

Tobias Cremer

SAR Compliance Test Report

Test report no.: FCC_RM-775_02 Date of report: 2011-04-14

Template version: 17.0 Number of pages: 54

Frederikskaj 89081 ULM 1790 COPENHAGEN V GERMANY

1790 COPENHAGEN V GERMANY
DENMARK Tel. +49 731 1754 0

Tel. +45 33 292929 Fax. +49 731 1754 6800 Fax. +45 33 292934

Responsible test Jesper Nielsen Product contact

engineer: person:

Measurements made by: Preben Runchel, Leif Klysner &

Jesper Nielsen

 Tested device:
 RM-775

 FCC ID:
 PPIRM-775

 IC:
 661U-RM775

SAR Photo RM-775 03, FCC RM-639 01 for RM-639 / FCC ID: PPIRM-639 / IC: 661U-RM639

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1. SUMMARY OF SAR TEST REPORT	3
1.1 TEST DETAILS	
1.2.2 Body Worn Configuration	
1.2.3 Maximum Drift	
1.2.4 Measurement Uncertainty	
2. DESCRIPTION OF THE DEVICE UNDER TEST	
2.1 DESCRIPTION OF THE ANTENNA	
3. TEST CONDITIONS	6
3.1 TEMPERATURE AND HUMIDITY	6
3.2 Test Signal, Frequencies and Output Power	
3.3 TEST CASES AND TEST MINIMISATION	
4. DESCRIPTION OF THE TEST EQUIPMENT	g
4.1 MEASUREMENT SYSTEM AND COMPONENTS	
4.1.1 Isotropic E-field Probe Type EX3DV4	
4.2 PHANTOMS	
4.3 TISSUE SIMULANTS	
4.3.1 Tissue Simulant Recipes	
4.3.2 System Checking	
4.3.3 Tissue Simulants used in the Measurements	
5. DESCRIPTION OF THE TEST PROCEDURE	13
5.1 Device Holder	
5.2 Test Positions	
5.2.1 Against Phantom Head	
5.2.2 Body Worn Configuration	
5.3 SCAN PROCEDURES	
5.4 SAR Averaging Methods	
6. MEASUREMENT UNCERTAINTY	15
7. RESULTS	16
APPENDIX A: SYSTEM CHECKING SCANS	27
APPENDIX B: MEASUREMENT SCANS	30
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	53
ADDENINTY IN DELEVANT DACEC EDOM NIDOLE VALIDATION VIT DEDODT(C)	5/

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2011-04-11 to 2011-04-13
SN, HW and SW numbers of tested device	SN: 004402/13/442008/6, HW: 0100, SW: lei6.33SS C, DUT: 23733
Batteries used in testing	BL-4S Sanyo, DUT: 23726, 23725, 23724 BL-4S Sony, DUT: 24288, 24292
Headsets used in testing	WH-102, DUT: 24289
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* AR value (1g avg)	SAR limit (1g avg)	Result
GSM850**	251 / 848.8	32.5 dBm	Left, Cheek	0.679 W/kg	0.76 W/kg	1.6 W/kg	PASSED
WCDMA850**	4175 / 835.0	23.5 dBm	Left, Cheek	0.709 W/kg	0.79 W/kg	1.6 W/kg	PASSED
GSM1900**	661 / 1880.0	30.5 dBm	Right, Cheek	0.671 W/kg	0.75 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9538 / 1907.6	21.0 dBm	Right, Cheek	0.800 W/kg	0.90 W/kg	1.6 W/kg	PASSED
WLAN2450	7 / 2442.0	14.0 dBm	Left, Cheek	0.284 W/kg	0.32 W/kg	1.6 W/kg	PASSED
GSM850 + WLAN2450	-	-	Left, Cheek	0.929 W/kg	1.04 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	-	-	Left, Cheek	0.955 W/kg	1.07 W/kg	1.6 W/kg	PASSED
GSM1900 + WLAN2450	-	-	Left, Cheek	0.930 W/kg	1.04 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	Right, Cheek	0.918 W/kg	1.03 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
GSM850**	251 / 848.8	32.5 dBm	1.5 cm	0.416 W/kg	0.47 W/kg	1.6 W/kg	PASSED
WCDMA850**	4233 / 846.6	23.5 dBm	1.5 cm	0.439 W/kg	0.49 W/kg	1.6 W/kg	PASSED
GSM1900**	661 / 1880.0	30.5 dBm	1.5 cm	0.340 W/kg	0.38 W/kg	1.6 W/kg	PASSED
WCDMA1900**	9538 / 1907.6	21.0 dBm	1.5 cm	0.432 W/kg	0.48 W/kg	1.6 W/kg	PASSED
WLAN2450	11 / 2462.0	14.0 dBm	1.5 cm	0.056 W/kg	0.06 W/kg	1.6 W/kg	PASSED
GSM850 + WLAN2450	-	-	1.5 cm	0.449 W/kg	0.50 W/kg	1.6 W/kg	PASSED
WCDMA850 + WLAN2450	-	-	1.5 cm	0.455 W/kg	0.51 W/kg	1.6 W/kg	PASSED
GSM1900 + WLAN2450	-	-	1.5 cm	0.364 W/kg	0.41 W/kg	1.6 W/kg	PASSED
WCDMA1900 + WLAN2450	-	-	1.5 cm	0.456 W/kg	0.51 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.49 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

^{**} SAR data taken from FCC_RM-639_01 for RM-639 / FCC ID: PPIRM-639 / IC: 661U-RM639.

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 4/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 4/8	824 - 849 1850 - 1910
WCDMA	850 (Band V) 1900 (Band II)		1	826 – 847 1852 – 1908
HSUPA	850 (Band V) 1900 (Band II)		1	826 - 847 1852 - 1908
BT	2450	GFSK	1	2402 – 2480
WLAN b-mode	2450	Up to 11Mbps QPSK	1	2412 – 2462
WLAN g-mode	2450	Up to 54Mbps 64QAM	1	2412 – 2462
WLAN n-mode 20MHz	2450	Up to 72.2Mbps 64QAM	1	2412 – 2462

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA900 and WCDMA2100 bands which are not part of this filing.

This is a BT Class 1 device; as its power tuning target is 8 dBm (6.3 mW), SAR testing was deemed unnecessary.

This product does not support Wireless Router ("Hotspot") mode.

2.1 Description of the Antenna

The device has internal antennas for both cellular and WLAN use. The cellular antenna is located at the bottom underneath the back cover. The WLAN antenna is located at the bottom underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 - 22.5
Ambient humidity (RH %):	35 - 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using control software was used.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The transmission mode of the device in all WLAN b-mode tests was DSSS QPSK 11Mbps. This mode has the highest (or equal highest) time-averaged output power of all the WLAN b and g modulation modes in Nokia devices. In WLAN n-mode, BPSK 6.5Mbps with 20MHz bandwidth was used.

