

Product Name	Wireless Music System
Model No	A5
FCC ID.	PPQ-A5

Applicant	Lite-On Technology Corp.	
Address	4F, 90, Chien 1 Road, Chung-Ho, Taipei Hsien 235	
	Taiwan, R.O.C.	

Date of Receipt	Apr. 05, 2012
Issue Date	Apr. 20, 2012
Report No.	124188R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Apr. 20, 2012 Report No.: 124188R-RFUSP42V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	Wireless Music System		
Applicant	Lite-On Technology Corp.		
Address	4F, 90, Chien 1 Road, Chung-Ho, Taipei Hsien 235, Taiwan, R.O.C.		
Manufacturer	DONG GUAN G-COM COMPUTER CO., LTD		
Model No.	A5		
FCC ID.	PPQ-A5		
EUT Rated Voltage	DC 16V		
EUT Test Voltage	AC 120V/60Hz		
Trade Name	Bowers & Wilkins		
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010		
	ANSI C63.4: 2003		
Test Result	Complied		

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

nita Chon Documented By : (Senior Engineering Adm. Specialist / Anita Chou) Kno Tested By : (Engineer / Nowal Kuo) Approved By : (Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	
1.3.	Tested System Details	
1.4.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.5. 1.6.	Test Facility	
2.	Conducted Emission	
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	13
3.	Peak Power Output	15
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
4.1.	Test Equipment	21
4.1.		
	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Radiated Emission	25
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	47
6.1.	Test Equipment	17
6.2.	Test Setup	
6.2. 6.3.	*	
	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	50

7.	Occupied Bandwidth	58
7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	
8.	Power Density	65
8.1.	Test Equipment	65
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	
9.	EMI Reduction Method During Compliance Testing	72

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Wireless Music System		
Trade Name	Bowers & Wilkins		
Model No.	A5		
FCC ID.	PPQ-A5		
Frequency Range	2412-2462MHz for 802.11b/g		
Number of Channels	802.11b/g: 11		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps		
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Antenna Type	pe PIFA		
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		
Adapter MFR: SIL, M/N: SSA-60W-12 160300			
	Input: AC 100-240V ~ 50/60Hz, 1.5A		
	Output: DC 16V, 3A		
	Cable Out: Non-shielded, 2.0m, with one ferrite core bonded.		
Power Cable	MFR: SINOFAIR, M/N: NL-2729, Non-shielded, 0.5m		
	MFR: KENIC, M/N: KE-01, Non-shielded, 1m		
	MFR: KENIC, M/N: KE-16, Non-shielded, 1m		
	MFR: KENIC, M/N: KE-51, Non-shielded, 1m		

Antenna List

No.	Manufacturer	Model No.	Peak Gain
1	MAG. LAYERS	MSA-3610-2G4C1-A1	3.72 dBi for 2.4GHz
		MSA-3610-2G4C1-A2	

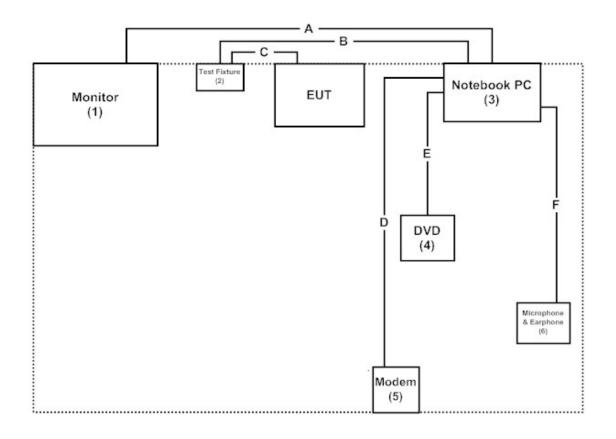
Note: The antenna of EUT is conform to FCC 15.203.

802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is a Wireless Music System with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps > 802.11g is 6Mbps)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)


1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Monitor	LG	W2261VT	907YHZK07373	DoC	Non-Shielded, 1.8m
2	Test Fixture	Lite-On	N/A	N/A	N/A	N/A
3	Notebook PC	DELL	РРТ	N/A	DoC	Non-Shielded, 0.8m
4	DVD Rom	DELL	PD01S	N/A	N/A	N/A
5	Modem	ACEEX	DM-1414	0102027558	IFAXDM1414	Non-Shielded, 1.8m
6	Microphone &	PCHOME	N/A	N/A	N/A	N/A
	Earphone					

Signal Cable Type		Signal cable Description		
А	D-SUB Cable	Non-Shielded, 1.8m, with two ferrite cores bonded.		
В	USB Cable	Non-Shielded, 1.0m		
С	Audio Cable	Non-Shielded, 1.0m		
D	RS-232 Cable	Non-Shielded, 1.5m		
Е	DVD Cable	Non-Shielded, 0.5m		
F	Microphone & Earphone Cable	Non-Shielded, 1.2m		

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in section 1.4.
- (2) Execute command on the notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

