

1 (22)

Test report

for

NPL-2

Tampere

C	ONT	ENTS	
1	LA	BORATORY INFORMATION	3
2		STOMER INFORMATION	
3		MMARY OF TEST RESULTS	
4		T INFORMATION	
	4.1	EUT description	5
	4.2	EUT certification codes	
5	EU	T TEST SETUPS	
6	AP	PLICABLE STANDARDS	5
7	CO	NDUCTED RF OUTPUT POWER	6
	7.1	Test setup	
	7.2	EUT operation mode	
	7.3	Results	6
	7.4	Screen shots	
8	RA	DIATED RF OUTPUT POWER	9
	8.1	Test setup	9
	8.2	Test method	
	8.3	EUT operation mode	.10
	8.4	Limit	.10
	8.5	Results	
9	999	% OCCUPIED BANDWIDTH	.11
	9.1	Test setup	.11
	9.2	EUT operation mode	.11
	9.3	Results	.11
	9.4	Screen shots	.12
10) BA	ND-EDGE COMPLIANCE	
	10.1	Test setup	
	10.2	EUT operation mode	
	10.3	Limit	
	10.4	Results	
	10.5	Screen shots	.15
11	SP	URIOUS EMISSIONS AT ANTENNA TERMINALS	
	11.1	Test setup	
	11.2	Test method	
	11.3	EUT operation mode	
	11.4	Limit	
	11.5	Results	
12		LD STRENGTH OF SPURIOUS RADIATION	
	12.1	Test setup	
	12.2	Test method	
	12.3	EUT operation mode	
	12.4	Limit	
	12.5	Results	
13		ST EQUIPMENT	
	13.1	Conducted measurements	
	13.2	Radiated measurements	.21

1 LABORATORY INFORMATION

Test laboratory:	TCC Tampere Sinitaival 5 FIN-33720 TAMPERE	
	Tel. +358 7180 46800 Fax. +358 7180 46880	
FCC registration number: IC file number:	94436 (June 14, 2002) IC 3606 (April 14, 2000)	

2 CUSTOMER INFORMATION

Client:	Nokia Corporation Lise-Meitner-Str. 10 D-89019 Ulm GERMANY Tel. + 49 (0) 731 1754 0 Fax. + 49 (0) 731 1754 6800
Contact person:	Tomi Vähätiitto
Receipt of EUT:	12.1.2003
Date of testing:	13 – 20.1.2003
Date of report:	21.1.2003

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and IC standard RSS-133.

Contents approved:

Asko Välimäki Quality Manager

3 SUMMARY OF TEST RESULTS

Section in CFR 47	Section in RSS-133		Result
§2.1046 (a)	6.2	Conducted RF output	X
§24.232 (b)	6.2	Radiated RF output	PASS
§2.1049 (h)	5.6	99% occupied bandwidth	Х
§24.238 (a)	6.3	Band-edge compliance	PASS
§24.238 (a), §2.1051	6.3	Spurious emissions at antenna terminals	PASS
§24.238 (a), §2.1053	6.3	Field strength of spurious radiation	PASS
§24.235, §2.1055 (a)(1)(b)	7	Frequency stability, temperature variation	-
§24.235, §2.1055 (d)(1)(2)	7	Frequency stability, voltage variation	-

PASS The EUT passed that particular test FAIL The EUT failed that particular test

X The measurement was done, but there is no applicable performance criteria

Not done

Tel. +358 7180 46800

Fax. +358 7180 46880

4 EUT INFORMATION

The EUT and accessries used in the tests are listed below. Later in this report only EUT numbers are used as reference.

	Device	Туре	S/N	EUT number
EUT	GSM 1900 Mobile Phone	NPL-2	350991/60/001959/6	03279
	GSM 1900 Mobile Phone	NPL-2	350991/20/000442/8	03281
Accessories	Battery	BL-4C	067038610717228414	03280

Notes: -

4.1 EUT description

The EUT is a triple band (900MHz/1800MHz/1900MHz) GSM Mobile Phone.

The EUT was not modified during the tests.

4.2 EUT certification codes

EUT type	FCCID	IC certification number
NPL-2	PPINPL-2	661U-NPL2

5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

6 APPLICABLE STANDARDS

The tests were performed in guidance of CFR 47 part 24, part 2, ANSI C63.4-1992 and RSS-133. Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.



