.000	12.635	37.140	49.775	-24.225	74.000		
Average Detector:							
Peak Detector:							
4874.000	5.812	44.550	50.361	-23.639	74.000		
7311.000	12.630	35.890	48.519	-25.481	74.000		
9748.000	13.126	36.880	50.006	-23.994	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 Mozart II Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps) (2462 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	2.858	43.290	46.147	-27.853	74.000		
7386.000	12.127	35.740	47.868	-26.132	74.000		
9848.000	12.852	36.930	49.783	-24.217	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	5.521	43.100	48.620	-25.380	74.000		
7386.000	13.254	35.610	48.864	-25.136	74.000		
9848.000	13.367	36.780	50.147	-23.853	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Mozart II Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz) 					
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit	
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
4824.000	3.261	44.950	48.211	-25.789	74.000	
7236.000	10.650	37.000	47.650	-26.350	74.000	
9648.000	13.337	36.560	49.896	-24.104	74.000	
Average Detector:						
 Vertical						
Peak Detector:						
4824.000	6.421	44.220	50.641	-23.359	74.000	
7236.000	11.495	37.100	48.595	-25.405	74.000	
9648.000	13.807	36.750	50.556	-23.444	74.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	3.038	43.100	46.137	-27.863	74.000
7311.000	11.795	35.690	47.484	-26.516	74.000
9748.000	12.635	36.850	49.485	-24.515	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	5.812	42.930	48.741	-25.259	74.000
7311.000	12.630	36.050	48.679	-25.321	74.000
9748.000	13.126	36.910	50.036	-23.964	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462 MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.858	41.520	44.377	-29.623	74.000
7386.000	12.127	35.170	47.298	-26.702	74.000
9848.000	12.852	36.750	49.603	-24.397	74.000
Average Detector:					
Vertical					
Peak Detector:					
4924.000	5.521	41.270	46.790	-27.210	74.000
7386.000	13.254	35.420	48.674	-25.326	74.000
9848.000	13.367	36.850	50.217	-23.783	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	Mozart II
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2422MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4844.000	3.171	42.060	45.231	-28.769	74.000
7266.000	11.162	36.270	47.432	-26.568	74.000
9688.000	12.964	37.300	50.265	-23.735	74.000
Average Detector:					
Vertical					
Peak Detector:					
4844.000	6.178	41.560	47.738	-26.262	74.000
7266.000	11.982	36.540	48.522	-25.478	74.000
9688.000	13.507	36.960	50.468	-23.532	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Mozart II						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 4:	Transmit (802.11	n MCS0 15Mbps 401	M-BW) (2437 M	Hz)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	40.790	43.827	-30.173	74.000		
7311.000	11.795	35.690	47.484	-26.516	74.000		
9748.000	12.635	36.780	49.415	-24.585	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	39.240	45.051	-28.949	74.000		
7311.000	12.630	35.800	48.429	-25.571	74.000		
9748.000	13.126	37.300	50.426	-23.574	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Mozart II Harmonic Radiated Emission Data No.3 OATS Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2452 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4904.000	2.914	39.820	42.735	-31.265	74.000		
7356.000	11.995	35.230	47.224	-26.776	74.000		
9808.000	12.475	36.840	49.315	-24.685	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4904.000	5.530	40.500	46.031	-27.969	74.000		
7356.000	13.005	35.680	48.684	-25.316	74.000		
9808.000	12.901	36.560	49.461	-24.539	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Mozart II General Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) (AWOXMII0A32) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
113.420	-7.449	39.292	31.843	-11.657	43.500		
398.600	0.879	31.849	32.728	-13.272	46.000		
532.460	3.099	27.810	30.909	-15.091	46.000		
747.800	3.915	26.678	30.593	-15.407	46.000		
854.500	7.380	24.922	32.302	-13.698	46.000		
961.200	6.810	27.239	34.049	-19.951	54.000		
Vertical							
249.220	-5.096	39.461	34.365	-11.635	46.000		
400.540	-2.868	40.194	37.326	-8.674	46.000		
530.520	1.192	29.595	30.787	-15.213	46.000		
600.360	1.302	28.488	29.790	-16.210	46.000		

