

Tobias Cremer

SAR Compliance Test Report

Test report no.: FCC_RM-638_02 Date of report: 2009-11-18

Template version: 13.0 Number of pages: 33

Frederikskaj 89081 ULM 1790 COPENHAGEN V GERMANY

DENMARK Tel. +49 731 1754 0 Tel. +45 33 292929 Fax. +49 731 1754 6800

Responsible test Jesper Nielsen Product contact

engineer: person:

Measurements made by: Jesper Nielsen, Leif F. Klysner,

Fax. +45 33 292934

Preben Runchel

 Tested device:
 RM-638

 FCC ID:
 PPIRM-638

 IC:
 661U-RM638

Supplement reports: SAR_Photo_RM-638_04

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1.	. SUMMARY OF SAR TEST REPORT	
	1.1 TEST DETAILS	3 3
2.	. DESCRIPTION OF THE DEVICE UNDER TEST	2
	2.1 DESCRIPTION OF THE ANTENNA	
3.	. TEST CONDITIONS	
	 3.1 Temperature and Humidity	5
4.		
	4.1 MEASUREMENT SYSTEM AND COMPONENTS	8
	4.3 TISSUE SIMULANTS	
5.	. DESCRIPTION OF THE TEST PROCEDURE	12
	5.1 DEVICE HOLDER	
6.	. MEASUREMENT UNCERTAINTY	14
7.	. RESULTS	15
	PPENDIX A: SYSTEM CHECKING SCANS	
ΑI	PPENDIX B: MEASUREMENT SCANS	20
ΑI	PPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	32
ΑI	PPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	33

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2009-11-16 to 2009-11-18
SN, HW and SW numbers of tested	SN: 004401/10/902316/4, HW: 0115, SW: 5.49, DUT: 24676
device	SN: 004401/10/902361/0, HW: 0125, SW: 5.49, DUT: 24682
Batteries used in testing	BL-5CT, DUT: 24668, 24669, 24672, 24673, 24675
Headsets used in testing	WH-102, DUT 24670
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
3-slot 8PSK EGPRS 1900	512 / 1850.2	25.8 dBm	Left, Tilt	0.709 W/kg	0.79 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
3-slot 8PSI EGPRS 190	,	25.8 dBm	2.2 cm	0.209 W/kg	0.23 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.49 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%
--------------------------------	---------

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	1900	GMSK	1/8	1850 - 1910
GPRS	1900	GMSK	1/8 to 3/8	1850 - 1910
EGPRS	1900	GMSK / 8PSK	1/8 to 3/8	1850 - 1910
BT	2450	GFSK	1	2402 – 2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900 and GSM/GPRS/EGPRS1800 bands which are not part of this filing.

This device has Dual Transfer Mode capability for use at the ear. Therefore, SAR for 2-slot GPRS mode was evaluated against the head profile of the phantom.

2.1 Description of the Antenna

The device has an internal antenna for cellular use. The cellular antenna is located at the top underneath the back cover.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 to 22.5
Ambient humidity (RH %):	35 to 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	573	12 months	2010 - 07
E-field Probe ES3DV3	3116	12 months	2010 - 03
Dipole Validation Kit, D1900V2	5d026	24 months	2010 - 03
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SME06	848650/011	36 months	2011 - 08
Signal Generator	SMIQ03	826046/034	36 months	2011 - 08
Amplifier	2100-BBS3Q8CCJ	1003	-	-
Amplifier	ZHL-42W	E073003	-	-
Power Meter	NRP	101293	24 months	2011 - 08
Power Meter	NRVD	833696/030	24 months	2011 - 02
Power Sensor	NRP-Z51	100830	24 months	2011 - 08
Power Sensor	NRV-Z51	101135	24 months	2011 - 02
Call Tester	CMU200	105900	-	-
Call Tester	CMU200	831593	-	-
Vector Network Analyzer	AT8753ES	MY40001091	12 months	2010 - 08
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.88	69.02
Butyl Diglycol	44.91	30.76
Salt	0.21	0.22

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1 g	€r	σ [S/m]	[°C]
	Reference result	10.3	40.2	1.47	
	$\pm10\%$ window	9.3 - 11.3			
1900	2009-11-16	10.9	39.7	1.48	21.2
	2009-11-18	10.6	39.3	1.48	20.9

Plots of the system checking scans are given in Appendix A.