7 CONDUCTED RF OUTPUT POWER

EUT	03281		
Accessories	03280		
Temp, Humidity, Air Pressure	24 °C	50RH%	981mbar
Date of measurement	16.1.2003		
FCC rule part	§2.1046 (a)		
RSS-133 section	6.2		
Measured by	Tero Huhtala		

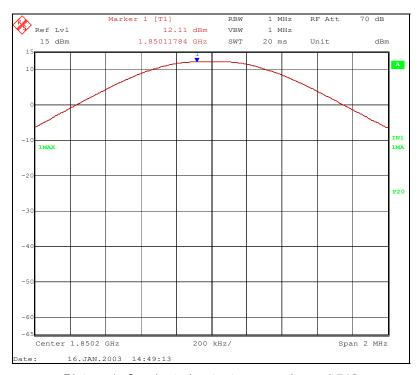
7.1 Test setup

The test setup was as in the block diagram below. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

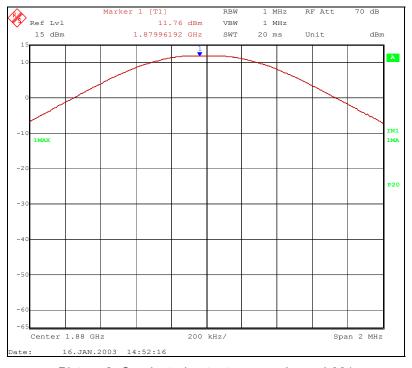
7.2 EUT operation mode

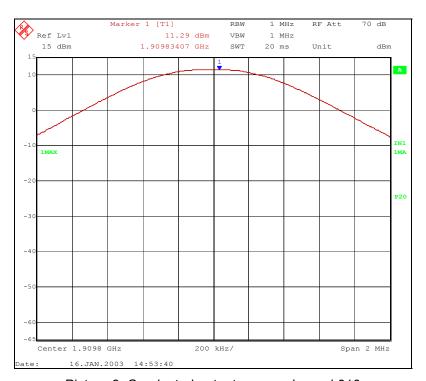
EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

7.3 Results


The measured power values were corrected with the attenuation of the cables, attenuator and power divider. The following formula was used to convert the measured values to the reported ones:

$$P[W] = \frac{10^{(P_{Meas[dBm]} + L_{Cables[dB]} + L_{Attenuator[dB]} + L_{Divider[dB]})/10}}{1000}$$

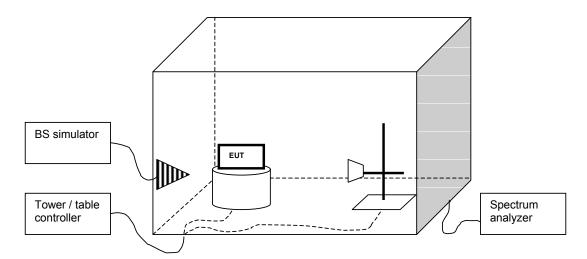

EUT	Measured	Cable loss	Attenuator	Divider loss	Output power	Output power
Channel	value [dBm]	[dB]	loss [dB]	[dB]	[dBm]	[W]
512	12.11	0.92	9.94	6.16	29.13	0.818
661	11.76	0.94	9.98	6.13	28.81	0.760
810	11.29	0.85	9.85	6.29	28.28	0.673


7.4 Screen shots

Picture 1. Conducted output power, channel 512

Picture 2. Conducted output power, channel 661

Picture 3. Conducted output power, channel 810



8 RADIATED RF OUTPUT POWER

EUT	03279		
Accessories	03280		
Temp, Humidity, Air Pressure	24°C	50RH%	992mbar
Date of measurement	13.1.2003		
FCC rule part	§24.232 (b)		
RSS-133 section	6.2		
Measured by	Tero Huhtala		
Result	PASS		

8.1 Test setup

The test setup was as in the block diagram below. The EUT was set on a non-conductive turn table in a semi anechoic chamber. In the corner of the chamber there was a communication antenna, which was connected to the BS simulator located outside the chamber. The radiated power from the EUT was measured with an antenna fixed to a antenna tower. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

8.2 Test method

- a) The maximum power level was searched by moving the turn table and measuring antenna and manipulating the EUT. This level (P_{EUT}) was recorded.
- b) The EUT was replaced with a substituting antenna.
- c) The substituting antenna was fed with the power (P_{Subst_TX}) giving a convenient reading on the spectrum analyzer. That reading (P_{Subst_RX}) on spectrum analyzer was recorded.