747.800

854.500

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

29.817

30.834

-16.183

-15.166

46.000

46.000

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

28.152

31.164

4. Measurement Level = Reading Level + Correct Factor.

1.665

-0.330

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 O	Radiated Emissio	n Data g 6Mbps)(2437 MHz	2) (AWOXMII0A	32)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
249.220	-6.216	37.282	31.066	-14.934	46.000
398.600	0.879	37.922	38.801	-7.199	46.000
532.460	3.099	33.603	36.702	-9.298	46.000
796.300	6.389	34.338	40.727	-5.273	46.000
854.500	7.380	32.704	40.084	-5.916	46.000
928.220	7.230	28.702	35.932	-10.068	46.000
Vertical					
132.820	-3.932	36.538	32.606	-10.894	43.500
396.660	-2.039	34.527	32.488	-13.512	46.000
600.360	1.302	28.972	30.274	-15.726	46.000
757.500	2.487	26.029	28.516	-17.484	46.000
854.500	-0.330	32.345	32.015	-13.985	46.000
928.220	3.640	31.476	35.116	-10.884	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: Gen : No.	zart II neral Radiated 3 OATS de 3: Transm		Data MCS0 7.2Mbps 20M-	-BW)(2437 MHz) (AWOXMII0A32)
Frequency	С	orrect	Reading	Measurement	Margin	Limit
	F	Factor	Level	Level		
MHz		dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal						
249.220	-1	6.216	36.170	29.954	-16.046	46.000
431.580	().757	33.988	34.745	-11.255	46.000
532.460		3.099	32.799	35.898	-10.102	46.000
701.240		2.759	29.535	32.294	-13.706	46.000
800.180	6	5.417	28.153	34.570	-11.430	46.000
930.160	7	7.530	29.492	37.022	-8.978	46.000
Vertical						
111.480	-:	3.439	38.643	35.205	-8.295	43.500
258.920		4.900	38.595	33.695	-12.305	46.000
398.600	-:	2.371	37.108	34.737	-11.263	46.000
532.460	1	1.209	30.886	32.095	-13.905	46.000
757.500	2	2.487	25.456	27.943	-18.057	46.000
854.500	-1	0.330	32.031	31.701	-14.299	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Product Test Item Test Site Test Mode	::	No.3 OATS	ated Emission Data smit (802.11n MCS	60 15Mbps 40M-BW	7)(2437 MHz) (AV	WOXMII0A32)
	Frequency		Correct	Reading	Measurement	Margin	Limit
			Factor	Level	Level		
	MHz		dB	dBuV	dBuV/m	dB	dBuV/m
	Horizontal						
	115.360		-7.390	39.843	32.454	-11.046	43.500
	249.220		-6.216	34.453	28.237	-17.763	46.000
	429.640		0.630	31.085	31.714	-14.286	46.000
	602.300		3.794	29.284	33.078	-12.922	46.000
_	825.400		7.346	29.332	36.678	-9.322	46.000
	875.840		5.816	32.189	38.005	-7.995	46.000
	Vertical						
	159.980		-5.120	37.532	32.411	-11.089	43.500
	396.660		-2.039	35.555	33.516	-12.484	46.000
	532.460		1.209	30.708	31.917	-14.083	46.000
	598.420		1.114	29.547	30.661	-15.339	46.000
	778.840		2.580	27.682	30.262	-15.738	46.000
	854.500		-0.330	32.230	31.900	-14.100	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	Radiated Emissio TS	n Data b 1Mbps)(2437 MHz	z) (AWOXMII0D	32)
Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
99.840	-7.471	36.210	28.739	-14.761	43.500
251.160	-5.745	39.004	33.259	-12.741	46.000
507.240	0.759	36.175	36.934	-9.066	46.000
699.300	2.875	34.559	37.434	-8.566	46.000
961.200	6.450	33.454	39.904	-14.096	54.000
996.120	7.669	37.044	44.713	-9.287	54.000
Vertical					
117.300	-3.106	35.988	32.882	-10.618	43.500
353.980	-3.652	35.353	31.701	-14.299	46.000
507.240	-0.471	38.406	37.935	-8.065	46.000
664.380	-1.918	38.641	36.723	-9.277	46.000
747.800	2.166	34.261	36.427	-9.573	46.000
996.120	4.019	39.429	43.448	-10.552	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site	Test Item:General Radiated Emission DataTest Site:No.3 OATS						
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps)(2437 MHz	z) (AWOXMII0D	32)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
299.660	-3.585	36.804	33.219	-12.781	46.000		
507.240	0.759	40.597	41.356	-4.644	46.000		
664.380	2.062	33.961	36.023	-9.977	46.000		
747.800	3.296	31.443	34.739	-11.261	46.000		
854.500	6.626	28.887	35.513	-10.487	46.000		
961.200	6.450	33.932	40.382	-13.618	54.000		
Vertical							
105.660	-0.253	34.288	34.035	-9.465	43.500		
365.620	-2.179	35.152	32.973	-13.027	46.000		
507.240	-0.471	43.582	43.111	-2.889	46.000		
703.180	0.139	42.107	42.245	-3.755	46.000		
807.940	3.586	31.083	34.668	-11.332	46.000		
961.200	7.260	41.684	48.944	-5.056	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product:Test Item:Test Site:Test Mode:	No.3 OATS	ted Emission Data	50 7.2Mbps 20M-BW	⁷)(2437 MHz) (A	WOXMII0D32)
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
115.360	-8.770	37.586	28.816	-14.684	43.500
303.540	-3.074	37.087	34.013	-11.987	46.000
507.240	0.759	40.323	41.082	-4.918	46.000
664.380	2.062	41.327	43.389	-2.611	46.000
747.800	3.296	32.265	35.561	-10.439	46.000
961.200	6.450	34.996	41.446	-12.554	54.000
Vertical					
119.240	-3.541	37.348	33.807	-9.693	43.500
344.280	-3.171	37.081	33.911	-12.089	46.000
507.240	-0.471	43.847	43.376	-2.624	46.000
664.380	-1.918	38.789	36.871	-9.129	46.000
747.800	2.166	34.007	36.173	-9.827	46.000
961.200	7.260	40.378	47.638	-6.362	54.000

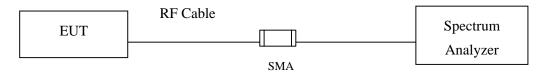
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	: No.3 OA	Radiated Emission l		И-BW)(2437 MHz)	(AWOXMII0D32)
Frequency	Correct	Reading	Measureme	nt Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
119.240	-9.621	38.392	28.771	-14.729	43.500
357.860	-2.084	32.262	30.178	-15.822	46.000
507.240	0.759	39.802	40.561	-5.439	46.000
666.320	2.031	32.286	34.318	-11.682	46.000
854.500	6.626	28.584	35.210	-10.790	46.000
961.200	6.450	34.678	41.128	-12.872	54.000
Vertical					
99.840	-0.021	35.631	35.610	-7.890	43.500
332.640	-4.914	37.439	32.525	-13.475	46.000
507.240	-0.471	43.747	43.276	-2.724	46.000
664.380	-1.918	38.004	36.086	-9.914	46.000
747.800	2.166	34.491	36.657	-9.343	46.000
961.200	7.260	40.513	47.773	-6.227	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A/MY48030495	Apr., 2011

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

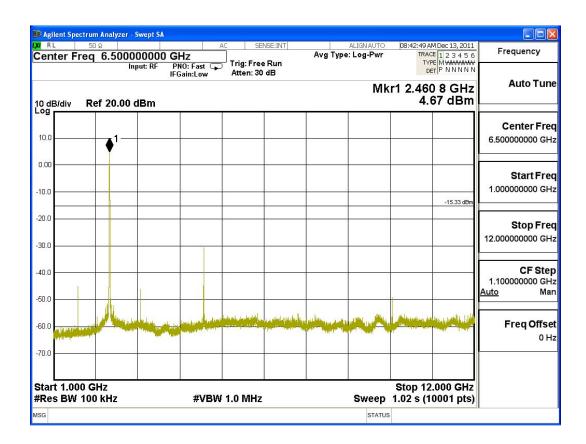
Product	:	Mozart II
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