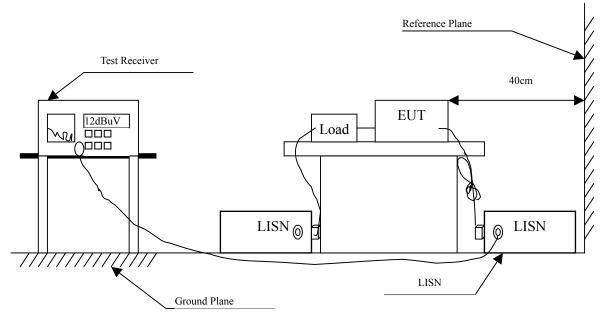
The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2011	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2011	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2011	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2011	
5	No.1 Shielded Roo	m		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AVG				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Wireless Music System
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.158	9.691	31.500	41.191	-24.580	65.771
0.361	9.820	23.880	33.700	-26.271	59.971
2.873	9.850	26.280	36.130	-19.870	56.000
4.584	9.860	33.030	42.890	-13.110	56.000
5.845	9.878	19.760	29.638	-30.362	60.000
24.013	10.170	11.710	21.880	-38.120	60.000
Average					
0.158	9.691	17.780	27.471	-28.300	55.771
0.361	9.820	17.820	27.640	-22.331	49.971
2.873	9.850	21.760	31.610	-14.390	46.000
4.584	9.860	28.600	38.460	-7.540	46.000
5.845	9.878	15.610	25.488	-24.512	50.000
24.013	10.170	2.000	12.170	-37.830	50.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

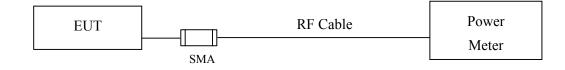
Product	: Wireless Music System								
Test Item	: Conduc	: Conducted Emission Test							
Power Line	: Line 2								
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps) (2437MHz	z)					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV	dB	dBuV				
Line 2									
Quasi-Peak									
0.170	9.784	28.800	38.584	-26.845	65.429				
0.478	9.826	24.070	33.896	-22.733	56.629				
3.091	9.870	27.320	37.190	-18.810	56.000				
4.556	9.870	33.190	43.060	-12.940	56.000				
5.869	9.888	28.160	38.048	-21.952	60.000				
24.002	10.280	15.910	26.190	-33.810	60.000				
Average									
0.170	9.784	15.000	24.784	-30.645	55.429				
0.478	9.826	17.640	27.466	-19.163	46.629				
3.091	9.870	22.810	32.680	-13.320	46.000				
4.556	9.870	27.540	37.410	-8.590	46.000				
5.869	9.888	22.740	32.628	-17.372	50.000				
24.002	10.280	11.710	21.990	-28.010	50.000				

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2011
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2011
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012
Not	<u>.</u>			


Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Average Power For different Data Rate (Mbps)

Peak Power Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	Wireless Music System
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No	Frequency	Average Power For different Data Rate (Mbps)				Peak Power	Required	Result
	(MHz)	1	2	5.5	11	1	Limit	Kesun
			Measurement Level (dBm)					
01	2412	17.41				18.07	<30dBm	Pass
06	2437	17.68	17.61	17.58	17.52	18.65	<30dBm	Pass
11	2462	15.12				18.51	<30dBm	Pass

Note:

1. Peak Power Output Value =Reading value on Spectrum Analyzer + cable loss (Use the spectrum analyzer's integrated channel power measurement function)

2. Average Power for different data rate = Reading value on Power Meter +cable loss

Figure Channel 1:

Agilent Spectrum Analyzer - Channel Pov					
RF 50 x AC SENSE:INT ALIGNAUTO [01:23:02 PM Apr 19, 2012] Center Freq: 2.412000000 GHz Radio Std: None Trig: Free Run Avg Hold:>10/10 #IFGain:Low #Atten: 30 dB Radio Device: BTS				Trace/Detector	
10 dB/div Ref 30.00 dBm Log	ı				
0.00					Clear Write
-10.0					Average
-40.0					Max Hold
-60.0 Center 2.412 GHz #Res BW 1 MHz	#V	BW 3 MHz		Span 20 M Sweep 1	
Channel Power	(40.0 MU)-	Power Spect			Detector Average
18.07 dBm	/ 10.2 MHz	-52.07	1 dBm	/HZ	
мsg 🗘 Alignment Completed			STATUS		

	Spectrum Analyzer - Char								
		AC		NSE:INT req: 2.437000	1000 GHz	ALIGN AUTO	01:25:44	MApr 19, 2012	Span
Spar	1 20.000 MHz	G	Trig: Fre	e Run	Avg Hold	:>10/10			
		#IFGain:Low	#Atten: 3	0 dB	22274		Radio Dev	vice: BTS	Span
									20.000 MHz
10 dB.	/div Ref 30.00	dBm							
Log 20.0									
0.00000.00			10						
10.0			╆╾╼╍┹		·····				
0.00									
-10.0									
-20.0	ur.								Full Span
-30.0							.		
-40.0			-				a		
-50.0 -									
-60.0									
-00.0									
Cente	er 2.437 GHz						Spa	n 20 MHz	Last Span
#Res	BW 1 MHz		#VE	BW 3 MHz	2			eep 1 ms	
Cł	nannel Power			Power	Spect	al Dens	ity		
					•		-		
	18 65 dB	m / 12.2 MH	7	_	52 22	dBm	/Hz		
	10.00 42		-	0.02		abiii	/112		
MSG						STATUS			
						STATUC			

Figure Channel 6:

Figure Channel 11:

Agilent Spectrum	n Analyzer - Channel Powe	r						
LXI	RF 50 Ω AC			NSE:INT	ALIGN AUTO	01:28:15 PM		Frequency
Center Fre	q 2.46200000		Center Fi Trig: Free	req: 2.462000000	GHz g Hold:>10/10	Radio Std: N	one	requeries
	#	IFGain:Low	#Atten: 30		ginera.> terre	Radio Devic	e: BTS	
							- 1	
10 dB/div	Ref 30.00 dBm							
Log	Ker 30.00 dBill		0			1 1		
20.0						4 U U		Center Freq
10.0			1 30					2.462000000 GHz
				the standard and stand				2.402000000 0112
0.00								
-10.0							M	
-20.0								
-30.0		-				-		
-40.0								
-50.0								
-60.0								
								CF Step
Center 2.4							20 MHz	2.000000 MHz <u>Auto</u> Man
#Res BW 1	MHz		#VE	SW 3 MHz		Swee	p 1 ms	<u>Auto</u> Mari
Channe	el Power			Power Sr	pectral Dens	sitv		Freq Offset
				THE REPORT OF STREET, STORE		90.000.000 - 20.		0 Hz
10	8.51 dBm /	40.0.0411-	_	50	.36 dBm	a		
	b.51 ubili /	12.2 WHZ		-52		/HZ		
MSG					STATU	s		

Product	:	Wireless Music System
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

			Average Power For different Data Rate (Mbps)							Peak		
	Frequency		F	or diffe	erent Da	ata Rate	e (Mbps	5)		Power	Required	
Channel No	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
				Ν	Aeasure	ement L	level (d	Bm)				
01	2412	15.67								20.83	<30dBm	Pass
06	2437	15.79	15.74	15.71	15.69	15.65	15.61	15.59	15.57	21.01	<30dBm	Pass
11	2462	12.59								18.05	<30dBm	Pass

Note:

1. Peak Power Output Value =Reading value on Spectrum Analyzer + cable loss (Use the spectrum analyzer's integrated channel power measurement function)

2. Average Power for different data rate = Reading value on Power Meter +cable loss

Figure Channel 1:

9	alyzer - Channel Powe								
RF		211-		ISE:INT eq: 2.4120000		ALIGN AUTO	01:39:47 Radio Std	PM Apr 19, 2012	Frequency
Center Freq	2.412000000	_	🖵 Trig: Free	Run	Avg Hold:	>10/10			1.5
	#	FGain:Low	#Atten: 30	dB			Radio De	vice: BTS	
10 dB/div	Ref 30.00 dBm								
Log									
20.0					02 - 2020023				Center Freq 2.412000000 GHz
10.0		an a	ar aranger w _{aran} aya	the state of the s	rini,-iniiii			Marana .	2.412000000 GH2
0.00								- Wow Hay	
-10.0									
-20.0									
-30.0									
-50.0									
-60.0								-	
									CF Step
Center 2.412 #Res BW 1 N			#VB	W 3 MHz			Spa Swe	an 20 MHz eep 1 ms	2.000000 MHz <u>Auto</u> Man
Channel	Power			Power	Spectr	al Dens	itv		Freq Offset
					- [0 Hz
20.	83 dBm /	16.45 Mł	Ηz	-5	51.33	dBm	/Hz		
MSG						STATUS			I I

	I igure channel (~	
Agilent Spectrum Analyzer - Channel Power			
LXU RF 50 Ω AC	SENSE:INT	ALIGN AUTO 01:36:16 PM Apr 19, 2012	
Center Freq 2.437000000 GHz	Center Freq: 2.437000000 GHz	Radio Std: None	Frequency
•	Trig: Free Run Avg Hold		
#IFGain:L	.ow #Atten: 30 dB	Radio Device: BTS	
10 dB/div Ref 30.00 dBm			
Log		1 I I I I I I I I I I I I I I I I I I I	
20.0			Center Freq
20.0			
10.0	and the second and the second and the second and the	the subscription and the second	2.437000000 GHz
0.00		- man man	
0.00		- And	
-10.0			
-20.0			
-30.0			
-40.0			
-50.0			
30.0			
-60.0			
			CF Step
Center 2.437 GHz		Span 20 MHz	2.000000 MHz
#Res BW 1 MHz	#VBW 3 MHz	Span 20 MHz Sweep 1 ms	<u>Auto</u> Man
			Ener Offerst
Channel Power	Power Spect	ral Density	Freq Offset
			0 Hz
24.04 dBm (40.4	E4.40	dDma //	
21.01 dBm / 16.4	5 MHZ - 31.1 0	dBm /Hz	
MSG		STATUS	

Figure Channel 6:

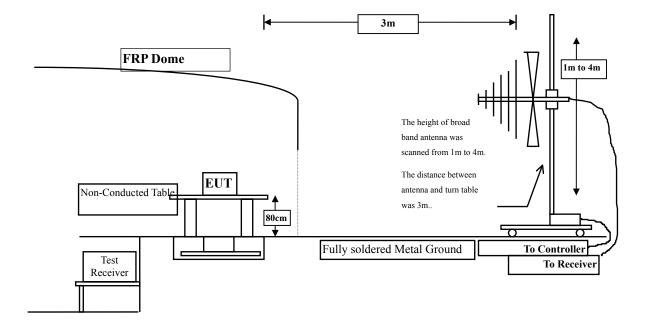
Figure Channel 11:

Agilent Spectrun	n Analyzer - Chanr						
Center Fre	RF 50 Ω eq 2.462000		SENSE:INT Center Freq: 2.4 Trig: Free Run #Atten: 30 dB		ALIGN AUTO	01:41:10 PM Apr 19, 2012 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Log	Ref 30.00	dBm		1	1		
20.0		an ille mille for a fille stand and a second	ular. 10. 41	1 (a)			Center Freq 2.462000000 GHz
0.00 -10.0 -10 .0	and Lander Street Street		ar o oan ar in an in	ev han in stration (in a	W/N/Mar.#346/4/Jol.81	and the share a lar manager and the state of	
-20.0							
-30.0							
-50.0 -60.0							
Center 2.4 #Res BW 1			#VBW 3	MHz		Span 20 MHz Sweep 1 ms	
Channe	el Power		Por	wer Spect	ral Dens	sity	Freq Offset
18	8.05 dB	m / 16.45 M	Hz	-54.12	2 dBm	/Hz	
MSG					STATUS	\$ 	

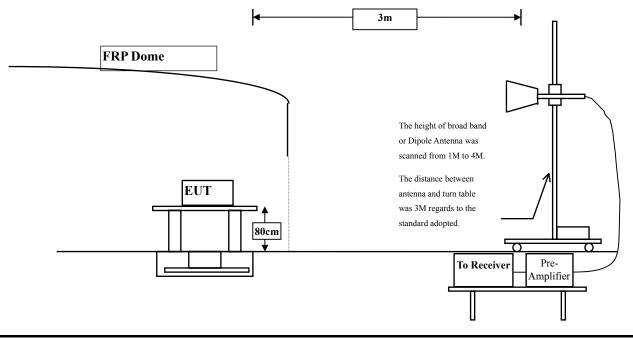
4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2011
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2011
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2011
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	Wireless Music System
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	3.261	40.090	43.351	-30.649	74.000
7236.000	10.650	36.050	46.700	-27.300	74.000
9648.000	13.337	36.410	49.746	-24.254	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	6.421	45.300	51.721	-22.279	74.000
7236.000	11.495	35.990	47.485	-26.515	74.000
9648.000	13.807	36.100	49.906	-24.094	74.000
Average Detector:					

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Wireless Music System						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	3.038	38.880	41.917	-32.083	74.000		
7311.000	11.795	35.590	47.384	-26.616	74.000		
9748.000	12.635	40.250	52.885	-21.115	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	5.812	43.080	48.891	-25.109	74.000		
7311.000	12.630	35.450	48.079	-25.921	74.000		
9748.000	13.126	39.570	52.696	-21.304	74.000		
Average Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Wireless Music System							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Mode 1: Transmit (802.11b 1Mbps) (2462 MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	2.858	38.770	41.627	-32.373	74.000			
7386.000	12.127	35.160	47.288	-26.712	74.000			
9848.000	12.852	38.980	51.833	-22.167	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4924.000	5.521	41.350	46.870	-27.130	74.000			
7386.000	13.254	35.660	48.914	-25.086	74.000			
9848.000	13.367	36.620	49.987	-24.013	74.000			
Average Detector:								

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	Product : Wireless Music System Test Item : Harmonic Radiated Emission Data								
Test Site	: No.3 OA		SIOII Data						
Test Mode									
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4824.000	3.261	38.530	41.791	-32.209	74.000				
7236.000	10.650	36.620	47.270	-26.730	74.000				
9648.000	13.337	36.450	49.786	-24.214	74.000				
Average Detector:									
Vertical									
Peak Detector:									
4824.000	6.421	46.880	53.301	-20.699	74.000				
7236.000	11.495	36.530	48.025	-25.975	74.000				
9648.000	13.807	36.780	50.586	-23.414	74.000				
Average Detector:									

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Wireless Music System							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2: Transmit (802.11g 6Mbps) (2437 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4874.000	3.038	38.780	41.817	-32.183	74.000			
7311.000	11.795	35.610	47.404	-26.596	74.000			
9748.000	12.635	38.100	50.735	-23.265	74.000			
Average Detector:								
Peak Detector:								
4874.000	5.812	45.850	51.661	-22.339	74.000			
7311.000	12.630	35.410	48.039	-25.961	74.000			
9748.000	13.126	36.760	49.886	-24.114	74.000			
Average Detector:								

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Wireless Music System							
Test Item	: Harmon	ic Radiated Emiss	sion Data					
Test Site	Test Site : No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
rrequency	Factor	Level	Level	Margin	Linnt			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	2.858	37.850	40.707	-33.293	74.000			
7386.000	12.127	35.060	47.188	-26.812	74.000			
9848.000	12.852	36.730	49.583	-24.417	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4924.000	5.521	41.770	47.290	-26.710	74.000			
7386.000	13.254	35.040	48.294	-25.706	74.000			
9848.000	13.367	36.550	49.917	-24.083	74.000			
Average Detector:								