Only the test details relating to the SAR testing of WLAN2450 are given in this report; all of the cellular SAR data has been taken from FCC_RM-639_01 for RM-639 / FCC ID: PPIRM-639 / IC: 661U-RM639. The only differences between RM-775 and RM-639 that affect SAR performance are in the power levels of the band edge channels for WLAN2450 band.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE4	682	12 months	2011-07
E-field Probe EX3DV4	3581	12 months	2011-07
Dipole Validation Kit, D2450V2	750	24 months	2012-02
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SMIQ03	826046/034	36 months	201-08
Amplifier	ZHL-4240W	E060204/1	-	-
Power Meter	NRVD	833696	24 months	2013-03
Power Sensor	NRV-Z51	100484	24 months	2013-03
Vector Network Analyzer	AT8753ES	MY40001091	12 months	2011-08
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type EX3DV4

Construction Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6

GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

Dynamic Range 10 μ W/g to > 100 mW/g, Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 10 mm Body diameter: 12 mm Tip diameter: 2.5 mm

Distance from probe tip to dipole centers: 1.0 mm

Application General dosimetry up to 6 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

Type: RM-775

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was at least 15.0 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

2450MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	56.0	70.20
Tween 20	44.0	29.62
Salt	-	0.18

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric Parameters		Temp
f [MHz]	Description	1 g	εr	σ [S/m]	[°C]
	Reference result	13.5	38.7	1.77	
	$\pm10\%$ window	12.1 - 14.9			
2450	2011-04-11	13.9	37.5	1.84	22.3
	2011-04-12	14.3	37.3	1.86	22.0

Plots of the system checking scans are given in Appendix A.

SAR Report FCC_RM-775_02 Applicant: Nokia Corporation

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	Parameters	Temp			
[MHz]	Description	εr	σ [S/m]	[°C]			
	Recommended value	39.2	1.79				
	\pm 5% window	37.3 – 41.2	1.70 - 1.88				
2442	2011-04-11	37.5	1.83	22.3			
	2011-04-12	37.3	1.85	22.0			

Body tissue simulant measurements

body dissue simulant medisurements								
f		Dielectric F	Temp					
[MHz]	Description	εr	σ [S/m]	[°C]				
	Recommended value	52.7	1.94					
	± 5% window	50.1 - 55.3	1.85 – 2.04					
2442	2011-04-12	50.3	1.97	21.1				

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

Nokia body-worn accessories are commonly available for the separation distance used in this testing.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	G	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	(1-c _p) ^{1/2}	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	±1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	±1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	∞
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift	6.6.3	± 0.0	R	√3	1	±0.0	∞
measurement							
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty		RSS			±12.9	116	
Coverage Factor for 95%			k=2				
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850MHz Head SAR results**

			Z HEGU JAK IES		eraged over 1g	(W/kg)
Mode	Option used	Test conf	iguration	Ch 128	Ch 190	Ch 251
Hardware ID				824.2 MHz	836.6 MHz	848.8 MHz
GSM		Conducte	ed Power	32.5 dBm	32.5 dBm	32.5 dBm
		Left	Cheek	0.610	0.606	0.679
0221	BL-4S Sanyo		Tilt	-	0.307	-
		Right	Cheek	-	0.537	-
			Tilt	-	0.286	-
2-slot GPRS		Conducto	ed Power	-	29.5 dBm	-
		Left	Cheek	-	0.561	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
3-slot GPRS		Conducto	ed Power	-	27.7 dBm	-
		Left	Cheek	-	0.545	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
4-slot GPRS		Conducto	ed Power	-	26.5 dBm	-
		Left	Cheek	-	0.540	-
0221	BL-4S Sanyo		Tilt	-	-	-
į.		Right	Cheek	-	-	-
			Tilt	-	-	-
1-slot 8PSK EGPRS		Conducto	ed Power	-	-	27.0 dBm
		Left	Cheek	-	-	0.158
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
GSM 0221	BL-4S Sony	Left Cheek		0.579	0.617	0.652

OSOFILE TUDIC CONCINGES						
				SAR, av	eraged over 1g	(W/kg)
Mode	Option used	Test conf	iguration	Ch 4132	Ch 4175	Ch 4233
Hardware ID				826.4 MHz	835.0 MHz	846.6 MHz
WCDMA		Conducte	ed Power	23.5 dBm	23.5 dBm	23.5 dBm
		Left	Cheek	0.653	0.709	0.686
0221	BL-4S Sanyo		Tilt	-	0.336	-
		Right	Cheek	-	0.551	-
			Tilt	-	0.333	-
WCDMA 0221	BL-4S Sony	Left Cheek		0.633	0.654	0.686

1900MHz Head SAR results**

				SAR, av	eraged over 1g	(W/kg)
Mode	Option used	Test conf	iguration	Ch 512	Ch 661	Ch 810
Hardware ID				1850.2 MHz	1880.0 MHz	1909.8 MHz
GSM	T		ed Power	30.5 dBm	30.5 dBm	30.5 dBm
		Left	Cheek	-	0.668	-
0221	BL-4S Sanyo		Tilt	-	0.198	-
		Right	Cheek	0.593	0.671	0.648
			Tilt	-	0.272	-
2-slot GPRS		Conducto	ed Power	-	27.5 dBm	-
		Left	Cheek	-	0.637	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
3-slot GPRS		Conducto	ed Power	-	25.7 dBm	-
		Left	Cheek	-	0.624	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
4-slot GPRS		Conducto	ed Power	-	24.5 dBm	-
		Left	Cheek	-	0.616	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	-	-
			Tilt	-	-	-
1-slot 8PSK EGPRS		Conducto	ed Power	-	26.0 dBm	-
		Left	Cheek	-	-	-
0221	BL-4S Sanyo		Tilt	-	-	-
		Right	Cheek	-	0.266	-
			Tilt	-	-	-
GSM 0221	BL-4S Sony	Right Cheek		0.532	0.606	0.611

				SAR, av	eraged over 1g	(W/kg)	
Mode	Option used	Test conf	iguration	Ch 9262	Ch 9400	Ch 9538	
Hardware ID				1852.4 MHz	1880.0 MHz	1907.6 MHz	
WCDMA		Conducto	ed Power	21.0 dBm	21.0 dBm	21.0 dBm	
		Left	Cheek	-	0.692	1	
0221	BL-4S Sanyo		Tilt	-	0.239	•	
		Right	Cheek	0.798	0.757	0.800	
			Tilt	-	0.312	-	
WCDMA 0221	BL-4S Sony	Right Cheek		0.771	0.784	0.786	