🗊 Agilent Spectrum Analyzer - Swej					
Center Freq 515.0000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	08:28:21 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Input: 10 dB/div Ref 20.00 dB/	IFGain:Low	Atten: 30 dB	Mkr	1 804.933 MHz -55.42 dBm	Auto Tune
10.0					Center Free 515.000000 MH:
-10.0				-15.35 dBm	Start Free 30.000000 MH
-20.0					Stop Free 1.000000000 GH
40.0				1	CF Ste 97.000000 M⊢ <u>Auto</u> Ma
	Terrent Canada (Canada (Para) (Canada (Para)) Sector Statistics (Para)	The form the sector for the sector sector state		a superior of the process of the subsection of t	Freq Offse 0 H
-70.0 Start 30.0 MHz				Stop 1.0000 GHz	
#Res BW 100 kHz MSG ① File <image.png> saved</image.png>	#VBW 1	.0 MHz	Sweep 9	0.0 ms (10001 pts)	

	ectrum Analyze	r - Swept SA								
RL	50 Ω	0000000	Α	C SET	VSE:INT	Α.υ.α. Τ.	ALIGN AUTO		M Dec 13, 2011	Frequency
	red 6.500		HZ NO: Fast 😱 Gain:Low	Trig: Free Atten: 30		Avgiy		TYF		
0 dB/div	Ref 20.0	0 dBm		2			Mk	r1 2.410 4.0) 2 GHz 65 dBm	
• 9										Center Fre
0.0	1-	-	0				-			6.500000000 G
.00										Start Fr
0.0										1.00000000 G
	_	-			1				-15.35 dBm	
0.0			1		-		-			Stop Fr
			1							12.00000000 G
0.0										
0.0										CF St
										1.10000000 G
0.0		-			1		4			<u>Auto</u> N
				a day and the part	and the law			a debuild and a strengt	ate a sublide set the	
).0			All survey and survey from	a de la constante de la constan	and the second second			and the second second	-	Freq Offs
United State										0
0.0					-					
L							2		.000 GHz	
les BW	100 kHz		#VBW	1.0 MHz			Sweep		0001 pts)	
3							STATUS			

enter Freq 18.500000 Input: Ri		Avg Type: Log-Pwr	08:28:58 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
OdB/div Ref 20.00 dBm		Mkr	1 21.347 0 GHz -47.88 dBm	Auto Tur
				Center Fr 18.500000000 G
0.0			-15.35 dBm	Start Fr 12.000000000 G
D.0				Stop Fr 25.000000000 G
0.0		▲ ¹		CF St 1.300000000 G Auto M
0.0				Freq Offs 0
art 12.000 GHz Res BW 100 kHz	#VBW 1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	