8.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

8.4 Limit

Watts, EIRP	
≤ 2	

8.5 Results

The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{Subst_TX[dBm]} + (P_{EUT[dBm]} - P_{Subst_RX[dBm]}) + G_{Substitute_antenna[dBi]} - Lcable)[dBm])/10}{1000}$$

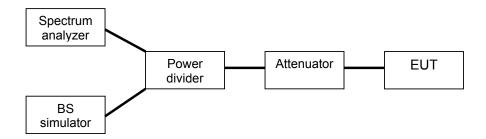
where the variables are as follows:

 $P_{\text{EUT [dBm]}}$ Measured power level (from step a in 8.2) from the EUT $P_{\text{Subst_TX [dBm]}}$ Power (from step c in 8.2) fed to the substituting antenna

P_{Subst_RX [dBm]} Power (from step c in 8.2) received with the spectrum analyzer

G_{Substitute_antenna [dBi]} Gain of the substitutive antenna over isotropic radiator

EUT Channel	P _{EUT} [dBm]	P _{Subst TX} [dBm]	P _{Subst RX} [dBm]	Antenna gain [dBi]	L _{cable} [dB]	Output power [dBm]	Output power [W]
512	-21.28	18.0	-30.92	8.80	7.23	29.21	0.834
661	-22.06	18.0	-31.92	8.70	7.41	29.15	0.822
810	-21.92	18.0	-31.62	8.70	7.17	29.23	0.838



9 99% OCCUPIED BANDWIDTH

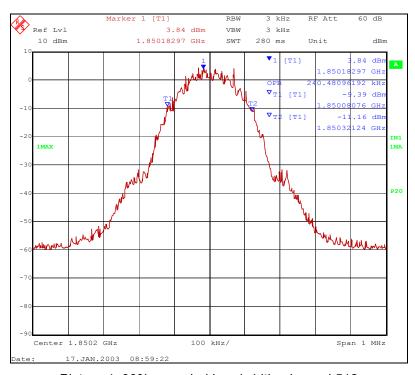
EUT	03281			
Accessories	03280			
Temp, Humidity, Air Pressure		24°C	50RH%	999mbar
Date of measurement	17.01.2003			
FCC rule part	§2.1049 (h)			
RSS-133 section	5.6			
Measured by	Tero Huhtala	а		

9.1 Test setup

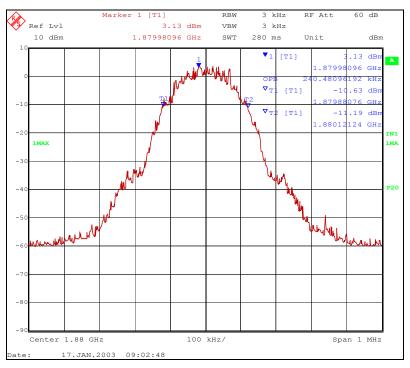
The test setup was as in the block diagram below. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

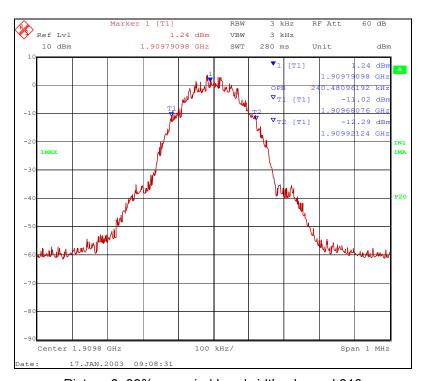
9.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)


9.3 Results

The 99% occupied bandwidth was measured using the in-built function of the spectrum analyzer.

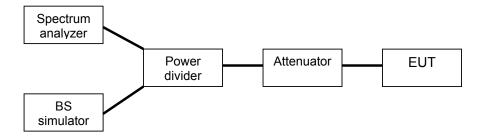

EUT Channel	99% occupied bandwidth [kHz]
512	240.48
661	240.48
810	240.48


9.4 Screen shots

Picture 4. 99% occupied bandwidth, channel 512

Picture 5. 99% occupied bandwidth, channel 661

Picture 6. 99% occupied bandwidth, channel 810



10 BAND-EDGE COMPLIANCE

EUT	03281		
Accessories	03280		
Temp, Humidity, Air Pressure	24°C	50RH%	999mbar
Date of measurement	17.01.2003		
FCC rule part	§24.238 (a)		
RSS-133 section	6.3		
Measured by	Tero Huhtala		
Result	PASS		

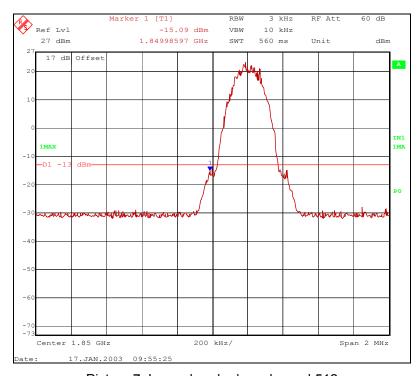
10.1 Test setup

The test setup was as in the block diagram below. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