2450MHz Head SAR results

			SAR, av	eraged over 1g	(W/kg)
Mode	Test configuration		Ch 1	Ch 7	Ch 11
Option used			2413.4 MHz	2443.9 MHz	2463.3 MHz
WLAN b-mode	Conducte	ed Power	14.0 dBm	14.0 dBm	14.0 dBm
	Left	Cheek	0.218	0.205	0.241
BL-4S Sanyo		Tilt	-	0.069	-
	Right	Cheek	-	0.177	-
		Tilt	-	0.053	-
WLAN b-mode BL-4S Sony	Left Cheek		0.239	0.284	0.272
WLAN n-mode 20MHz	Conducte	ed Power	10.0 dBm	14.0 dBm	10.0 dBm
	Left	Cheek	0.065	0.170	0.052
BL-4S Sanyo		Tilt	-	1	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
WLAN n-mode 20 MHz BL-4S Sony	Left Cheek		0.075	0.192	0.068

The measured Body SAR values for the test device are tabulated below:

850MHz Body SAR results**

				SAR, av	eraged over 1g	(W/kg)	
Hardware ID	Option used	Device orientation	Test configuration	Ch 128 824.2 MHz	Ch 190 836.6 MHz	Ch 251 848.8 MHz	
GSM			Conducted Power	32.5 dBm	32.5 dBm	32.5 dBm	
			Display facing	Without headset	-	0.357	-
0221	BL-4S Sanyo	IS Sanyo phantom	Headset WH-102	-	0.255	-	
		Back facing	Without headset	0.375	0.398	0.411	
	phan	phantom	Headset WH-102	-	0.324	-	
GSM 0221	BL-4S Sony	Back facing phantom	Without headset	0.384	0.406	0.416	
Hardware ID	Option used	Device orientation	Test configuration	Ch 4132 826.4 MHz	Ch 4175 835.0 MHz	Ch 4233 846.6 MHz	
WCDMA			Conducted Power	23.5 dBm	23.5 dBm	23.5 dBm	
		Display facing	Without headset	-	0.378	-	
0221	BL-4S Sanyo	phantom	Headset WH-102	-	0.305	-	
		Back facing	Without headset	0.388	0.384	0.425	
		phantom	Headset WH-102	-	0.303	-	
WCDMA 0221	BL-4S Sony	Back facing phantom	Without headset	0.435	0.433	0.439	

1900MHz Body SAR results**

				SAR, av	eraged over 1g	(W/kg)
Hardware ID	Option used	Device orientation	Test configuration	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
GSM			Conducted Power	30.5 dBm	30.5 dBm	30.5 dBm
		Display facing	Without headset	-	0.248	-
0221	BL-4S Sanyo	phantom	Headset WH-102	-	0.247	-
		Back facing	Without headset	0.287	0.332	0.327
		phantom	Headset WH-102	-	0.301	-
GSM 0221	BL-4S Sony	Back facing phantom	Without headset	0.294	0.340	0.338
Hardware ID	Option used	Device orientation	Test configuration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz
WCDMA			Conducted Power	21.0 dBm	21.0 dBm	21.0 dBm
		Display facing	Without headset	-	0.308	-
0221	BL-4S Sanyo	phantom	Headset WH-102	-	0.275	-
		Back facing	Without headset	0.360	0.411	0.384
		phantom	Headset WH-102	-	0.337	-
WCDMA 0221	BL-4S Sony	Back facing phantom	Without headset	0.399	0.431	0.432

2450MHz Body SAR results

			SAR, av	eraged over 1g	(W/kg)
Mode Option used	Device orientation	Test configuration	Ch 1 2413.4 MHz	Ch 7 2443.9 MHz	Ch 11 2463.3 MHz
WLAN b-mode		Conducted Power	14.0 dBm	14.0 dBm	14.0 dBm
	Display facing	Without headset	0.048	0.050	0.056
BL-4S Sanyo	phantom	Headset WH-102	-	0.049	-
	Back facing	Without headset	-	0.035	-
	phantom	Headset WH-102	-	0.039	-
WLAN b-mode BL-4S Sony	Display facing phantom	Without headset	0.047	0.054	0.055
WLAN n-mode 20MHz		Conducted Power	10.0 dBm	14.0 dBm	10.0 dBm
	Display facing	Without headset	0.017	0.046	0.017
BL-4S Sanyo	phantom	Headset WH-102	-	•	-
	Back facing	Without headset	-	•	-
	phantom	Headset WH-102	-	-	-
WLAN n-mode BL-4S Sony	Display facing phantom	Without headset	0.017	0.035	0.035

Simultaneous transmissions: Combined SAR results – Individual band Max results

	Max. 1g SAR results					
Test configuration	WLAN	GSM850**	WCDMA 850**	GSM1900**	WCDMA 1900**	
Head: Left, Cheek	0.284	0.679	0.709	0.668	0.692	
Head: Left, Tilt	0.069	0.307	0.336	0.198	0.239	
Head: Right, Cheek	0.177	0.537	0.551	0.671	0.800	
Head: Right, Tilt	0.053	0.286	0.333	0.272	0.312	
Body: Display Facing Phantom Without Headset	0.056	0.357	0.378	0.248	0.308	
Body: Display Facing Phantom Headset WH-102	0.049	0.255	0.305	0.247	0.275	
Body: Back Facing Phantom Without Headset	0.035	0.416	0.439	0.340	0.432	
Body: Back Facing Phantom Headset WH-102	0.039	0.324	0.303	0.301	0.337	

^{**}SAR data taken from FCC_RM-639_01 for RM-639 / FCC ID: PPIRM-639 / IC: 661U-RM639.

Simultaneous transmissions: Combined SAR results – Max + Max combined results

	Combined 1g SAR values				
Test configuration	WLAN + GSM850	WLAN + WCDMA850	WLAN + GSM1900	WLAN + WCDMA 1900	
Head: Left, Cheek	0.963	0.993	0.952	0.976	
Head: Left, Tilt	0.376	0.405	0.267	0.308	
Head: Right, Cheek	0.714	0.728	0.848	0.977	
Head: Right, Tilt	0.339	0.386	0.325	0.365	
Body: Display Facing Phantom Without Headset	0.413	0.434	0.304	0.364	
Body: Display Facing Phantom Headset WH-102	0.304	0.354	0.296	0.324	
Body: Back Facing Phantom Without Headset	0.451	0.474	0.375	0.467	
Body: Back Facing Phantom Headset WH-102	0.363	0.342	0.340	0.376	

The following table gives a more accurate assessment of the SAR values for simultaneous transmission. These values have been calculated using the SPEAG Combined Multiband algorithm, which is based on area scans. It a) converts the 2D area scans into 3D volume scans by assuming frequency-dependent decay characteristics for the E-field, b) sums the SAR values for WLAN2450 and the cellular bands point-by-point and c) calculates the combined average SAR values. It is these values that appear in the Summary table in Section 1.2. It is these values that appear in the Summary table in Section 1.2.