SAR Report FCC_RM-638_02 Applicant: Nokia Corporation

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric Parameters		Temp
[MHz]	Description	8r	σ [S/m]	[°C]
	Recommended value	40.0	1.40	
	± 5% window	38.0 – 42.0	1.33 – 1.47	
1880	2009-11-16	39.8	1.46	21.2
	2009-11-18	39.4	1.45	20.9

Body tissue simulant measurements

Dody dissace similarante inicasar cinicins						
f		Dielectric Parameters		Temp		
[MHz]	Description	Er	σ [S/m]	[°C]		
	Recommended value	53.3	1.52			
	± 5% window	50.6 - 56.0	1.44 - 1.60			
1880	2009-11-18	52.2	1.56	21.0		

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with its back facing the phantom since this orientation gives higher results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	(C _p)1/2	±3.9	∞
Boundary Effect	E2.3	± 1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift	6.6.3	± 0.0	R	√3	1	±0.0	∞
measurement							
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±12.9	116
Coverage Factor for 95%			k=2				
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

1900MHz Head SAR results

			SAR, av	eraged over 1g	(W/kg)
Hardware	Test conf	iguration	Ch 512	Ch 661	Ch 810
ID			1850.2 MHz	1880.0 MHz	1909.8 MHz
GSM	Conducte	ed Power	30.0 dBm	30.0 dBm	30.0 dBm
	Left	Cheek	-	0.599	-
HWID 0115		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
2-slot GPRS	Conducte	ed Power	27.3 dBm	27.3 dBm	27.3 dBm
	Left	Cheek	-	0.581	-
HWID 0115		Tilt	-	-	-
	Right	Cheek	-	1	-
		Tilt	-	-	-
3-slot GPRS	Conducted Power		25.8 dBm	25.8 dBm	25.8 dBm
	Left	Cheek	-	0.616	-
HWID 0115		Tilt	0.598	0.620	0.586
	Right	Cheek	-	0.482	-
		Tilt	-	0.547	-
3-slot 8PSK EGPRS	Conducte	ed Power	25.8 dBm	25.8 dBm	25.8 dBm
	Left	Cheek	-	-	-
HWID 0115		Tilt	0.709	0.672	0.654
	Right	Cheek	-	1	-
		Tilt	-	-	-
3-slot 8PSK EGPRS	Conducte	Conducted Power		25.8 dBm	25.8 dBm
	Left	Cheek	-	-	-
HWID 0125		Tilt	0.579	0.557	0.447
	Right	Cheek	-	-	-
		Tilt	-	-	-

The measured Body SAR values for the test device are tabulated below:

1900MHz Body SAR results

			SAR, av	eraged over 1g	(W/kg)
Hardware ID	Device orientation	Test configuration	Ch 512 1850.2 MHz	Ch 661 1880.0 MHz	Ch 810 1909.8 MHz
3-slot 8PSK EGPRS		Conducted Power	25.8 dBm	25.8 dBm	25.8 dBm
	Display facing	Without headset	-	-	-
HWID 0115	phantom	Headset WH-102	-	-	-
	Back facing	Without headset	-	0.168	-
	phantom	Headset WH-102	0.130	0.171	0.209
3-slot 8PSK EGPRS		Conducted Power	25.8 dBm	25.8 dBm	25.8 dBm
	Display facing	Without headset	-	-	-
HWID 0125	phantom	Headset WH-102	-	-	-
	Back facing	Without headset	-	-	-
	phantom	Headset WH-102	0.135	0.155	0.177

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages

Date/Time: 2009-11-16 10:02:06

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 5d026

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

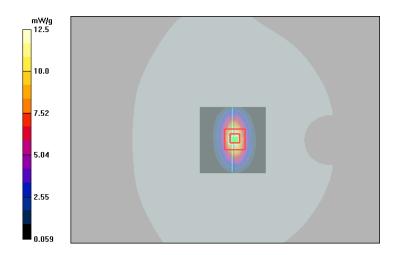
Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 12.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.9 V/m Peak SAR (extrapolated) = 20.8 W/kg