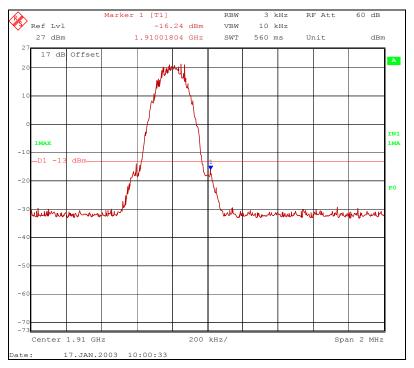
10.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

10.3 Limit


Frequency [MHz]	Level [dBm]
< 1850	-13
> 1910	-13

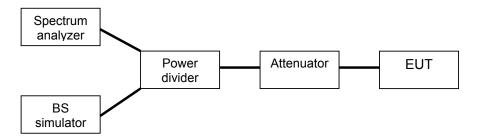
10.4 Results


The line in the screen shots is the -13dBm limit line. It's value has been corrected with the combined attenuation of cables, attenuator and divider, shown in the screen shots as "offset". The values used to offset the limit line were taken from 7.3.

10.5 Screen shots

Picture 7. Lower band edge, channel 512

Picture 8. Higher band edge, channel 810



11 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

EUT	03281		
Accessories	03280		
Temp, Humidity, Air Pressure	24°C	50RH%	999mbar
Date of measurement	17.01.2003		
FCC rule part	§24.238 (a), §2.1051		
RSS-133 section	6.3		
Measured by	Tero Huhtala		
Result	PASS		_

11.1 Test setup

The test setup was as in the block diagram below. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

11.2 Test method

The measured emission levels were corrected with the attenuation of the cables, attenuator and divider.

11.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

11.4 Limit

Frequency [MHz]	Level [dBm]	
30 - 19100	-13	

11.5 Results

The highest emissions are reported in the tables below. If there were no emissions closer than 20dB below the limit line, then the emission levels were measured at the transmitter's harmonics.

Frequency [MHz]	Result [dBm]
3700,40	-60.77
5550,60	-55.50
7400,80	-60.78
9251,00	-58.53
11101,20	-46.36

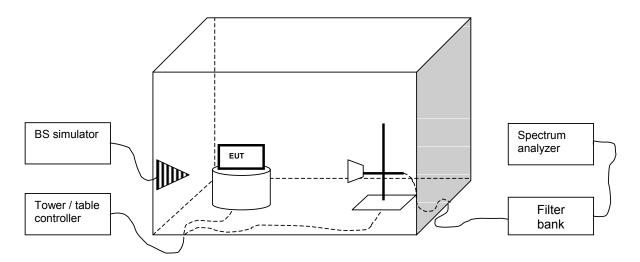
Table 9. Emission levels, channel 512

Frequency [MHz]	Result [dBm]
3760,00	-59.25
5640,00	-55.65
7520,00	-60.88
9400,00	-59.42
11280,00	-46.83

Table 10. Emission levels, channel 661

Frequency [MHz]	Result [dBm]
3819,60	-56.08
5729,40	-53.47
7639,20	-63.31
9549,00	-57.19
11458,80	-50.46

Table 11. Emission levels, channel 810



12 FIELD STRENGTH OF SPURIOUS RADIATION

EUT	03279		
Accessories	03280		
Temp, Humidity, Air Pressure	24°C	50RH%	994-998mbar
Date of measurement	14-15.1.2003		
FCC rule part	§24.238 (a), §2.1053		
RSS-133 section	6.3		
Measured by	Tero Huhtala		
Result	PASS		

12.1 Test setup

The test setup was as in the block diagram below. A set of LP/HP/BS filters was used to prevent overloading the spectrum analyzer. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns. The test was done using an automated test system, where the measurement devices were controlled by a computer.

12.2 Test method

- a) The emissions were searched and maximized by moving the turn table and measuring antenna and manipulating the EUT.
- b) All suspicious frequencies with emission levels were recorded.
- c) The EUT was replaced with a substituting antenna.
- d) For each frequency recorded, the substituting antenna was fed with the power (from signal generator) giving the same reading as in (b). These power levels were reported.