Simultaneous transmissions: Combined SAR results – SPEAG Combined Multiband algorithm results

	Combined 1g SAR values					
Test configuration	WLAN + GSM850	WLAN + WCDMA850	WLAN + GSM1900	WLAN + WCDMA 1900		
Head: Left, Cheek	0.929	0.955	0.930	-		
Head: Left, Tilt	-	-	-	-		
Head: Right, Cheek	-	-	-	0.918		
Head: Right, Tilt	-	-	-	-		
Body: Display Facing Phantom Without Headset Body: Display Facing Phantom Headset WH-102	-	-	-	-		
Body: Back Facing Phantom Without Headset	0.449	0.455	0.364	0.456		
Body: Back Facing Phantom Headset WH-102	-	-	-	-		

Note: Simultaneous Transmission Procedures as described in KDB648474 are not required for this product. The Combined SAR data given in the tables above has been voluntarily calculated.

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages

Date/Time: 2011-04-11 13:46:55

Test Laboratory: TCC Nokia Type: D2450V2; Serial: 750

Communication System: CW2450 Frequency: 2450.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

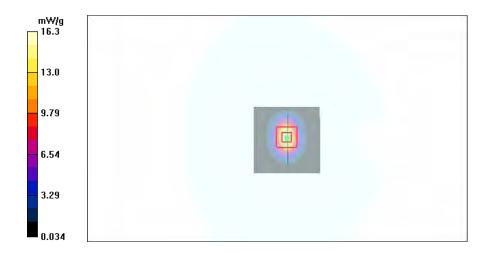
Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 37.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 16.3 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.3 V/m Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 13.9 mW/g SAR(10 g) = 6.39 mW/g Power Drift = -0.214 dB

Maximum value of SAR (measured) = 15.8 mW/g

Date/Time: 2011-04-12 12:15:03

Test Laboratory: TCC Nokia Type: D2450V2; Serial: 750

Communication System: CW2450 Frequency: 2450.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.0 C

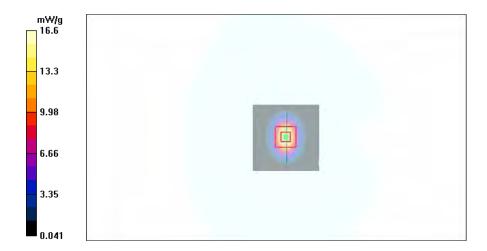
Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 37.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 16.6 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.3 V/m Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 14.3 mW/g SAR(10 g) = 6.59 mW/g Power Drift = 0.006 dB

Maximum value of SAR (measured) = 16.3 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages

Date/Time: 2011-04-11 16:40:39

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2462.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 2462 MHz; σ = 1.85 mho/m; ε_r = 37.4; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

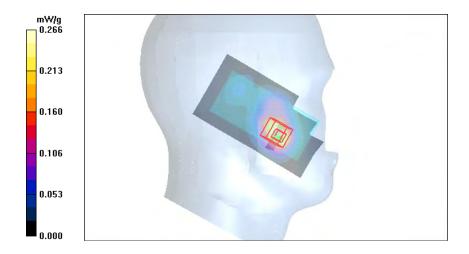
- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - High- BL-4S Sanyo/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.266 mW/g

Cheek - High- BL-4S Sanyo/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.00 V/m Peak SAR (extrapolated) = 0.479 W/kg


SAR(1 g) = 0.241 mW/g

SAR(10 g) = 0.127 mW/g

Power Drift = 0.434 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.250 mW/g

Date/Time: 2011-04-11 15:29:59

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

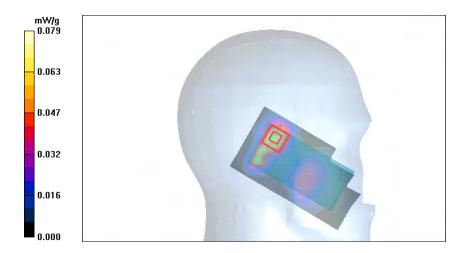
Medium parameters used: f = 2442 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.5$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt - Middle- BL-4S Sanyo/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.079 mW/g

Tilt - Middle- BL-4S Sanyo/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.12 V/m
Peak SAR (extrapolated) = 0.117 W/kg
SAR(1 g) = 0.069 mW/g

SAR(10 g) = 0.037 mW/g Power Drift = -0.001 dB

Maximum value of SAR (measured) = 0.078 mW/g

Date/Time: 2011-04-11 15:44:15

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.5$; $\rho = 1000$ kg/m³

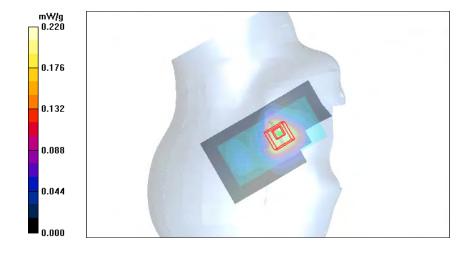
Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle- BL-4S Sanyo/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.220 mW/g


Cheek - Middle- BL-4S Sanyo/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.50 V/m Peak SAR (extrapolated) = 0.282 W/kg

SAR(1 g) = 0.177 mW/gSAR(10 g) = 0.106 mW/g

Power Drift = -0.226 dB

Maximum value of SAR (measured) = 0.191 mW/g

Date/Time: 2011-04-11 15:57:59

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 2442 MHz; σ = 1.83 mho/m; ε_r = 37.5; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

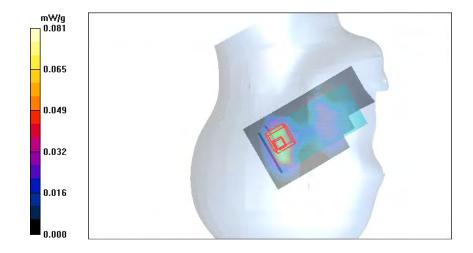
- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt - Middle- BL-4S Sanyo/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.081 mW/g

Tilt - Middle- BL-4S Sanyo/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.27 V/m Peak SAR (extrapolated) = 0.108 W/kg


SAR(1 g) = 0.053 mW/g

SAR(10 g) = 0.028 mW/g

Power Drift = -0.407 dB

Warning: Maximum averaged SAR over 1 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement. Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.066 mW/g

Date/Time: 2011-04-11 17:34:13

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.5$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

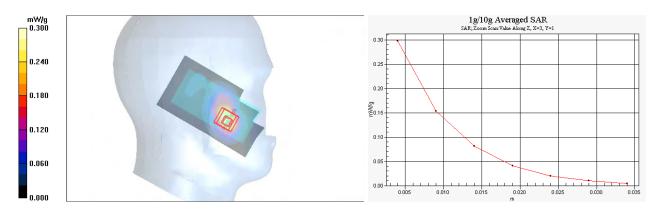
- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle - BL-4S Sony/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.300 mW/g

Cheek - Middle - BL-4S Sony/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.82 V/m