SAR(1 g) = 10.9 mW/g SAR(10 g) = 5.58 mW/g Power Drift = -0.005 dB

Maximum value of SAR (measured) = 12.4 mW/g

Date/Time: 2009-11-18 10:03:37

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 5d026

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 20.9 C

Medium parameters used: f = 1900 MHz; $\sigma = 1.48 \text{ mho/m}$; $\epsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

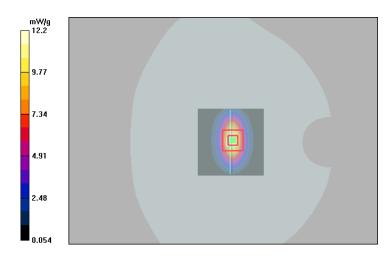
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 12.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.0 V/m Peak SAR (extrapolated) = 20.0 W/kg

SAR(1 g) = 10.6 mW/g SAR(10 g) = 5.4 mW/g

Power Drift = -0.135 dB

Maximum value of SAR (measured) = 12.0 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages

Date/Time: 2009-11-16 10:47:10

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: GSM 1900 Frequency: 1880 MHz; Duty Cycle: 1:8.3

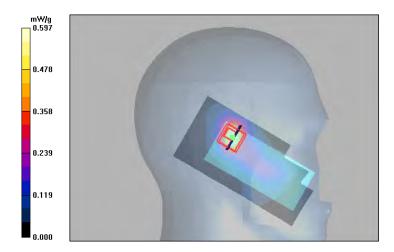
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186


Cheek position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.597 mW/g

Cheek position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 14.8 V/m Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.599 mW/g SAR(10 g) = 0.302 mW/g Power Drift = 0.005 dB

Maximum value of SAR (measured) = 0.623 mW/g

Date/Time: 2009-11-16 11:02:50

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 2-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:4.2

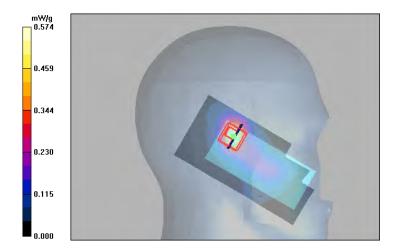
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186


Cheek position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.574 mW/g

Cheek position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 14.6 V/m Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.581 mW/g SAR(10 g) = 0.295 mW/g Power Drift = -0.024 dB

Maximum value of SAR (measured) = 0.597 mW/g

Date/Time: 2009-11-16 11:19:31

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:2.8

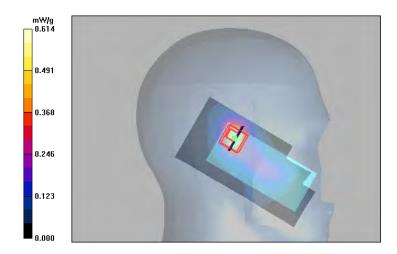
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186


Cheek position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.614 mW/g

Cheek position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 15.1 V/m Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.616 mW/g SAR(10 g) = 0.312 mW/g Power Drift = 0.000 dB

Maximum value of SAR (measured) = 0.635 mW/g

Date/Time: 2009-11-16 11:36:43

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:2.8

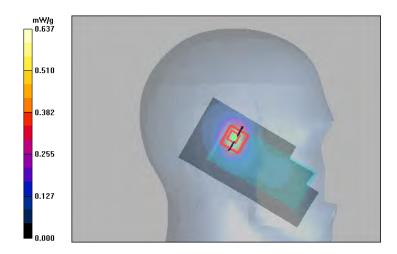
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573: Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186


Tilt position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.637 mW/g

Tilt position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 17.8 V/m Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.620 mW/g SAR(10 g) = 0.315 mW/g Power Drift = -0.031 dB