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Music System General Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11b 1Mbps)(2437 MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
70.740	-12.921	46.018	33.097	-6.903	40.000		
142.520	-10.427	46.296	35.869	-7.631	43.500		
499.480	0.048	34.290	34.338	-11.662	46.000		
875.840	5.271	29.588	34.859	-11.141	46.000		
949.560	6.695	29.332	36.027	-9.973	46.000		
998.060	8.386	33.691	42.077	-11.923	54.000		
Vertical							
365.620	-2.179	38.488	36.309	-9.691	46.000		
499.480	-0.852	34.171	33.319	-12.681	46.000		
747.800	2.166	33.763	35.929	-10.071	46.000		
829.280	2.864	31.312	34.176	-11.824	46.000		
961.200	7.260	31.501	38.761	-15.239	54.000		
996.120	4.019	40.180	44.199	-9.801	54.000		

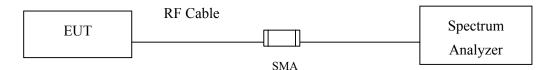
- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Wireless Music System General Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11g 6Mbps)(2437 MHz) 							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
142.520	-10.427	45.762	35.335	-8.165	43.500			
431.580	-2.099	37.030	34.931	-11.069	46.000			
499.480	0.048	35.281	35.329	-10.671	46.000			
875.840	5.271	29.024	34.295	-11.705	46.000			
972.840	6.802	27.405	34.207	-19.793	54.000			
996.120	7.669	36.191	43.860	-10.140	54.000			
Vertical								
167.740	-8.239	40.716	32.477	-11.023	43.500			
499.480	-0.852	34.193	33.341	-12.659	46.000			
749.740	2.510	36.383	38.893	-7.107	46.000			
901.060	3.331	27.921	31.252	-14.748	46.000			
961.200	7.260	29.949	37.209	-16.791	54.000			
996.120	4.019	39.857	43.876	-10.124	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2011
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2011
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Jan. 2012 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

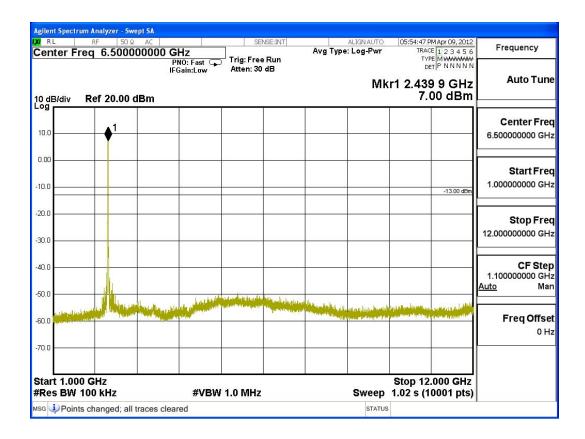
The measurement uncertainty Conducted is defined as \pm 1.27dB

5.6. Test Result of RF antenna conducted test

Product	:	Wireless Music System
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

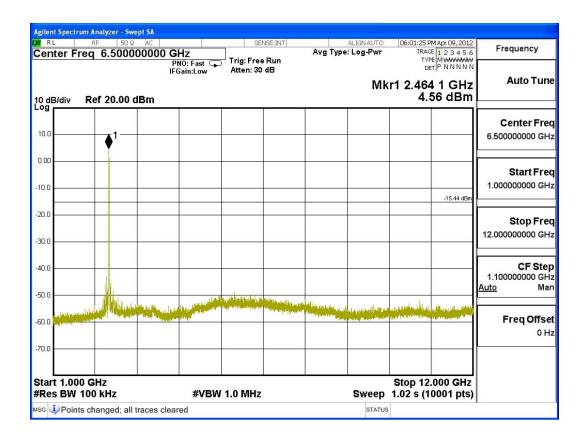
Channel 01 (2412MHz)

Agilent Spectrum Analyzer - Swep					
X RL RF 50 Ω Center Freq 515.000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:45:43 PM Apr 09, 2012 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
10 dB/div Ref 20.00 dl	IFGain:Low	Atten: 30 dB	Mkr	1 961.006 MHz -54.18 dBm	Auto Tune
10.0					Center Freq 515.000000 MHz
-10.0				-13.16 dBm	Start Free 30.000000 MH:
-20.0					Stop Free 1.000000000 GH:
-40.0				1_	CF Step 97.000000 MH: Auto Mar
-60.0 (1997)		ten etalenti bilanen eta	na postal are prese pri ta dolta su foitava	la de la face de la constitui a la face de la constitui de la constitui de la constitui de la constitui de la Constitui de la constitui de la Constitui de la constitui de la	Freq Offse 0 Ha
-70.0					
Start 30.0 MHz #Res BW 100 kHz	#VBW [/]	1.0 MHz	Sweep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	
мsg 🤃 File <lmage.png> sav</lmage.png>	ved	n na haranna "Marchainne	STATUS		


	n Analyzer - Swept SA								
LXI RL	RF 50 Ω AC		SEN	SE:INT		ALIGNAUTO	05:45:11 PM Apr 09,		Frequency
Center Fre	eq 6.5000000	PNO: Fast 😱	Trig: Free		Avg Type	: Log-Pwr	TRACE 1 2 3 4 TYPE MWWW DET P N N I		
	Ref 20.00 dBm	IFGain:Low	Atten: 30	aB		Mk	r1 2.414 6 G 6.84 dE	Hz	Auto Tune
10.0	1								Center Fred 6.50000000 GHz
0.00								_	Start Fred
-10.0							-13.10	6 dBm	1.000000000 GH:
-30.0								_	Stop Free 12.000000000 GH
-40.0									CF Step 1.100000000 GH <u>Auto</u> Mar
-50.0		الالتقاعيد والحديدة	pala ^{les} inggingesatis ¹ Manufalanan period	sett Gray Inspande	and a second state of the	a a second descent		1 In Only	
-60.0		And the second sec			The second second second second	ne kendensten hånne e	i Leg Marine II fan Argene yn er Anwer fyn 1995 of 1976 fan Argene fan Argene Ingel	andre i	Freq Offse 0 Hi
-70.0									
Start 1.000 #Res BW 1		#VBW	1.0 MHz		1	Sweep	Stop 12.000 G 1.02 s (10001 j	GHz pts)	
мsg 🗼 Points	changed; all traces	cleared				STATUS			L