Anti-te Constant		Current CA								
Agilent Spectrur		Swept SA		AC SEN	ISE:INT		ALIGN AUTO	08:35:14/	AM Dec 13, 2011	1
enter Freq		nput: RF F	−IZ PNO: Fast G Gain:Low	Trig: Free Atten: 30		Avg Type	e: Log-Pwr	TRA T)	CE 1 2 3 4 5 6 PE MWWWWW DET P NNNNN	Frequency
0 dB/div R	ef 20.00	980 (M	Cumeon				Mki		797 MHz 65 dBm	Auto Tu
°g										Contor Fr
10.0	-									Center Fr 515.000000 M
).00 ———										
1.00										Start Fr
0.0				·					-15.28 dBm	30.000000 M
0.0									-13.20 ubin	
										Stop Fr 1.000000000 G
0.0		-								1.000000000
0.0			-						-	CF St
										97.000000 N <u>Auto</u> N
0.0								♦ ¹		
		al name and the right	IS INSTITUT	al water fragments	مغالطها ورويهما	ע ערק לאלין אי געלי אלי ^ו אנ	en allen alle ander an			Freq Offs
0.0	erijalisma a kander	a kana birtaha	an ing ting bedrach bird be			(be tele der bet el et rellie				0
0.0										
tart 30.0 MI	Hz							Stop 1.	0000 GHz	
tart 30.0 MH Res BW 100		4	#VBW	/ 1.0 MHz			Sweep 9		0000 GHz 10001 pts)	
	0 kHz	aved	#VBW	/ 1.0 MHz			Sweep 9	0.0 ms ('		
Res BW 100	0 kHz age.png> s		#VBW	/ 1.0 MHz		5	-	0.0 ms ('		
Res BW 100 G DFile <ima Agilent Spectrum RL 50</ima 	D kHz age.png> s m Analyzer - D Ω	Swept SA			NSE:INT		ALIGNAUTO	0.0 ms ('	10001 pts)	Frequency
Res BW 100 G DFile <ima Agilent Spectrum RL 50</ima 	0 kHz age.png> s m Analyzer - 0 Ω 6.5000	Swept SA			Run		STATUS	0.0 ms ('	10001 pts)	1
Res BW 100 G DFile <ima Agilent Spectrum RL 50</ima 	0 kHz age.png> s m Analyzer - 0 Ω 6.5000	Swept SA	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency
Res BW 100 Agilent Spectrum RL 50 enter Freq	0 kHz age.png> s m Analyzer - 0 Ω 6.5000	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 1 2 3 4 5 6 PE M WWWWW ET P N N N N	Frequency
Res BW 100 G J File < Ima Agitent Spectrum RL 50 enter Freq D dB/div R0 D dB/div R0	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency Auto Tu Center Fi
Res BW 100 Agilent Spectrum RL Sc enter Freq	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency Auto Tu Center Fi
Res BW 100 G File < Ima Agitent Spectrum RL 50 enter Freq 0 dB/div R0 0 dB/div R0 0 dB/div R0	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency Auto Tu Center Fi 6.50000000 c
Res BW 100 s File < Ima Agitent Spectrum RL 50 enter Freq od B/div Rd 00 00 00 00 00 00 00 00 00 0	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency Auto Tu Center Fr 6.50000000 G Start Fr
Res BW 100 s File < Ima Agitent Spectrum RL 50 enter Freq od B/div Rd 00 00 00 00 00 00 00 00 00 0	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 123456 PPE MWWWWWW AT P NNNN 7 7 GHz	Frequency Auto Tu Center Fr 6.50000000 G Start Fr
Res BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fi 6.50000000 G Start Fr 1.00000000 G
Aces BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fi 6.50000000 G Start Fi 1.000000000 G Stop Fi
Aces BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fr 6.500000000 G Start Fr 1.000000000 G Stop Fr 12.000000000 G
Agitent Spectrum RL 50 enter Freq 0 6 0.0 0.0 0.0 0.0	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G
Agilent Spectrur RL 50 enter Freq 0 B/div Ri 00 00 00 0.0 00 00 0.0 00 00 0.0 00 00	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	J SHZ PNO: Fast ⊆	AC SEM	Run		ALIGN AUTO	0.0 ms (7 b8:34:38, TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fi 6.500000000 G Start Fr 1.000000000 G Stop Fr 12.000000000 G CF St 1.100000000 G
Res BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	Gain:Low	AC SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO E: Log-Pwr Mk	0.0 ms (*	AM Dec 13, 2011 CC 11 2 3 4 5 6 CC 13, 2011 CC 14, 2011 CC	Frequency Auto Tu Center Fr 6.50000000 C Start Fr 1.00000000 C Stop Fr 12.00000000 C CF St 1.10000000 C
Res BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	Gain:Low	AC SEM	Run dB		ALIGN AUTO E: Log-Pwr Mk	0.0 ms (*	AM Dec 13, 2011 CE 11 2 3 4 5 6 P NNNN 77 GHz 72 dBm	Frequency Auto Tu Center Fi 6.500000000 G Start Fi 1.000000000 G Stop Fi 12.00000000 G CF St 1.100000000 G Auto Tu Freq Off:
Res BW 100 G File < Ima	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	Gain:Low	AC SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO E: Log-Pwr Mk	0.0 ms (*	AM Dec 13, 2011 CC 11 2 3 4 5 6 CC 13, 2011 CC 14, 2011 CC	Frequency Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF St 1.100000000 G Auto Tu Freq Offs
Res BW 100 G D File <ima Agilent Spectrur RL 50 enter Freq</ima 	0 kHz age.png> s m Analyzer - 0 Ω 6.50000 In	Swept SA 000000 G aput: RF F IF	Gain:Low	AC SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO E: Log-Pwr Mk	0.0 ms (*	AM Dec 13, 2011 CC 11 2 3 4 5 6 CC 13, 2011 CC 14, 2011 CC	Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G
Res BW 100 G File < Ima	0 kHz	Swept SA 000000 G aput: RF F IF	SHZ PNO: Fast Gain:Low	AC SEN Trig: Free Atten: 30	Run dB	Avg Type	ALIGN AUTO E: Log-Pwr Mk	0.0 mis (*	AM Dec 13, 2011 CC 11 2 3 4 5 6 CC 13, 2011 CC 14, 2011 CC	Frequency Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G CF St 1.100000000 G Auto Tu Freq Offs

Channel 06 (2437MHz)

RL 50 Ω enter Freq 18.5000 Ιημ		AC SENSE:IN Trig: Free Run Atten: 30 dB	Avg Typ	alignauto e: Log-Pwr	08:35:50 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00 d	IBm			Mkr′	l 21.243 0 GHz -47.44 dBm	Auto Tun
0.0						Center Fre 18.50000000 GH
0.0					-15.28 dBm	Start Fre 12.000000000 G
D.O						Stop Fr 25.00000000 G
0.0			u d webu v	↓1	Martin Martin Martin	CF St 1.300000000 G <u>Auto</u> M
						Freq Offs 0
tart 12.000 GHz Res BW 100 kHz		(1.0 MHz			Stop 25.000 GHz 1.20 s (10001 pts)	

Frequency	1 Dec 13, 2011		ALIGN AUTO		ENSE:INT	AC SE			50 Ω	RL
Frequency	123456 E MWWWWW T P N N N N N	TYP	e: Log-Pwr	Avg Typ		Trig: Free Atten: 30	IHZ PNO: Fast 🖵 IFGain:Low	.000000 N Input: RF	req 515.	enter F
Auto Tu	Mkr1 820.259 MHz) dB/div			
Center Fr										
515.000000 M										10.0
Start Fr										.00
30.000000 M	-15.33 dBm					<i>.</i>				0.0
04 E-	-15.55 dbm									0.0
Stop Fr 1.000000000 G								_		0.0
CF St								8		0.0
97.000000 N Auto N										0.0
		∮ ¹								N347).
Freq Offs 0	and the second	Charles and the second	an and a plant of the		in and a second second	an a	a a su a	and the set of set		
				1						0.0
	000 GHz	Stop 1.0	Sweep 9		,	1.0 MHz	#VBIA		MHz 100 kHz	tart 30.0 Res BW

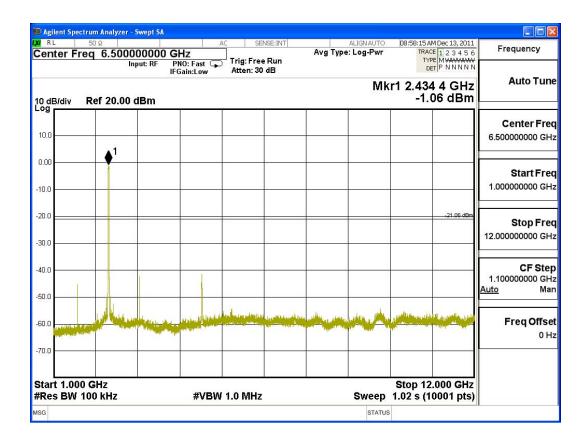
Channel 11 (2462MHz)