Maximum value of SAR (measured) = 0.684 mW/g

Date/Time: 2009-11-16 11:51:01

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:2.8

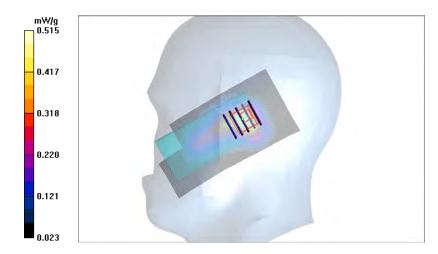
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.623 mW/g

Cheek position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 17.2 V/m Peak SAR (extrapolated) = 0.743 W/kg

SAR(1 g) = 0.482 mW/g SAR(10 g) = 0.285 mW/g Power Drift = 0.251 dB

Maximum value of SAR (measured) = 0.515 mW/g

Date/Time: 2009-11-16 12:04:16

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:2.8

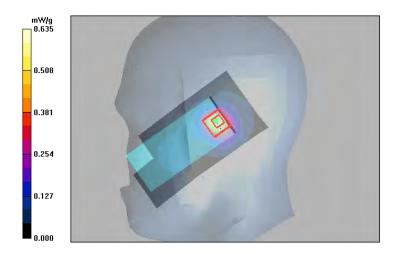
Medium: Head 1900; Medium Notes: Medium Temperature: 21.2 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573: Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 186


Tilt position - Middle - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.635 mW/g

Tilt position - Middle - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 19.8 V/m Peak SAR (extrapolated) = 0.954 W/kg

SAR(1 g) = 0.547 mW/g SAR(10 g) = 0.293 mW/g Power Drift = 0.007 dB

Maximum value of SAR (measured) = 0.602 mW/g

Date/Time: 2009-11-18 10:39:34

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot 8PSK EGPRS1900

Frequency: 1850.2 MHz; Duty Cycle: 1:2.8

Medium: Head 1900; Medium Notes: Medium Temperature: 20.9 C

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

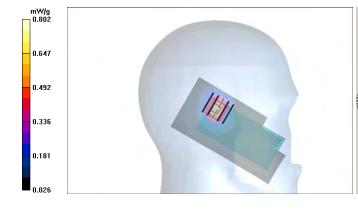
DASY4 Configuration:

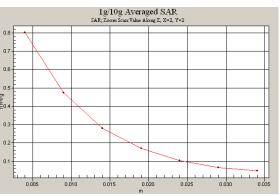
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt position - Low - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.750 mW/g

Tilt position - Low - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 19.0 V/m Peak SAR (extrapolated) = 1.33 W/kg


SAR(1 g) = 0.709 mW/g

SAR(10 g) = 0.359 mW/g

Power Drift = 0.094 dB

Maximum value of SAR (measured) = 0.802 mW/g

Date/Time: 2009-11-18 12:01:27

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902361/0

Communication System: 3-slot 8PSK EGPRS1900

Frequency: 1850.2 MHz; Duty Cycle: 1:2.8

Medium: Head 1900; Medium Notes: Medium Temperature: 20.9 C

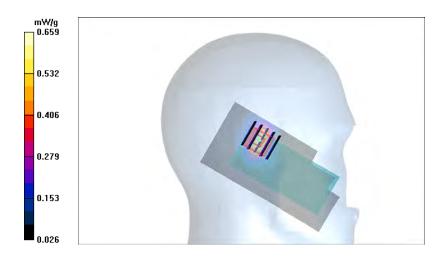
Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 39.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573: Calibrated: 2009-07-21
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt position - Low - HW0125/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.674 mW/g

Tilt position - Low - HW0125/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 15.0 V/m
Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.579 mW/g SAR(10 g) = 0.296 mW/g Power Drift = -0.094 dB

Maximum value of SAR (measured) = 0.659 mW/g

Date/Time: 2009-11-18 12:48:41

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot 8PSK EGPRS1900

Frequency: 1880 MHz; Duty Cycle: 1:2.8

Medium: Body 1900; Medium Notes: Medium Temperature: 21.0 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.56 \text{ mho/m}$; $\varepsilon_r = 52.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573; Calibrated: 2009-07-21
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