RL RF 50Ω enter Freq 18.5000	PNO: Fast 😱 T	rig: Free Run	ALIGNAUTO Type: Log-Pwr	05:46:13 PM Apr 09, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div Ref 20.00 d		Atten: 30 dB	Mkr	1 23.696 1 GHz -41.12 dBm	Auto Tun
og 10.0					Center Fre 18.500000000 G⊢
0.00				-13.16 dBm	Start Fre 12.000000000 GF
0.0					Stop Fr 25.00000000 G
0.0		(maki dini dan manakan jiraha katalarina	1999)))))))) 1999))))) 1999))))))	1	CF Sto 1.300000000 G <u>Auto</u> M
	den fin de la de la desta de la desta de la desta de la definitación de la desta de la definitación de la dest La definitación de la de la desta de la desta de la definitación de la definitación de la definitación de la de	ozi bijasterkli v sekorekar "v klaza politika".			Freq Offs 0
tart 12.000 GHz Res BW 100 kHz	#VBW 1.	0 MHz	Sween	Stop 25.000 GHz 1.20 s (10001 pts)	

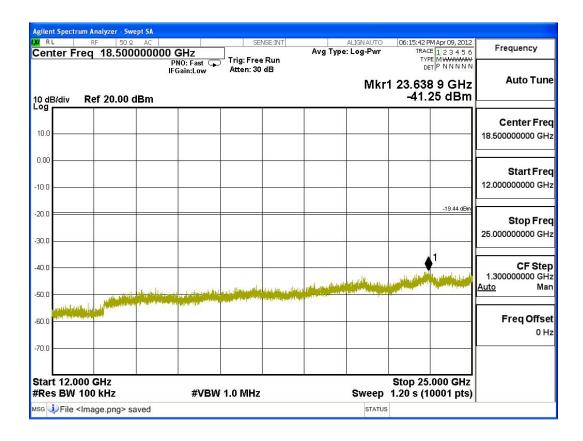
RL		2 AC		SEI	NSE:INT		ALIGN AUTO	05:55:19 PM Apr 09, 2012	Frequency
enter	Freq 515.00	PN	Z IO: Fast 😱 ain:Low	Trig: Free Atten: 30	Run	Avg Type:	Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
dB/div	Ref 20.00	dBm					Mkr	1 474.357 MHz -54.39 dBm	
^{yg}									Center Fr
0.0									515.000000 N
00									Start Fr
0.0								-13.00 dBm	30.000000 N
i.o ——					-	-			Stop Fr
0.0									1.000000000
n.o									CF St 97.000000 M
0.0				1					<u>Auto</u> N
0.0	handle and the state of the state	te para di tant ju			ang		el mart et Mar, Lan Anna Star Libert en	and and the stand of the standard second straight to be	Freq Offs
0.0									0
	.0 MHz N 100 kHz		#VBW	1.0 MHz		s	weep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	
a							STATUS		


Channel 06 (2437MHz)

	ctrum Analyze		-							
Center	Freq 18.	50 Ω AC .500000000 F	NO: Fast 😱] Trig: Free		Avg Type	ALIGNAUTO : Log-Pwr	TRAC TYL	MApr 09, 2012 = 1 2 3 4 5 6 = MWWWWW = P N N N N N	Frequency
10 dB/div	Ref 20	⊪ 0.00 dBm	Gain:Low	Atten: 30	dB		Mkr	1 23.49	0 7 GHz 50 dBm	Auto Tune
10.0										Center Free 18.50000000 GH
.10.0									-13.00 dBm	Start Fre 12.000000000 GH
20.0										Stop Fre 25.000000000 G⊢
40.0	44				an a sa an					CF Ste 1.300000000 GH <u>Auto</u> Ma
60.0	and the strategic sector									Freq Offse 0 ⊢
-70.0										
	.000 GHz N 100 kHz	2	#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
ısg 🗼 Fil	e <lmage.pr< td=""><td>ng> saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></lmage.pr<>	ng> saved					STATUS			

RL RF	50 Ω AC		SENSE:INT		ALIGN AUTO	06:01:56 PM Apr 09, 2012	Frequency
enter Freq		NO: East	Frig: Free Run Atten: 30 dB	Avg Typ	e: Log-Pwr	TRACE 123456 TYPE MWWWWW DET PNNNNN	
0 dB/div Ref	20.00 dBm				Mk	r1 908.141 MHz -54.30 dBm	Auto Tun
10.0							Center Fre
							515.000000 MH
.00							Start Fre
10.0						-15.44 dBm	30.000000 MH
0.0							Stop Fre
0.0							1.000000000 GI
0.0							CF Ste 97.000000 MI
0.0						1	<u>Auto</u> Ma
	and related the product of the sec	antifanda atabla tul	paraperter de la forme da la			a a gu shallan ba a san da sa giri ba a ti sa da a fi	Freq Offs
							01
'0.0							
tart 30.0 MHz Res BW 100 k	·H7	#\/B\A(1	0 MHz	1	Sween 0	Stop 1.0000 GHz	
Res BW 100 k	10142140	#VBW 1	.0 MHz		Sweep 9	0.0 ms (10001 pts)	