RL 50 Ω enter Freq 18.50000 Input		SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	08:44:01 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 20.00 dE	Sm		Mkr	1 24.629 5 GHz -48.09 dBm	Auto Tur
0.0					Center Fre 18.50000000 GH
0.0				-15.33 dBm	Start Fr 12.000000000 G
.0					Stop Fr 25.000000000 G
.0		4.500			CF St 1.300000000 G <u>Auto</u> M
					Freq Offs 0
tart 12.000 GHz	#VBW 1		Succes	Stop 25.000 GHz 1.20 s (10001 pts)	<u> </u>

:	Mozart II
:	RF Antenna Conducted Spurious
:	No.3 OATS
:	Mode 2: Transmit (802.11g 6Mbps)
	:

Channel 01 (2412MHz)

📕 Agilent Spectrum Analyzer -	Swept SA								
× RL 50Ω Center Freq 515.00	00000 MHz put: RF PN0: Fast Trig:	SENSE:INT Avg	ALIGN AUTO Type: Log-Pwr	08:52:11 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency				
	Mkr1 801.538 MHz								
10.0					Center Free 515.000000 MH				
-10.0					Start Free 30.000000 MH				
-20.0				-20.31 dBm	Stop Fre 1.000000000 G⊢				
40.0					CF Ste 97.000000 MH Auto Ma				
-50.0	ما استراب المعادية المعادية المراجع المعادية المراجع المعادية المراجعة المراجعة المعادية المعادية المعادية الم المراجعة المعادية الم			l sa l <mark>a provincia da seconda da s</mark>	Freq Offs				
-70.0									
Start 30.0 MHz #Res BW 100 kHz	#VBW 1.0 N	1Hz	Sweep 90	Stop 1.0000 GHz .0 ms (10001 pts)					
sg 🔱 File <lmage.png> s</lmage.png>	aved		STATUS						


	ectrum Analyzer - Sv	wept SA								
enter F	^{50 Ω} req 6.50000	0000 GH	4 7	1	NSE:INT	Avg	ALIGNAUTO Type: Log-Pwr	TRAC	M Dec 13, 2011	Frequency
	Input: RF PNO: Fast Free Run Atten: 30 dB								Auto Tun	
0 dB/div -og 10.0		Bm								Center Fre 6.50000000 GH
10.0										Start Fre 1.000000000 GI
80.0									-20.31 dBm	Stop Fr 12.000000000 G
0.0										CF St 1.100000000 G <u>Auto</u> M
0.0		No.	na shiti shekara	ana da dita a la ^b arra	a alban (alban) a geographic de la com					Freq Offs 0
0.0										
tart 1.00 Res BW	00 GHz 100 kHz		#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
G							STATUS	;		1

RL 50 Ω enter Freq 18.50000 Input:	0000 GHz	e Run	ALIGN AUTO pe: Log-Pwr	08:52:47 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tu			
dB/div Ref 20.00 dB	Mkr1 23.826 1 GHz Ref 20.00 dBm -47.27 dBm							
					Center Fr 18.500000000 G			
.0					Start Fr 12.000000000 G			
.0				-20.31 dBm	Stop Fr 25.000000000 G			
.0				1	CF St 1.300000000 G Auto M			
					Freq Offs 0			
art 12.000 GHz				Stop 25.000 GHz				
Res BW 100 kHz	#VBW 1.0 MHz		Sweep	1.20 s (10001 pts)				

gilent Spectrum Analyzer - Sw RL 50 Ω	AC	SENSE:INT	ALIGN AUTO	08:58:51 AM Dec 13, 201	
nter Freq 515.000	t RE PNO East Trig	:FreeRun en:30 dB	vg Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N	N
dB/div Ref 20.00 dE	3m		Mkr	1 991.561 MHz -58.28 dBm	
					Center Fre
0					515.000000 M
0					Start Fr
0					30.000000 M
0				-21.06.dBr	Stop Fr
0					1.000000000 G
0					CF St
0					97.000000 N <u>Auto</u> N
0	ani mi sula betan ante ante en ares suas			المرجول والمتعرف والمراجع والمراجع	Freq Offs
	a na ana amin'ny faritr'o ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny fari Ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'			Plan and the encounter property and the other	0
0					
art 30.0 MHz es BW 100 kHz	#VBW 1.0 I		Sween 0	Stop 1.0000 GHz 0.0 ms (10001 pts	

Channel 06 (2437MHz)

RL 50 Ω enter Freq 18.5000 Inpu	00000 GHz It: RF PN0: Fast IFGain:Low	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	08:59:27 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
) dB/div Ref 20.00 d	Bm		Mkr	1 23.823 5 GHz -48.30 dBm	Auto Tur
					Center Fre 18.50000000 GF
0.0					Start Fr 12.000000000 G
0.0				21.06 dBm	Stop Fr 25.000000000 G
.0		lat		1	CF St 1.300000000 G <u>Auto</u> M
.o					Freq Offs 0
and 12.000 GHz Res BW 100 KHz				Stop 25.000 GHz 1.20 s (10001 pts)	

RL 50 Ω enter Freq 515.000	DOOO MHz nut: RF PNO: Fast C		ALIGNAUTO	09:06:49 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
- 1220 	IFGain:Low	Atten: 30 dB	Mkr	1 815.312 MHz -58.47 dBm	Auto Tur
0 dB/div Ref 20.00 d					Center Fre 515.000000 Mi
.00					Start Fr 30.000000 M
0.0				-20.10 dBm	Stop Fr 1.000000000 G
0.0					CF St 97.000000 M <u>Auto</u> M
). O comparison and the language of some production of the language of the lan		analogi den sen jas nalogi den sen jas nalogi den sen jas	ini na teni na ana mana mana ana ana		Freq Offs 0
tart 30.0 MHz Res BW 100 kHz	#\@\\	1.0 MHz		Stop 1.0000 GHz 0.0 ms (10001 pts)	

