

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE Std 1528-2003 and IEEE Std 1528a-2005

SAR EVALUATION REPORT

For

QCWB342: 2X2 MIMO 802.11a/b/g/n/ac +BT Module

Model: QCWB342 FCC ID: PPD-QCWB342

Report Number: 13U14858-1B Issue Date: 7/15/2013

Prepared for

Qualcomm Atheros, Inc. 1700 Technology Dr. San Jose, CA 95110

Prepared by

UL Verification Services Inc. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	6/7/2013	Initial Issue	
Α	7/5/2013	Section 9.2 – Deleted unauthorized 5GHz test frequencies. Section 12.2 – Added SAR result for channel 136 (replacing result for channel 124)	Dave Weaver
В	7/15/2013	Section 11 – Updated Liquid and system check data. Section 7.3 – Expanded test rationale for clarity.	Dave Weaver
		Section 8 – Removed reference to non-existent section and added explanation of test separation distance. Section 4 – Corrected power sensor calibration date.	

Table of Contents

1.	At	testation of Test Results	5
2.	Те	est Methodology	6
3.	Fa	ncilities and Accreditation	6
4.	Ca	alibration and Uncertainty	7
4	4.1.	Measuring Instrument Calibration	7
4	4.2.	Measurement Uncertainty	8
5.	Me	easurement System Description and Setup	9
6.	SA	AR Measurement Procedure	10
(6.1.	Normal SAR Measurement Procedure	10
6	6.2.	Volume Scan Procedures	12
7.	De	evice Under Test	13
	7.1.	General Information	13
	7.2.	Band and Air Interfaces	13
7	7.3.	Testing Rationale	13
8.	RF	Exposure Conditions	14
ð	3.1.	Body	14
9.	RF	Output Power Measurement	15
9	9.1.	WiFi (2.4 GHz Band)	15
9	9.2.	WiFi (5 GHz Bands)	16
9	9.3.	Bluetooth	19
10.		Tissue Dielectric Properties	20
	10.1	. Composition of Ingredients for the Tissue Material Used in the SAR Tests	21
	10.2	. Tissue Dielectric Parameter Check Results	22
11.		System Performance Check	23
	11.1	. System Performance Check Measurement Conditions	23
	11.2	. Reference SAR Values for System Performance Check	23
	11.3	System Performance Check Results	24
12.		SAR Test Results	25
	12.1	. Wi-Fi (2.4 GHz Band)	25
	12.2	. Wi-Fi (5 GHz Bands)	26
	12.3	Enhanced Energy Coupling	29

1 00	D. FFD	QCWD542	
13.	SAR	Measurement Variability	30
13	.1. 7	he Highest Measured SAR Configuration in Each Frequency Band	30
13	.2. F	Repeated Measurement Results	30
13	.3. E	Estimated SAR for Bluetooth	31
	13.3.1.	Standalone SAR Test Exclusion	31
	13.3.2.	Estimated SAR	31
13	.4.	Sum of the SAR for WiFi 5 GHz and Bluetooth	32
	13.4.1.	Sum of SAR for worst case standalone measurements	32
Appe	endixes	i	33
13	.1. S	System Performance Check Plots	33
13	.2. V	Vorst Case SAR Test Plots	33
13	.3.	Calibration Certificate for E-Field Probe EX3DV3- SN 3531	33
13	.4.	Calibration Certificate for E-Field Probe EX3DV- SN 3773	33
13	.5.	Calibration Certificate for D2450V2- SN 899	33
13	.6.	Calibration Certificate for D5GHzV2- SN 1003	33
13	.7.	Calibration Certificate for D5GHzV2-SN 1138	33
13	Exter	nal Photos	34
14	Setur	Photos	35

1. Attestation of Test Results

Applicant	Qualcomm Atheros, Inc					
DUT description	QCWB342: 2X2 MIMO 802.11a/b/g/n/ac +BT Module					
Model	QCWB342					
Test device is	An identical prototype					
Device category	Portable					
Exposure category	General Population/Uncontroll	ed Exposure				
Date tested	2/20/2013 – 6/5/2013					
The highest	RF exposure condition	Licensed	DTS	UNII		
reported SAR values	Head	N/A	N/A	N/A		
	Body-worn Accessory	N/A	0.76 W/kg	0.72 W/kg		
	Wireless Router (Hotspot)	N/A	N/A	N/A		
	Simultaneous Transmission	N/A	1.51W/kg	1.43 W/kg		
Applicable Standards	OET Bulletin 65 Supplement C IEEE Std 1528-2003 and IEEE Std 1528a-2005 FCC Published RF exposure KDB procedures, and TCB workshop updates					
Test Results	Pass	·				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:

Dave Weaver

WiSE Program Manager UL Verification Services Inc.