Channel 11 (2462MHz)


Agilent Spectrum A									
Center Freq			PNO: Fast] Trig: Free		ALIGNAUTO : Log-Pwr	TRAC TYL	PM Apr 09, 2012 E 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Frequency
	ef 20.00		IFGain:Low	Atten: 30	dB	Mkr	1 23.57	6 5 GHz 66 dBm	Auto Tune
10.0									Center Fred 18.500000000 GHz
-10.0								-15.44 dBm	Start Free 12.000000000 GH
20.0 30.0									Stop Fre 25.000000000 GH
40.0	appeter and		- University of the	A DAUGHAR AND A	al agained page 14 Mag				CF Ste 1.300000000 G⊦ <u>Auto</u> Ma
60.0	1916 - 1917 - 1918 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1918 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1918 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 -								Freq Offse 0 H
-70.0 Start 12.000	GH7						Stop 25	.000 GHz	
#Res BW 100) kHz		#VBW	1.0 MHz		Sweep		0001 pts)	
ısg 🗼 File <lma< td=""><td>age.png></td><td>saved</td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td></td></lma<>	age.png>	saved				STATUS			

Product	:	Wireless Music System
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

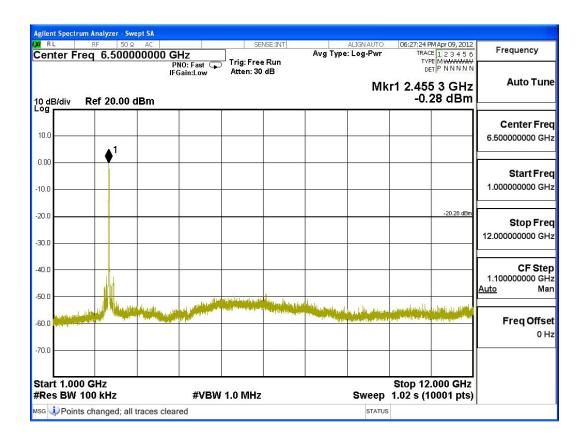
Channel 01 (2412MHz)

		alyzer - Swe				12					
RL Contor	Fred		AC 0000 MH	7	SEI	NSE:INT	Ανα Τνρε	ALIGNAUTO		PM Apr 09, 2012	Frequency
10 dB/div		f 20.00 d	PI IFC	Z 10: Fast 😱 Sain:Low	┘ Trig: Free Atten: 30			-	۳۷ ۵ 1 856.6	34 MHz 32 dBm	Auto Tur
10.0											Center Fre 515.000000 Mi
0.00											Start Fr 30.000000 M
0.0										-19.44 dBm	Stop Fr 1.000000000 G
0.0											CF St 97.000000 M
0.0	4.1	an taises à liter du	nalaa tam	an a balantan as d	المغلى أعلمه مريد مسغفا فقله	and designing of	alay pertanela fila	allour, and a locate		salla va laga va da se se se	<u>Auto</u> M
0.0		a sheet a			ha	dia facilità d'arte a factoria	The second s	a a su a su a si	and south a selection of	et adaren den ben di sereda pilare	Freq Offs 0
0.0											
tart 30 Res BV				#VBW	1.0 MHz		<u> </u>	Sweep 9		0000 GHz 0001 pts)	
sg 🗼 File	e <lmag< td=""><td>je.png> sa</td><td>ved</td><td></td><td></td><td></td><td></td><td>STATU</td><td>IS</td><td></td><td></td></lmag<>	je.png> sa	ved					STATU	IS		

Agilent Spectrur										
(X) RL	RF 50 Ω		1-	SEI	NSE:INT	Δυα Τνρο	ALIGNAUTO : Log-Pwr		MApr 09, 2012	Frequency
Center Fre	ed 0.0000	PN	⊐∠ IO: Fast ⊊ ain:Low	Trig: Free Atten: 30		ULA I MA	. Log-i wi			
10 dB/div	Ref 20.00 c						Mk		57 GHz 56 dBm	Auto Tune
										Center Freq
10.0	▲1					-				6.500000000 GHz
0.00										Start Freq
-10.0					-					1.000000000 GHz
-20.0					1				-19.44 dBm	
-30.0										Stop Freq 12.00000000 GHz
										05.04-7
-40.0										CF Step 1.100000000 GHz Auto Man
-50.0	and the second	الدواري واللوق أأت	مراجع المرجع الم		Partie Lawy			dan ti sel alla di di dan di san di	والمحمد الراد المارية	<u>Auto</u> Main
-60.0									i de cara de la compañía de la face	Freq Offset 0 Hz
-70.0										0 H2
Start 1.000 #Res BW 1			#VBW	1.0 MHz			Sweep		.000 GHz 0001 pts)	
мsg 🔱 Points	changed; all	traces cleare	ed				STATUS	-		