Channel 11 (2462MHz)

enter Freq 6.500	Input: RF PI	A Hz NO: Fast Gain:Low	C SET Trig: Free Atten: 30		Avg T	ALIGN AUTO ype: Log-Pwr	TRAC	Dec 13, 2011 E 1 2 3 4 5 6 E M WARAN T P N N N N N	Frequency
dB/div Ref 20.0						Mk		97 GHz 10 dBm	Auto Tun
0.0									Center Fre 6.500000000 GH
0.0									Start Fre 1.000000000 GI
D.0								-20.10 dBm	Stop Fr 12.00000000 G
0.0		1							CF Ste 1.100000000 G <u>Auto</u> M
0.0		n des silver and des	And Arran Conselling of	ng a ^{bash} Manad ^{lad} Ng Li _{Ma} ya mang ang ang ang ang ang ang ang ang ang		and the second second	and the lands of the		Freq Offs 01
tart 1.000 GHz							Stop 12	.000 GHz	
Res BW 100 kHz		#VBW	1.0 MHz			Sweep	1.02 s (1	0001 pts)	

RL 50Ω enter Freq 18.5000 Inpu	00000 GHz ht: RF PNO: Fast C	SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	09:07:25 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tun
dB/div Ref 20.00 dl			Mkr	1 23.807 9 GHz -48.06 dBm	
.0					Center Fre 18.50000000 Gi
0.0					Start Fr 12.000000000 G
1.0				-20.10 dBm	Stop Fr 25.00000000 G
.0				1	CF St 1.300000000 G <u>Auto</u> M
					Freq Offs 0
art 12.000 GHz Res BW 100 kHz	#\/D\\	1.0 MHz	Surcon	Stop 25.000 GHz 1.20 s (10001 pts)	

Product	:	Mozart II
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

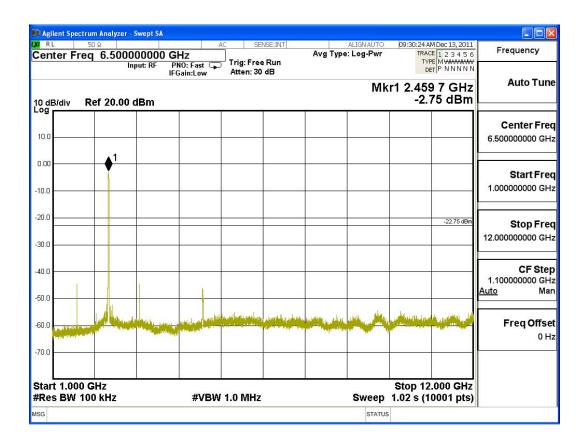
Channel 01 (2412MHz)

🅦 Agilent Spectrum Analyzer - Swe				
Center Freq 515.0000	AC SENSE:IN 000 MHZ RF PN0: Fast Trig: Free Run	Avg Type: Log-Pwr	09:15:52 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 dB	Auto Tune			
10.0				Center Free 515.000000 MH
-10.0				Start Fre 30.000000 M⊢
-20.0			-21.71-dDm	Stop Fre 1.000000000 G⊦
40.0				CF Ste 97.000000 Mi <u>Auto</u> Mi
	wapenyed territed parately for the territed at the parately form	a menanda ang mang pang pang pang pang pang pang pang p		Freq Offs
70.0	nene fill at province Marine Different general den Area Danie Marine augereit.	NET (Provenue properties and provenue and a set of 1.5 to prove the set of 1.5	a case i a c	01
Start 30.0 MHz #Res BW 100 kHz	#VBW 1.0 MHz	Sweep 90	Stop 1.0000 GHz .0 ms (10001 pts)	
File <image.png> save</image.png>		Sweep 90	i.o ms (10001 pis)	

RL 50 Ω Center Freg 6.5000000	00 GHz	SENSE:INT	Avg Type	ALIGN AUTO Log-Pwr	09:15:16 AM Dec 13, 2011 TRACE 1 2 3 4 5 6	Frequency
Input: R	E PNO: Fast (Frig: Free Run Atten: 30 dB			DET P N N N N	Auto Tur
0 dB/div Ref 20.00 dBm	lij			Mk	r1 2.412 4 GHz -1.71 dBm	Auto Tu
°g						Center Fre
0.0						6.50000000 G
.00						Start Fr
0.0						1.000000000 G
0.0					-21.71 dDm	Stop Fr
0.0						12.000000000 G
0.0						CF St
						1.10000000 G Auto N
0.0	المليمين والمراجع والمراجع	and the second second	a set and		المرب والمعالية المعادية ومسالحاته	
0.0		a secondaria da secondaria	State of the second		and the second	Freq Offs 0
0.0						
tart 1.000 GHz					Stop 12.000 GHz	
Res BW 100 kHz	#VBW 1	.0 MHz		Sweep	1.02 s (10001 pts)	

RL 50 Ω enter Freq 18.50000 Input		T ALIGNAUTO Avg Type: Log-Pwr		Frequency Auto Tune					
	Mkr1 23.853 4 GHz Ref 20.00 dBm -48.01 dBm								
0.0				Center Fr 18.500000000 G					
0.0				Start Fr 12.000000000 G					
0.0			-21.71 dDm	Stop Fr 25.000000000 G					
0.0			↓ 1	CF St 1.300000000 G <u>Auto</u> M					
0.0				Freq Offs 0					
0.0 tart 12.000 GHz Res BW 100 kHz	#VBW 1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)						

Auto Tur	55 MHz		Mkr		 	IFGain:L		
Center Fr 515.000000 M	04 dBm	-58.0				dBm	Ref 20.00	0 dB/div 0.0
Start Fr 30.000000 M				-				0.00
Stop Fr 1.000000000 G	-22.27 dBm							0.0
CF St 97.000000 M <u>Auto</u> M								0.0 0.0
Freq Offs 0	1	1990 - Jan		la anti a subre la su la anti a subre la su				


