

RF Exposure Evaluation declaration

Product Name: Mozart II

Model No. : AWOXMII0A32, AWOXMII0D32

FCC ID : PPQ-AWOXMII0

Applicant: Lite-On Technology Corp.

Address: 4F,90,Chien 1 Road,Chung-Ho,Taipei Hsien 235,Taiwan,R.O.C.

Date of Receipt : Dec. 09, 2011

Date of Declaration: Dec. 28, 2011

Report No. : 11C203R-RFUSP29V01

The declaration results relate only to the samples calculated.

The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Page: 1 of 4 Version: 1.0

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

		` _		
Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(Minutes)
(A) Limits for Occupational/ Control Exposures				
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

Friis Formula

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

 $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

Page: 2 of 4 Version: 1.0

1.3. Test Result of RF Exposure Evaluation

Product : Mozart II

Test Item : RF Exposure Evaluation

Test Site : No.3 OATS

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 3.79dBi in logarithm scale.

802.11b Output Power Into Antenna & RF Exposure Evaluation Distance (3.79 dBi):

Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm}$ (mW/cm2)
1	2412.00	90.7821	0.043225
6	2437.00	90.1571	0.042927
11	2462.00	91.2011	0.043424

802.11g Output Power Into Antenna & RF Exposure Evaluation Distance (3.79 dBi):

Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm}$ (mW/cm2)
1	2412.00	225.4239	0.107332
6	2437.00	216.7704	0.103212
11	2462.00	237.6840	0.113170

$802.11n\text{-}20BW_14.4Mbps(2.4G~Band)$

Output Power Into Antenna & RF Exposure Evaluation Distance (3.79 dBi):

Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm}$ (mW/cm2)
1	2412.00	172.5838	0.082173
6	2437.00	189.6706	0.090309
11	2462.00	153.8155	0.073237

Page: 3 of 4 Version: 1.0

$802.11n\text{-}40BW_30Mbps(2.4G~Band)$

Output Power Into Antenna & RF Exposure Evaluation Distance (3.79 dBi):

Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density at $R = 20 \text{ cm}$ (mW/cm2)
1	2422.00	169.8244	0.080859
4	2437.00	190.1078	0.090517
7	2452.00	153.8155	0.073237

The distance r (4^{th} column) calculated from the Fries transmission formula is far shorter than 20 cm separation requirement.

Page: 4 of 4 Version: 1.0