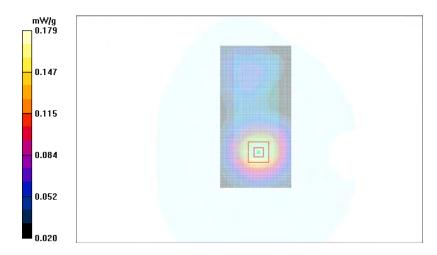
Body - Middle - No Accessory - Back facing phantom - HW0115/Area Scan (51x101x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.181 mW/g

Body - Middle - No Accessory - Back facing phantom - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 10.8 V/m

Peak SAR (extrapolated) = 0.260 W/kg SAR(1 g) = 0.168 mW/g

SAR(10 g) = 0.109 mW/g

Power Drift = 0.016 dB

Maximum value of SAR (measured) = 0.179 mW/g

Date/Time: 2009-11-18 13:58:08

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902316/4

Communication System: 3-slot 8PSK EGPRS1900

Frequency: 1909.8 MHz; Duty Cycle: 1:2.8

Medium: Body 1900; Medium Notes: Medium Temperature: 21.0 C

Medium parameters used: f = 1910 MHz; σ = 1.6 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

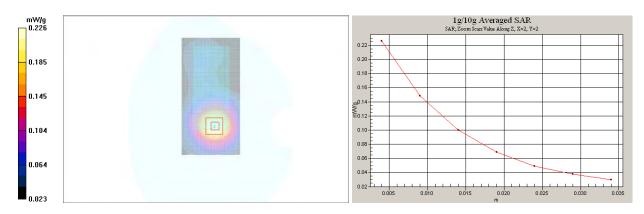
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573: Calibrated: 2009-07-21
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - WH-102 – Back facing phantom - HW0115/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.228 mW/g

Body - High - WH-102 - Back facing phantom - HW0115/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.8 V/m

Peak SAR (extrapolated) = 0.326 W/kg

SAR(1 g) = 0.209 mW/gSAR(10 g) = 0.134 mW/g

Power Drift = -0.011 dB

Maximum value of SAR (measured) = 0.226 mW/g

Date/Time: 2009-11-18 14:44:11

Test Laboratory: TCC Nokia

Type: RM-638; Serial: 004401/10/902361/0

Communication System: 3-slot 8PSK EGPRS1900

Frequency: 1909.8 MHz; Duty Cycle: 1:2.8

Medium: Body 1900; Medium Notes: Medium Temperature: 21.0 C

Medium parameters used: f = 1910 MHz; σ = 1.6 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

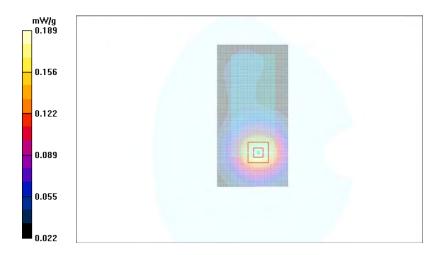
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn573: Calibrated: 2009-07-21
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - WH-102 – Back facing phantom - HW0125/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.188 mW/g

Body - High - WH-102 - Back facing phantom - HW0125/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.0 V/m

Peak SAR (extrapolated) = 0.282 W/kg SAR(1 g) = 0.177 mW/g

SAR(10 g) = 0.113 mW/g

Power Drift = -0.233 dB

Maximum value of SAR (measured) = 0.189 mW/g

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kalibrierdienst Service sulsse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Certificate No: ES3-3116 Mar09

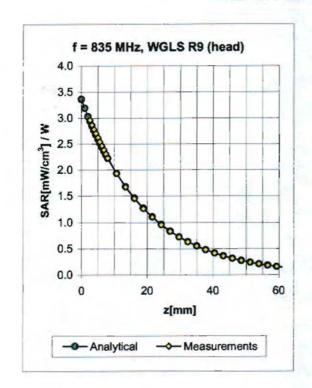
Accreditation No.: SCS 108

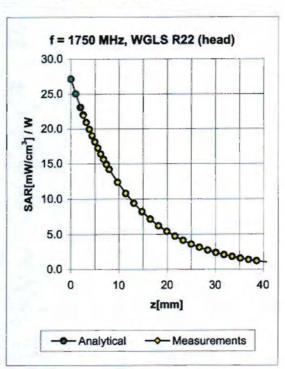
Object	ES3DV3 - SN:3116
Calibration procedure(s)	QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes
Calibration date:	March 16, 2009
Condition of the calibrated item	In Tolerance