Channel 06 (2437MHz)

enter Freq	6.50000	ut: RF PI	A HZ NO: Fast Gain:Low	C SE Trig: Free Atten: 30		Avg	ALIGNAU Type: Log-P ¹		TRAC	M Dec 13, 2011 ^{2E} 1 2 3 4 5 6 ^{2E} M WWWWW T P N N N N N	Frequency
	f 20.00 d		Jain:Low	Atten. oo	40			Mkı	r1 2.43	8 8 GHz 27 dBm	Auto Tur
og 10.0	.1										Center Fre 6.500000000 GH
0.0	• '										Start Fr 1.000000000 G
0.0										-22.27 dBm	Stop Fr 12.000000000 G
0.0											CF St 1.100000000 G Auto M
	<u>Alleen</u> te			the accord of the party of the				4			Freq Offs 0
tart 1.000 GH			#VB\A	1.0 MHz			Swe	en		.000 GHz 0001 pts)	
G	KI 12		#*0**	1.0 191112				CP ATUS	1.02 5 (1	0001 pts)	

RL 50 Ω enter Freq 18.50000 Input:	RE PNO: East () Trig	SENSE:INT Avg Free Run n: 30 dB	ALIGNAUTO Type: Log-Pwr	09:23:40 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tune
dB/div Ref 20.00 dB	m		Mkr	1 23.124 1 GHz -48.08 dBm	
1.0					Center Fre 18.50000000 GF
0.0					Start Fre 12.000000000 GF
0.0				-22.27 dbm	Stop Fro 25.000000000 GI
.0				1 	CF Sto 1.300000000 G <u>Auto</u> M
					Freq Offs 0
0.0					
art 12.000 GHz Res BW 100 kHz	#VBW 1.0 N	ЛНz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	

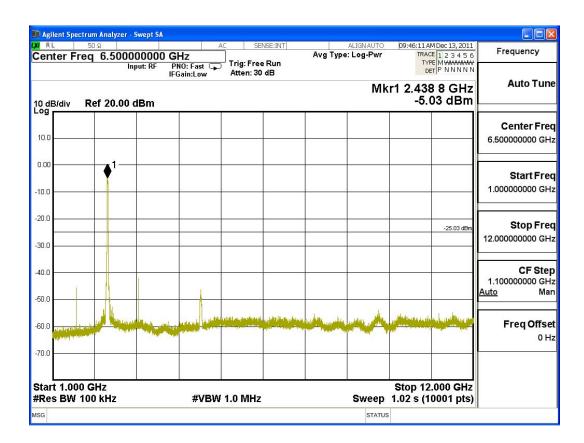
Agilent Spectrum Anal RL 50 Ω	yzer - Swept SA	AC	SENSE:INT		ALIGN AUTO	09:31:00 A	M Dec 13, 2011	
enter Freq 51	Input: RF F	IZ	rig: Free Run Atten: 30 dB	Avg Typ	e: Log-Pwr	TRAC	E 1 2 3 4 5 6 E MWWWWW T P NNNN	Frequency
).00 dBm				Mk	1 824.4 -58.	30 MHz 07 dBm	Auto Tun
,a								Center Fre
0.0								515.000000 MH
00								Start Fre
).0							<u>.</u>	30.000000 MH
.0							-22.75 dBm	Stop Fre
0.0								1.000000000 G
.0							13	CF Ste 97.000000 M
0.0								Auto M
0.0				2.4	2	♦ ¹	ha dina sa sa ta	Freq Offs
		a Deall al plan, and all plants		an ya dan sa ka	al loose and balance	Contraction of the second s	a att da senara a tidan a	01
0.0					-			
tart 30.0 MHz Res BW 100 kH	,	#VBW 1.	0 MHz		Sween 9)000 GHz 0001 pts)	
G JFile <image.p< td=""><td></td><td></td><td>V ITH I2</td><td></td><td>STATU:</td><td></td><td>ooo i pisj</td><td></td></image.p<>			V ITH I2		STATU:		ooo i pisj	

Channel 11 (2462MHz)

RL 50 Ω enter Freq 18.500000 Input: F	RE PNO: Fast 🕟 Tri	SENSE:INT Av g: Free Run ten: 30 dB	ALIGN AUTO g Type: Log-Pwr	09:31:36 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tun
dB/div Ref 20.00 dBn	n		Mkr	1 24.584 0 GHz -47.94 dBm	
					Center Fre 18.500000000 GI
0.0					Start Fr 12.000000000 G
D.0				-22.75 dBm	Stop Fr 25.000000000 G
1.0					CF St 1.300000000 G <u>Auto</u> M
.0					Freq Offs 0
and 12.000 GHz Res BW 100 kHz	#VBW 1.0	Datio		Stop 25.000 GHz 1.20 s (10001 pts)	L

Product	:	Mozart II
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

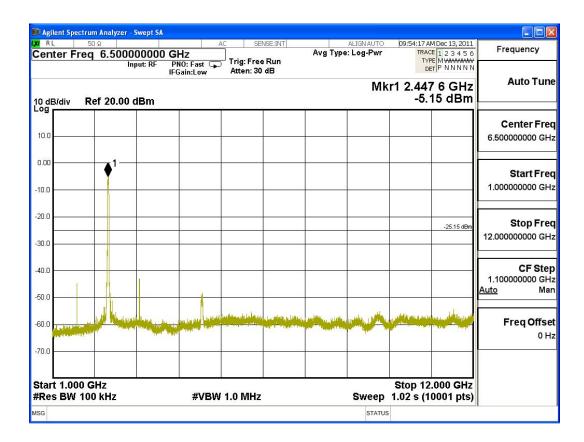
Channel 03 (2422MHz)


							- Swept SA	ctrum Analyzer	
Frequency	09:40:22 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE M MANAAAAAA	ALIGN AUTO	Avg Typ	NSE:INT]	lz	00000 MI	^{50 Ω} req 515.0	XI RL Center F
Auto Tune	Center Freq 515.000000 MFIZ Trig: Free Run Type MWMMMM Input: RF PN0: Fast Trig: Free Run Mkr1 961.006 MHz 10 dB/div Ref 20.00 dBm -58.05 dBm -58.05 dBm								
Center Fre 515.000000 MH									10.0
Start Fre 30.000000 MH									-10.0
Stop Fre 1.000000000 GH	-25.05 dBm								-20.0
CF Ste j 97.000000 MH <u>Auto</u> Ma									-40.0
Freq Offse 0 H		n ya penanya ini lana Manana ini penangan kuta	and the second secon		ny manjarihi je manja 1011. distrika je bolanja	en al general de la compañía de la c	n an		-60.0
	Stop 1.0000 GHz 9.0 ms (10001 pts)	Sween Of			1.0 MHz	#\/B\A			-70.0 Start 30.0 #Res BW
	ina (10001 pta)	STATUS			1.0 10112	# ¥ D¥¥	saved	Image.png>	