12.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

12.4 Limit

Frequency [MHz]	Level [dBm]
30 – 19100	-13

12.5 Results

The formula below was used to calculate the EIRP of the spurious emissions. If there were no emissions closer than 20dB below the limit line, then the emission levels were measured at the transmitter's harmonics.

$$P_{Emission[dBm]} = P_{SubstTX[dBm]} - L_{Cable[dB]} + G_{Antenna[dBi]}$$

where the variables are as follows:

P_{Measured [dBm]} Measured emission level (from step b in 12.2)

P_{Subst_TX [dBm]} Signal generator power (from step d in 12.2) fed to the substituting

antenna

 $L_{\text{Cable [dB]}}$ Loss of the cable between antenna and signal generator (from step d in

12.2)

Gain of the substitutive antenna over isotropic radiator

Frequency [MHz]	P _{Measured} [dBm]	P _{Subst TX} [dBm]	L _{Cable} [dB]	G _{Antenna} [dBi]	P _{Emission} [dBm]
3700,40	-66.87	-39.10	9.42	9.6	-38.92
5550,60	-67.58	-36.30	11.81	11.1	-37.01
7400,80	-72.58	-41.10	13.42	9.8	-44.72
9251,00	-67.63	-29.20	14.85	11.05	-33.00

Table 12. Emission levels, channel 512

Frequency [MHz]	P _{Measured} [dBm]	P _{Subst_TX} [dBm]	L _{Cable} [dB]	G _{Antenna} [dBi]	P _{Emission} [dBm]
3760,00	-69.32	-42.30	9.57	9.5	-42.37
5640,00	-69.22	-38.10	11.71	11.2	-38.61
7520,00	-72.91	-42.50	13.54	10.2	-45.84
9400.00	-75.52	-35.00	15.12	11.2	-38.92

Table 13. Emission levels, channel 661

Frequency [MHz]	P _{Measured} [dBm]	P _{Subst_TX} [dBm]	L _{Cable} [dB]	G _{Antenna} [dBi]	P _{Emission} [dBm]
3819,60	-71.17	-46.20	9.65	9.4	-46.45
5729,40	-68.61	-38.10	11.83	11.5	-38.43
7639,20	-73.86	-42.60	14.03	10.4	-46.23
9549,00	-76.40	-33.50	15.20	11.3	-37.40

Table 14. Emission levels, channel 810

13 TEST EQUIPMENT

Each test equipment is calibrated once a year.

13.1 Conducted measurements

Equipment	Manufacturer	Model
EMI receiver	Rohde & Schwarz	ESI 40
GSM MS Test Set	Hewlett-Packard	8922M
DCS/PCS MS Test Set	Hewlett-Packard	83220E
Digital radio test set	Racal	6103E
Radio communication tester	Rohde & Schwarz	CMU-200
Attenuator 10 dB	Huber+Suhner AG	6810.17.A
Step attenuator 110dB	Hewlett-Packard	8496A
Power splitter	Hewlett-Packard	11667A
High pass filter	Trilithic	WHK2010-10SS
Low pass filter	Trilithic	WLK1750-10SS
Tunable notch filter	Wainwright	WRCD1850/1910-0.2/40
Temperature chamber	Vötsch	VT4002
DC power supply	Thurlby-Thandar	PL330QMD
Multimeter	Fluke	87

13.2 Radiated measurements

Equipment	Manufacturer	Model
3m semi-anechoic chamber	TDK	
EMI receiver	Rohde & Schwarz	ESI 40
Preamplifier	Hewlett-Packard	8447F
Preamplifier	Hewlett-Packard	8449B
Biconilog antenna	EMCO	3142
Double ridged waveguide antenna	EMCO	3115
Double ridged waveguide antenna	EMCO	3115
Horn antenna	EMCO	3116
Reference dipole set	Schwarzbeck	UHAP/VHAP

Communication antenna	EMC Automation	LPA-8020
GSM MS Test Set	Hewlett-Packard	8922M
DCS/PCS MS Test Set	Hewlett-Packard	83220E
Digital radio test set	Racal	6103E
Radio communication tester	Rohde & Schwarz	CMU-200
Signal generator	Hewlett-Packard	83640L
Step attenuator 110dB	Hewlett-Packard	8496A
Power splitter	Hewlett-Packard	11667A
High pass filter	Trilithic	WHK2010-10SS
Low pass filter	Trilithic	WLK1750-10SS
Tunable notch filter	Wainwright	WRCD1850/1910-0.2/40
Antenna/turntable controller	Deisel	HD-100
Antenna mast	Deisel	MA240
Turntable	Deisel	DS412
Temperature chamber	Vötsch	VT4002
DC power supply	Thurlby-Thandar	PL330QMD
Multimeter	Fluke	87