Peak SAR (extrapolated) = 0.556 W/kg

SAR(1 g) = 0.284 mW/g

SAR(10 g) = 0.138 mW/g

Power Drift = -0.367 dB

Maximum value of SAR (measured) = 0.298 mW/g

Date/Time: 2011-04-12 13:20:09

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 n-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.0 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

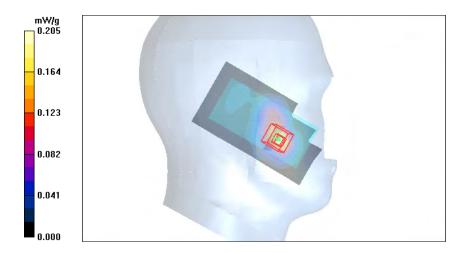
DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle- BL-4S Sanyo/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.205 mW/g

Cheek - Middle- BL-4S Sanyo/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 2.70 V/m Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.170 mW/g

SAR(10 g) = 0.084 mW/g

Power Drift = 0.177 dB

Maximum value of SAR (measured) = 0.191 mW/g

Date/Time: 2011-04-12 15:13:29

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 n-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Head 2450; Medium Notes: Medium Temperature: 22.0 C

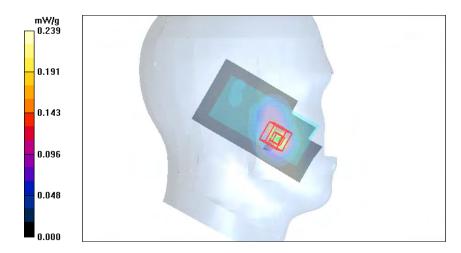
Medium parameters used: f = 2442 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.51, 6.51, 6.51); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 9; Type: Twin Phantom; Serial: TP-1408
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Cheek - Middle - BL-4S Sony/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.239 mW/g

Cheek - Middle - BL-4S Sony/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.59 V/m Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.192 mW/g SAR(10 g) = 0.091 mW/g Power Drift = 0.471 dB

Maximum value of SAR (measured) = 0.225 mW/g

Date/Time: 2011-04-13 01:18:48

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2462.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2462 MHz; $\sigma = 1.99 \text{ mho/m}$; $\varepsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

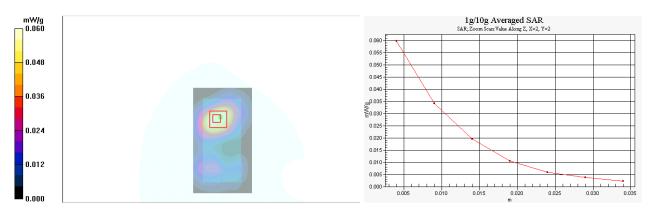
Body - High - No Accessory - BL-4S Sanyo - Display Facing Phantom/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.060 mW/g

Body - High - No Accessory- BL-4S Sanyo - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.48 V/m


Peak SAR (extrapolated) = 0.095 W/kg

SAR(1 g) = 0.056 mW/g

SAR(10 g) = 0.031 mW/g

Power Drift = 0.335 dB

Maximum value of SAR (measured) = 0.060 mW/g

Date/Time: 2011-04-12 16:02:09

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - WH-102- BL-4S Sanyo - Display Facing Phantom/Area Scan (51x91x1): Measurement grid:

dx=15mm, dy=15mm

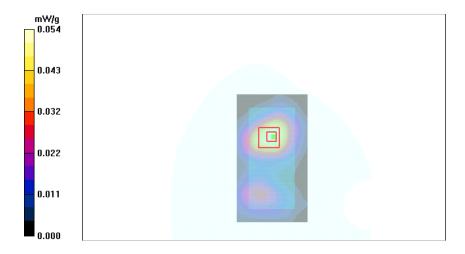
Maximum value of SAR (interpolated) = 0.054 mW/g

Body - Middle - WH-102- BL-4S Sanyo - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.80 V/m

Peak SAR (extrapolated) = 0.085 W/kg


SAR(1 g) = 0.049 mW/g

SAR(10 g) = 0.028 mW/g

Power Drift = 0.300 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.054 mW/g

Date/Time: 2011-04-12 16:14:10

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

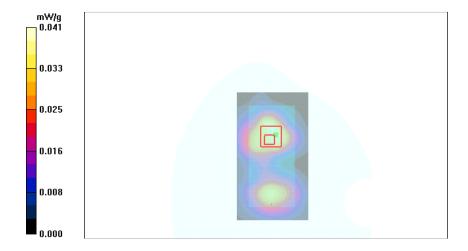
Body - Middle - No Accessory- BL-4S Sanyo - Back Facing Phantom/Area Scan (51x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.041 mW/g

Body - Middle - No Accessory- BL-4S Sanyo - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 3.29 V/m Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.035 mW/gSAR(10 g) = 0.021 mW/g

Power Drift = 0.054 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.041 mW/g

Date/Time: 2011-04-12 16:25:12

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682: Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - WH-102- BL-4S Sanyo - Back Facing Phantom/Area Scan (51x91x1): Measurement grid:

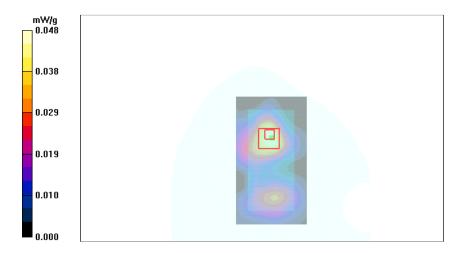
dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.048 mW/g

Body - Middle - WH-102- BL-4S Sanyo - Back Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.30 V/m


Peak SAR (extrapolated) = 0.074 W/kg

SAR(1 g) = 0.039 mW/g

SAR(10 g) = 0.022 mW/g

Power Drift = 0.411 dB

Maximum value of SAR (measured) = 0.044 mW/g

Date/Time: 2011-04-13 03:20:31

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 b-mode

Frequency: 2462.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2462 MHz; $\sigma = 1.99 \text{ mho/m}$; $\varepsilon_r = 50.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

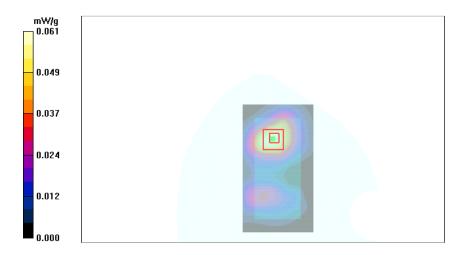
Body - High - No Accessory- BL-4S Sony - Display Facing Phantom/Area Scan (51x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.061 mW/g

Body - High - No Accessory- BL-4S Sony - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 2.35 V/m

Peak SAR (extrapolated) = 0.095 W/kg

SAR(1 g) = 0.055 mW/gSAR(10 g) = 0.031 mW/g

Power Drift = 0.339 dB

Maximum value of SAR (measured) = 0.059 mW/g

Date/Time: 2011-04-13 05:28:07

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 n-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2442 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 50.3$; $\rho = 1000$ kg/m³