🛿 Agilent Spectrum Analyzer - Swe				
a RL 50 Ω Center Freq 6.500000 Input	0000 GHz RF PNO: Fast 😱 Trig: Free			Frequency
10 dB/div Ref 20.00 dB			Mkr1 2.431 1 GHz -5.05 dBm	Auto Tun
10.0				Center Fre 6.500000000 GH
10.00				Start Fre 1.000000000 GF
0.0			-25.05 dBm	Stop Fro 12.000000000 GI
0.0				CF Sto 1.100000000 G <u>Auto</u> M
		and the metals and the strength of the strength	May Mary and with the set	Freq Offs 0
70.0			Stop 12.000 GHz	
Res BW 100 kHz	#VBW 1.0 MHz	11-12-1	eep 1.02 s (10001 pts)	

RL 50 Ω Center Freq 18.5000 Inp	ut: RE PNO: East 🕟 Tri	SENSE:INT Avg g: Free Run :en: 30 dB	ALIGN AUTO Type: Log-Pwr	09:40:58 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tun		
Mkr1 23.986 0 GHz 10 dB/div Ref 20.00 dBm -48.34 dBm							
.0g					Center Fre 18.50000000 GH		
10.0					Start Fr 12.000000000 Gi		
30.0				-25.05 dBm	Stop Fr 25.00000000 G		
i0.0				↓ ¹	CF Ste 1.300000000 GI <u>Auto</u> M		
50.0					Freq Offs		
70.0 Start 12.000 GHz Res BW 100 kHz	#VBW 1.0		Swacz	Stop 25.000 GHz 1.20 s (10001 pts)			

	/ 100 kHz		#VBW	1.0 MHz		9	Sweep 9	0.0 ms (1	0000 GH2 0001 pts)	
tart 30.	0 MHz							Stop 1 ()000 GHz	
70.0	en al a divat ner vigit din it fandi	de suterie a server free à l'angé de	The second second second	an a hal seaton i toan		and the second				0
		HUNDER AND AND AND AND A	1	Upol Western	a di serana ang ang ang ang ang ang ang ang ang	u flifte da la standa.		alife an proprietation of	and a state of the	Freq Offs
0.0								▲ 1		
										97.000000 M <u>Auto</u> N
0.0		~				ļ				CF St
0.0				· · · · · · · · · · · · · · · · · · ·						1.000000000
0.0									-25.03 dBm	Stop Fr
0.0								_		30.000000 N
.00										Start Fr
0.0										515.000000 N
										Center Fr
odB/div	Ref 20.	00 dBm			1	Ţ	IVIKI		53 MHz 07 dBm	
		liipuc Kr	FGain:Low	Atten: 30			RAL.			Auto Tu
enter F	req 515	.000000 M	Hz PNO: Fast 🖵	Trig: Free	Run	Avg Type	: Log-Pwr	TYP	E 1 2 3 4 5 6 E MWWWWW	Frequency
RL	50 Ω	zer - Swept SA		AC SEI	NSE:INT		ALIGN AUTO	09:46:46 A	M Dec 13, 2011	


Channel 06 (2437MHz)

a RL 50Ω Center Freq 18.5000 Inpu		SENSE:INT Trig: Free Run Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr	09:47:22 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00 dE	Bm		Mki	1 23.735 1 GHz -47.57 dBm	
0 g					Center Fre 18.500000000 GH
10.0					Start Fre 12.000000000 G⊦
30.0				-25.03 dBm	Stop Fre 25.00000000 GH
			ble it.	1	CF Ste 1.30000000 GH Auto Ma
					Freq Offs 0 H
n.0				Stop 25.000 GHz	
Res BW 100 kHz	#VBW	I.0 MHz	Sweep	1.20 s (10001 pts)	

RL 50 Ω		AC SENSE:INT	ALIGN AUTO	09:54:53 AM Dec 13, 2011	Francisco
enter Freq 515.		ast 🍙 Trig: Free Run Low Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
dB/div Ref 20.0	0 dBm		Mkı	1 665.932 MHz -58.75 dBm	Auto Tu
-					Center Fr
).0					515.000000 M
00					Start Fr
0.0					30.000000 M
.0	_			-25.15 dBm	Stop Fr
0.0				-25.15 dbm	1.000000000 G
0.0	_				CF St
1.0					97.000000 N <u>Auto</u> N
1.0			♦ ¹		Freq Offs
		an tanàna ari ao amin'ny fisiana (ara any amin'ny fisiana). Ny fisiana amin'ny fisiana (ara amin'ny fisiana).		Tentering and the state of the second state of the second state of the second state of the second state of the	0
1.0					
art 30.0 MHz Res BW 100 kHz		#VBW 1.0 MHz	Sweep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	

Channel 09 (2452MHz)

RL 50 Ω enter Freq 18.5000 Ιημ		AC SENS Trig: Free F Atten: 30 d	Avg Run	ALIGN AUTO Type: Log-Pwr	09:55:29 AM Dec 13, 2011 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
dB/div Ref 20.00 d	IBm	<i>a</i> 50		Mkr	1 23.237 2 GHz -47.535 dBm	
0.0						Center Fre 18.50000000 GF
0.0						Start Fro 12.000000000 G
D.0 					-25.15 dBm	Stop Fr 25.00000000 G
0.0				dun at the second second		CF St 1.300000000 G <u>Auto</u> M
						Freq Offs 0
tart 12.000 GHz Res BW 100 kHz		(1.0 MHz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	