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)


Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	REMS.
Approved by:	Fin Bomholt	R&D Director	


Issued: March 16, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3116_Mar09

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.80	1.11	5.90	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.47	1.50	5.06	± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.43	1.58	4.88	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.48	1.56	4.43	± 11.0% (k=2)
835	\pm 50 / \pm 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.63	1.29	5.79	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.59	1.29	4.78	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.83	1.11	4.55	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	0.91	4.04	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX D: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Certificate No: D1900V2-5d026_Mar08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d026

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

March 18, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
SN: 3025	01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Mar-09
SN 909	3-Sep-08 (SPEAG, No. DAE4-909_Sep07)	Sep-07
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-08
100005	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Name	Function	Signature
Marcel Fehr	Laboratory Technician	Mille
Katja Pokovic	Technical Manager	20 111
	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN: 3025 SN 909 ID # MY41092317 100005 US37390585 S4206 GB37480704 Name Marcel Fehr	GB37480704 04-Oct-07 (METAS, No. 217-00736) US37292783 04-Oct-07 (METAS, No. 217-00736) SN: 5086 (20g) 07-Aug-07 (METAS, No 217-00718) SN: 5047.2 (10r) 07-Aug-07 (METAS, No 217-00718) SN: 3025 01-Mar-08 (SPEAG, No. ES3-3025_Mar08) SN 909 3-Sep-08 (SPEAG, No. DAE4-909_Sep07) ID # Check Date (in house) MY41092317 18-Oct-02 (SPEAG, in house check Oct-07) 100005 4-Aug-99 (SPEAG, in house check Oct-07) US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-07) GB37480704 04-Oct-07 (METAS, No. 217-00736) Name Function Marcel Fehr Laboratory Technician

Issued: March 18, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d026 Mar08

Page 1 of 9

DASY4 Validation Report for Head TSL

Date/Time: 18.03.2008 11:48:54

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

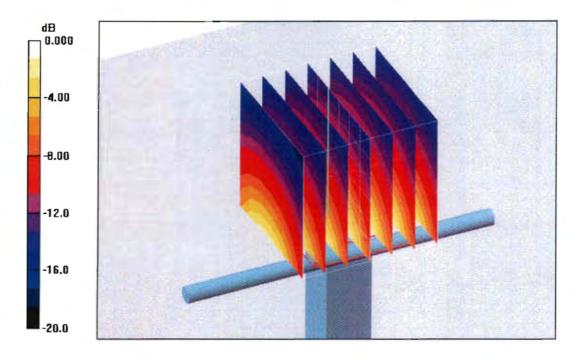
DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 01.03.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 03.09.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;


Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.7 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.27 mW/g Maximum value of SAR (measured) = 12.0 mW/g

0 dB = 12.0 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2008 12:53:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

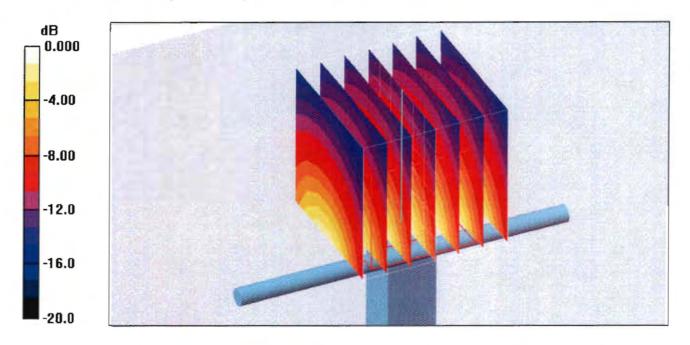
DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 01.03.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 03.09.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA;;


Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.8 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.5 mW/g Maximum value of SAR (measured) = 12.1 mW/g

0 dB = 12.1 mW/g