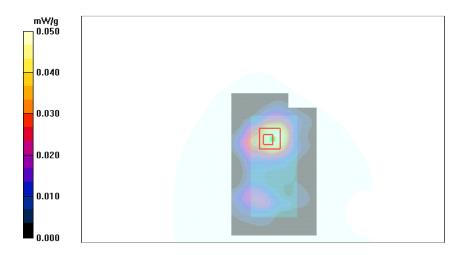
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - No Accessory- BL-4S Sanyo - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.050 mW/g


Body - Middle - No Accessory- BL-4S Sanyo - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.20 V/m Peak SAR (extrapolated) = 0.082 W/kg

SAR(1 g) = 0.046 mW/g SAR(10 g) = 0.026 mW/g Power Drift = 0.111 dB

Maximum value of SAR (measured) = 0.050 mW/g

Date/Time: 2011-04-13 09:30:13

Test Laboratory: TCC Nokia

Type: RM-775; Serial: 004402/13/442008/6

Communication System: WLAN2450 n-mode

Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: Body 2450; Medium Notes: Medium Temperature: 21.1 C

Medium parameters used: f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

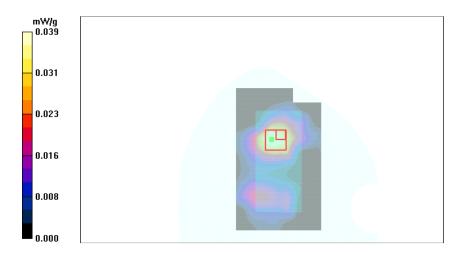
- Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(6.81, 6.81, 6.81); Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn682; Calibrated: 2010-07-16
- Phantom: SAM 8; Type: SAM Twin Phantom; Serial: TP-1328
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body - Middle - No Accessory- BL-4S Sony - Display Facing Phantom/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.039 mW/g

Body - Middle - No Accessory- BL-4S Sony - Display Facing Phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 2.42 V/m Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.035 mW/gSAR(10 g) = 0.020 mW/g

Power Drift = -0.282 dB

Warning: Maximum averaged SAR over 1 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement. Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.053 mW/g

Date/Time: 2010-05-27 13:58:58, Date/Time: 2011-04-11 17:34:13

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: GSM850, Communication System: WLAN2450 b-mode

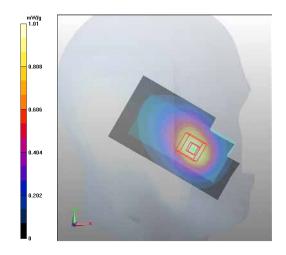
Frequency: 848.8 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: HSL850, Medium: Head 2450; Medium Notes: t=20.9 C, Medium Notes: Medium Temperature: 22.3 C Medium parameters used: f = 849 MHz; σ = 0.9 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³, Medium parameters used: f

= 2442 MHz; σ = 1.83 mho/m; ϵ_r = 37.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3131, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.85, 5.85, 5.85), ConvF(6.51, 6.51, 6.51); Calibrated: 2009-10-27, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn1213, Electronics: DAE4 Sn682; Calibrated: 2009-11-16, Calibrated: 2010-07-16
- Phantom: SAM 3, Phantom: SAM 9; Type: Twin SAM 040 CA, Type: Twin Phantom; Serial: TP-1179, Serial: TP-1408
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - High - BL-4S Sanyo/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Middle - BL-4S Sony/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.929 mW/g SAR(10 g) = 0.586 mW/g

Maximum value of SAR (measured) = 1.01 mW/g

Date/Time: 2010-05-28 07:29:37, Date/Time: 2011-04-11 17:34:13

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: WCDMA850, Communication System: WLAN2450 b-mode

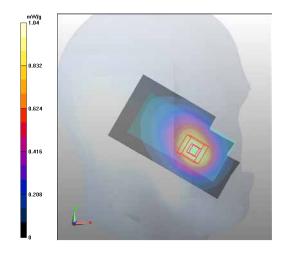
Frequency: 835.0 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: HSL850, Medium: Head 2450; Medium Notes: t=20.9 C, Medium Notes: Medium Temperature: 22.3 C Medium parameters used: f = 835 MHz; σ = 0.89 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³, Medium parameters used:

f = 2442 MHz; σ = 1.83 mho/m; ε_r = 37.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3131, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.85, 5.85, 5.85), ConvF(6.51, 6.51, 6.51); Calibrated: 2009-10-27, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn1213, Electronics: DAE4 Sn682; Calibrated: 2009-11-16, Calibrated: 2010-07-16
- Phantom: SAM 3, Phantom: SAM 9; Type: Twin SAM 040 CA, Type: Twin Phantom; Serial: TP-1179, Serial: TP-1408
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Middle - BL-4S Sanyo/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Middle - BL-4S Sony/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.955 mW/g SAR(10 g) = 0.601 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

Date/Time: 2010-05-25 15:32:49, Date/Time: 2011-04-11 17:34:13

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: GSM1900, Communication System: WLAN2450 b-mode

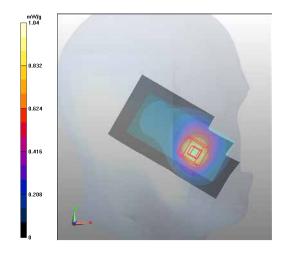
Frequency: 1880.0 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: HSL1900, Medium: Head 2450; Medium Notes: t=21.3 C, Medium Notes: Medium Temperature: 22.3 C Medium parameters used: f = 1880 MHz; σ = 1.38 mho/m; ϵ_r = 40; ρ = 1000 kg/m³, Medium parameters used: f

= 2442 MHz; σ = 1.83 mho/m; ε_r = 37.5; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ES3DV3 SN3194, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.06, 5.06, 5.06), ConvF(6.51, 6.51, 6.51); Calibrated: 2009-11-20, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn728, Electronics: DAE4 Sn682; Calibrated: 2010-03-19, Calibrated: 2010-07-16
- Phantom: SAM 1, Phantom: SAM 9; Type: Twin SAM 040 CA, Type: Twin Phantom; Serial: TP-1449, Serial: TP-1408
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - Middle - BL-4S Sanyo/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Middle - BL-4S Sony/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.930 mW/g SAR(10 g) = 0.500 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

Date/Time: 2010-05-25 14:35:50, Date/Time: 2011-04-11 15:44:15

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: WCDMA1900, Communication System: WLAN2450 b-mode

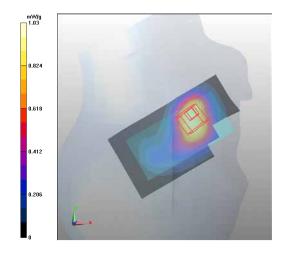
Frequency: 1907.6 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: HSL1900, Medium: Head 2450; Medium Notes: t=21.3 C, Medium Notes: Medium Temperature: 22.3 C Medium parameters used: f = 1908 MHz; σ = 1.41 mho/m; ϵ_r = 40; ρ = 1000 kg/m³, Medium parameters used: f