	ctrum Analyzer - Sw						22		
Center	RF 50 Ω	AC 0000 MHz		NSE:INT		ALIGNAUTO	TRAC	M Apr 09, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div	571. M0532554970970-	PNO: Fast 🕞 IFGain:Low	J Trig: Free Atten: 30			Mł	™ 1 916.2	89 MHz 31 dBm	Auto Tune
10.0									Center Freq 515.000000 MHz
-10.0								-17.58 dBm	Start Freq 30.000000 MHz
-20.0								-17.30 0011	Stop Freq 1.000000000 GHz
-40.0									CF Step 97.000000 MHz Auto Man
-50.0		teriffere ter personalisettere etc.		nanthire direct of	ale for the local state of the	n I I an a de la com	flastigen gestige statist	dan Bartanta Aldahara Ma	Freq Offset
-70.0									
Start 30 #Res B).0 MHz W 100 kHz	#VBW	/ 1.0 MHz		(Sweep	Stop 1.0 90.0 ms (1	000 GHz 0001 pts)	
мsg 🔱 Fi	le <lmage.png> sa</lmage.png>	aved				STAT		• • • • •	1

Channel 06 (2437MHz)


RL RF 50 Ω center Freq 6.50000	PNO: Fast 😱	SENSE:INT	ALIGNAUT		Frequency
0 dB/div Ref 20.00 d	IFGain:Low	Atten: 30 dB	N	lkr1 2.443 2 GHz 2.42 dBm	Auto Tun
10.0 • 1					Center Fre 6.50000000 GH
0.0					Start Fre
0.0				-17.58 dBm	Stop Fr 12.000000000 G
0.0					CF Sto 1.100000000 G <u>Auto</u> M
					Freq Offs 0
0.0					
tart 1.000 GHz Res BW 100 kHz	#VBW	1.0 MHz	Swee	Stop 12.000 GHz p 1.02 s (10001 pts)	

	pectrum A										(
XI RL Cente	r Freq		Ω AC 0000000	PNO: Fast 🔾	Trig: Free Atten: 30		Avg Type	ALIGNAUTO : Log-Pwr	TRAC TY	PM Apr 09, 2012 E 1 2 3 4 5 6 PE MWWWWW ET P N N N N N	Frequency
10 dB/d	liv Re	f 20.00		IFGain:Low	Atten: 30	40		Mkr	1 23.62	2 0 GHz 93 dBm	Auto Tune
- og 10.0											Center Fre 18.500000000 GH
0.00											Start Fre
20.0 —										-17.58 dBm	Stop Fre
30.0 — 40.0 —						2 42		a Jacobia (Marana)	and statistics	1	CF Ste 1.30000000 GF
50.0	ster blefar of		elen de la composition de la composition La composition de la c			and an a line of an allowed and a second		en der state det en en			Auto Ma Freq Offs
70.0 —											01
	12.000 C BW 100			#VBW	1.0 MHz	<u> </u>	I	Sweep		.000 GHz 0001 pts)	
sg 🗼 F	File <lma< td=""><td>ge.png></td><td>saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td></td><td></td><td>0</td></lma<>	ge.png>	saved					STATUS			0

RL RF 50 Ω Center Freq 515.000	AC 000 MHz PN0: Fast	SENSE:INT Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr	06:27:55 PM Apr 09, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
0 dB/div Ref 20.00 dl	IFGain:Low	Atten: 30 dB	Mkr	DET P NNNNN 1 828.310 MHz -54.68 dBm	Auto Tun
10.0					Center Fre 515.000000 MH
10.0					Start Fre 30.000000 M⊦
30.0				-20.28 dBm	Stop Fre 1.000000000 GH
0.0				1	CF Ste 97.000000 Mi <u>Auto</u> Mi
	line suffra da se fra sul fra da da se su desenti pro- tema fin desente en esta se su desente pro-	Stangtone and and all there weath every	tan tile de angele te alle angele angele Angele angele	an de care a trada de parte dans de la sec	Freq Offs 0 H
70.0				Stop 1 0000 CHr	
Res BW 100 kHz	#VBW	1.0 MHz	Sweep 9	Stop 1.0000 GHz 0.0 ms (10001 pts)	

Channel 11 (2462MHz)

Agilent Spectru XI RL	m Analyzer - Swept SA RF 50.0 AC		051	or wr	Ť				r
	RF 50 Ω AC eq 18.500000		Trig: Free Atten: 30		Avg Type	ALIGNAUTO : Log-Pwr	TRAC TYP	M Apr 09, 2012 E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
10 dB/div	Ref 20.00 dBm		Atten: 30			Mkr		5 9 GHz 55 dBm	Auto Tune
- og 10.0									Center Fre 18.500000000 GH
0.00									Start Fre 12.000000000 G⊦
30.0								-20.28 dBm	Stop Fre 25.000000000 G⊦
40.0			alah salar da	are at here the	al est de la facilit	ta da la da da para da arga			CF Ste 1.30000000 GH <u>Auto</u> Ma
60.0	a pp 1000 with a state of the state	antina participan <u>a p</u> eriodo de la ferritoria de la constanti d							Freq Offso 0 ⊦
5tart 12.00	00 GHz						Stop 25	.000 GHz	
#Res BW 1	100 kHz	#VBW	1.0 MHz				1.20 s (1	0001 pts)	
sg 🕹 File <	Image.png> saved					STATUS			