= 2442 MHz; σ = 1.83 mho/m; ε_r = 37.5; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ES3DV3 SN3194, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.06, 5.06, 5.06), ConvF(6.51, 6.51, 6.51); Calibrated: 2009-11-20, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn728, Electronics: DAE4 Sn682; Calibrated: 2010-03-19, Calibrated: 2010-07-16
- Phantom: SAM 1, Phantom: SAM 9; Type: Twin SAM 040 CA, Type: Twin Phantom; Serial: TP-1449, Serial: TP-1408
- -; SEMCAD X Version 14.0 Build 61

Configuration/Cheek - High - BL-4S Sanyo/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Configuration/Cheek - Middle- BL-4S Sanyo/Area Scan (6x10x1): Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.918 mW/g SAR(10 g) = 0.539 mW/g

Maximum value of SAR (measured) = 1.03 mW/g

Date/Time: 2010-05-28 13:01:14, Date/Time: 2011-04-12 16:14:10

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: GSM850, Communication System: WLAN2450 b-mode

Frequency: 848.8 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: BSL850, Medium: Body 2450; Medium Notes: t=21.1 C, Medium Notes: Medium Temperature: 21.1 C Medium parameters used: f = 849 MHz; σ = 1.02 mho/m; ε_r = 54.4; ρ = 1000 kg/m³, Medium parameters used:

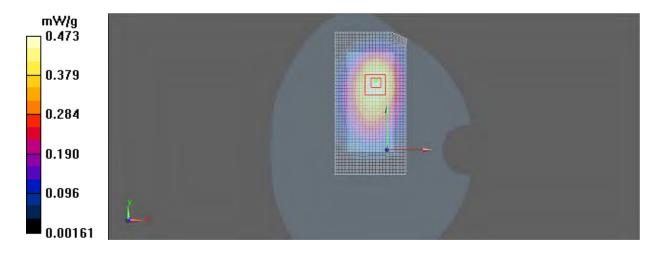
f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3131, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.69, 5.69, 5.69), ConvF(6.81, 6.81, 6.81); Calibrated: 2009-10-27, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn1213, Electronics: DAE4 Sn682; Calibrated: 2009-11-16, Calibrated: 2010-07-16
- Phantom: SAM 1, Phantom: SAM 8; Type: Twin SAM 040 CA, Type: SAM Twin Phantom; Serial: TP-1179, Serial: TP-1328
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - BL-4S Sony - Back Facing Phantom/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No Accessory - BL-4S Sanyo - Back Facing Phantom/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.449 mW/gSAR(10 g) = 0.309 mW/g

Maximum value of SAR (measured) = 0.473 mW/g

Date/Time: 2010-05-31 11:20:53, Date/Time: 2011-04-12 16:14:10

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: WCDMA850, Communication System: WLAN2450 b-mode

Frequency: 846.6 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: BSL850, Medium: Body 2450; Medium Notes: t=20.9 C, Medium Notes: Medium Temperature: 21.1 C Medium parameters used: f = 847 MHz; σ = 1 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³, Medium parameters used: f =

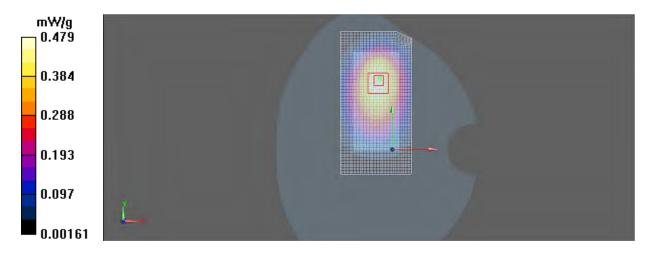
2442 MHz; σ = 1.97 mho/m; ϵ_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3131, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(5.69, 5.69, 5.69), ConvF(6.81, 6.81, 6.81); Calibrated: 2009-10-27, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn1213, Electronics: DAE4 Sn682; Calibrated: 2009-11-16, Calibrated: 2010-07-16
- Phantom: SAM 1, Phantom: SAM 8; Type: Twin SAM 040 CA, Type: SAM Twin Phantom; Serial: TP-1179, Serial: TP-1328
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - BL-4S Sony - Back Facing Phantom/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No Accessory - BL-4S Sanyo - Back Facing Phantom/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.455 mW/g SAR(10 g) = 0.312 mW/g

Maximum value of SAR (measured) = 0.479 mW/g

Date/Time: 2010-05-26 15:12:14, Date/Time: 2011-04-12 16:14:10

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: GSM1900, Communication System: WLAN2450 b-mode

Frequency: 1880.0 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:8.3, Duty Cycle: 1:1

Medium: BSL1900, Medium: Body 2450; Medium Notes: t=20.7 C, Medium Notes: Medium Temperature: 21.1 C Medium parameters used: f = 1880 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³, Medium parameters used:

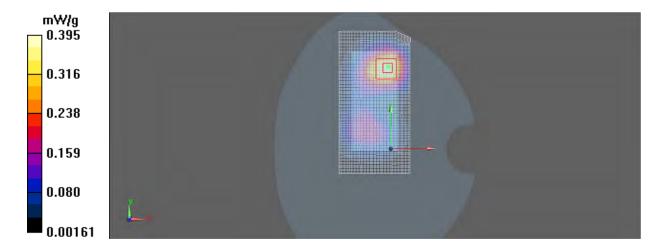
f = 2442 MHz; σ = 1.97 mho/m; $ε_r$ = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3194, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(4.67, 4.67, 4.67), ConvF(6.81, 6.81, 6.81); Calibrated: 2009-11-20, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn728, Electronics: DAE4 Sn682; Calibrated: 2010-03-19, Calibrated: 2010-07-16
- Phantom: SAM 2, Phantom: SAM 8; Type: Twin SAM 040 CA, Type: SAM Twin Phantom; Serial: TP 1177, Serial: TP-1328
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - Middle - No Accessory – BL-4S Sony - Back Facing Phantom/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No Accessory - BL-4S Sanyo - Back Facing Phantom/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.364 mW/gSAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 0.395 mW/g

Date/Time: 2010-05-26 12:38:43, Date/Time: 2011-04-12 16:14:10

Test Laboratory: TCC Nokia

Type: RM-639, Type: RM-775; Serial: 004402/13/097410/2, Serial: 004402/13/442008/6

Communication System: WCDMA1900, Communication System: WLAN2450 b-mode

Frequency: 1907.6 MHz, Frequency: 2442.0 MHz; Duty Cycle: 1:1

Medium: BSL1900, Medium: Body 2450; Medium Notes: t=20.7 C, Medium Notes: Medium Temperature: 21.1 C Medium parameters used: f = 1908 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ kg/m³, Medium parameters used:

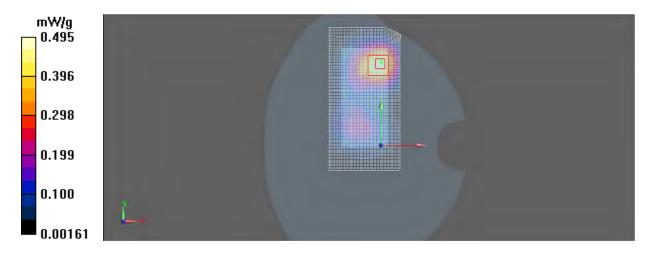
f = 2442 MHz; σ = 1.97 mho/m; ε_r = 50.3; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3194, Probe: EX3DV4 SN3581; Probe Notes:
- ConvF(4.67, 4.67, 4.67), ConvF(6.81, 6.81, 6.81); Calibrated: 2009-11-20, Calibrated: 2010-07-19
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))
- Electronics: DAE4 Sn728, Electronics: DAE4 Sn682; Calibrated: 2010-03-19, Calibrated: 2010-07-16
- Phantom: SAM 2, Phantom: SAM 8; Type: Twin SAM 040 CA, Type: SAM Twin Phantom; Serial: TP 1177, Serial: TP-1328
- -; SEMCAD X Version 14.0 Build 61

Configuration/Body - High - No Accessory - BL-4S Sony - Back Facing Phantom/Area Scan (6x11x1):


Measurement grid: dx=15mm, dy=15mm

Configuration/Body - Middle - No Accessory - BL-4S Sanyo - Back Facing Phantom/Area Scan (6x10x1):

Measurement grid: dx=15mm, dy=15mm

Motorola Fast SAR of Combined Scans: SAR(1 g) = 0.456 mW/gSAR(10 g) = 0.263 mW/g

Maximum value of SAR (measured) = 0.495 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Accreditation No.: SCS 108

Certificate No: EX3-3581_Jul10

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3581

Calibration procedure(s) QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: July 19, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter E4419B	GB41293874	1-Apr-10 (No 217-01136)	Apr-11		
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11		
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11		
Reference 3 dB Attenuator	SN S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11		
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11		
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11		
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No ES3-3013_Dec09)	Dec-10		
DAE4	SN: 660	20-Apr-10 (No DAE4-660_Apr10)	Apr-11		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check		
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11		
Network Analyzer HP 8753E	53E US37390585 18-Oct-01 (in house check Oct-09)		In house check: Oct10		
	Name	Function	Signature		
Calibrated by:	Katja Pokovic	Technical Manager	The the		
	lane control of		X / /1		
Approved by	Niels Kuster	Quality Manager	1.160		

Issued: July 20, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3581_Jul10

EX3DV4 SN:3581 July 19, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3581

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	8.44	8.44	8.44	0.72	0.65 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	7.42	7.42	7.42	0.96	0.54 ± 11.0%
1900	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	7.08	7.08	7.08	0.99	0.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.51	6.51	6,51	0.69	0.62 ± 11.0%
2600	± 50 / ± 100	$39.0 \pm 5\%$	1.96 ± 5%	6.48	6.48	6.48	0.48	0.73 ± 11.0%
5200	± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.54	4.54	4.54	0.32	1.80 ± 13.1%
5500	± 50 / ± 100	35.6 ± 5%	4.96 ± 5%	3.90	3.90	3.90	0.45	1.80 ± 13.1%
5800	± 50 / ± 100	$35.3\pm5\%$	5.27 ± 5%	3.75	3.75	3.75	0.50	1.80 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

EX3DV4 SN:3581 July 19, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3581

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X C	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	8.61	8.61	8.61	0.67	0.68 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	7.12	7.12	7.12	0.96	0.56 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	6.86	6.86	6.86	0.89	0.57 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.81	6.81	6.81	0.45	0.75 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	6.76	6.76	6.76	0.36	0.85 ± 11.0%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	3.84	3.84	3.84	0.50	1.90 ± 13.1%
5500	± 50 / ± 100	48.6 ± 5%	5.65 ± 5%	3.40	3.40	3.40	0.60	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.45	3.45	3.45	0.60	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Nokia Denmark A/S

Accreditation No.: SCS 108

Certificate No: D2450V2-750_Feb10

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 750

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: February 19, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10		
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10		
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10		
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10		
Reference Probe ES3DV3	SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10		
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check		
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11		
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11		
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10		
	Name	Function	Signature		
Calibrated by:	Jeton Kastrati	Laboratory Technician			
Approved by:	Katja Pokovic	Technical Manager			

Issued: February 22, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-750_Feb10 Page 1 of 9

DASY5 Validation Report for Head TSL

Date/Time: 17.02.2010 14:26:37

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.77$ mho/m; $\varepsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

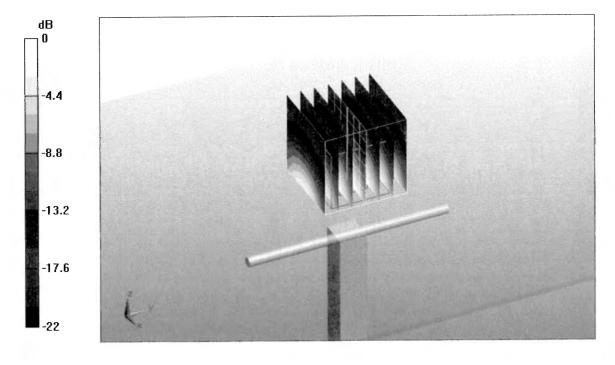
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.2 V/m; Power Drift = 0.00838 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.3 mW/g

Maximum value of SAR (measured) = 17.4 mW/g

0 dB = 17.4 mW/g

Certificate No: D2450V2-750_Feb10

DASY5 Validation Report for Body

Date/Time: 19.02.2010 14:00:59

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:750

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

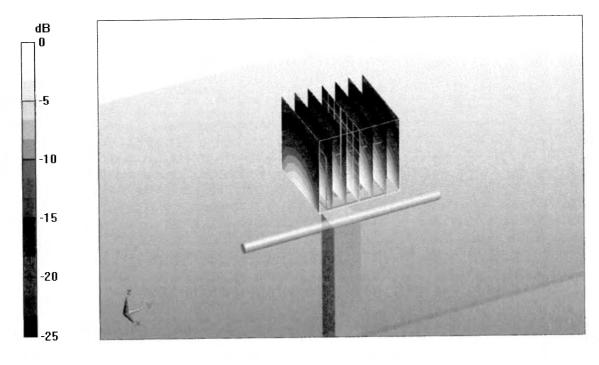
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = 0.082 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.9 mW/g

Maximum value of SAR (measured) = 17.1 mW/g

0 dB = 17.1 mW/g