Prepared By:

Xuanmai Nguyen

UL Verification Services Inc.

ranhmac

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528-2003, IEEE Std 1528a-2005, and the following FCC Published RF exposure KDB procedures:

- 447498 D01 General RF Exposure Guidance v05r01
- o 248227 D01 SAR Meas for 802 11abg v01r02
- o 690783 D01 SAR Listings on Grants v01r02
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01
- o 865664 D02 SAR Reporting v01r01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

Report No.: 13U14993-1B Issue Date: 7/15/2013

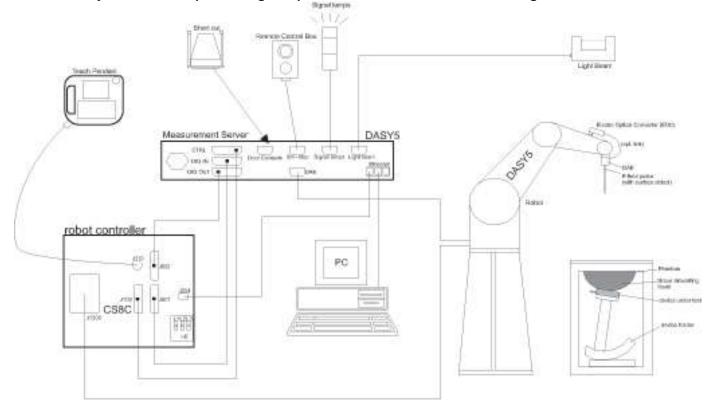
FCC ID: PPD-QCWB342

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date		
Name of Equipment	Mandiacturer Type/Model		Serial No.	MM	DD	Year
S-Parameter Network Analyzer	Agilent	8753ES	MY40000980	2	20	2014
Dielectronic Probe kit	SPEAG	SM DAK 040 CA	1082	9	18	2013
Synthesized Signal Generator	HP	8665B	3744A01084	3	26	2014
Power Meter	HP	438A	2822A05684	10	7	2013
Power Sensor	HP	8481A	2702A66876	8	1	2013
Power Sensor	HP	8482A	2349A08568	9	26	2014
Amplifier	MITEQ	4D00400600-50-30P	1620606	N/A		/A
Directional coupler	Werlatone	C8060-102	2141		N/	'A
Thermometer	TRACEABLE	4242	122529162	9	19	2013
E-Field Probe	SPEAG	EX3DV3	3773	4	26	2014
E-Field Probe	SPEAG	EX3DV3	3531	2	7	2014
Data Acquisition Electronics	SPEAG	DAE4	1359	2	8	2014
Data Acquisition Electronics	SPEAG	DAE4	1239	6	6	2013
System Validation Dipole	SPEAG	D2450V2	899	10	5	2013
System Validation Dipole	SPEAG	D5GHzV2	1003	9	18	2013
System Validation Dipole	SPEAG	D5GHzV2	1138	10	9	2013


4.2. Measurement Uncertainty

Per KDB 865664, when no measured SAR values exceed 1.5 W/kg, measurement uncertainty analysis does not need to be provided in the test report.

Report No.: 13U14993-1B Issue Date: 7/15/2013 FCC ID: PPD-QCWB342

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz; ≤ 12 mm 4 – 6 GHz; ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding device with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01 (Draft)

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	blution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: Δz _{zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤1.5·Δ2	Z _{Zoom} (n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7. Device Under Test

7.1. General Information

QCWB342: 2X2 MIMO 802.11a/b/g/n/ac +BT							
Operating Configuration(s)	Operating Configuration(s)						
Antenna tested: Manufacturer Antenna type Part number							
Main	Wistron Neweb Corporation	PIFA	81.EBJ15.005				
Aux Wistron Neweb Corporation PIFA 81.EBJ15.005							
Cable 50 ohm Coaxial, length: 300mm							
RF Exposure Condition(s)	Body						

7.2. Band and Air Interfaces

Wireless Mode and Frequency Bands	WiFi 802.11a/b/g/n/ac Bluetooth 2.4 GHz
Modulation	WiFi 802.11a/b/g/n/ac Bluetooth Ver. 4.0
Duty Cycle	WiFi 802.11a/b/g/n/ac: 100%

7.3. Testing Rationale

All SAR testing was performed using chain 1 and was judged to be representative of chain 0 as the transmitters are identically implemented.

All SAR results were scaled using the highest target power for worst case chain.

All testing was performed in 802.11b mode for 2.4GHz as the output power in the other modes was not more than 0.25dB higher.

In the 5GHz bands testing was performed in 802.11a mode as the output power in the other modes was not more than 0.25dB higher. Additional testing for the worst case orientations was performed for 802.11ac in accordance with the April 2013 TCB workshop SAR presentation.

In the 5.2GHz band the output power in the 802.11n modes and 802.11ac (20 and 40MHz BW only) modes was higher than the 802.11a mode. SAR Testing in the 802.11n and 802.11ac modes was performed in the worst case configuration only.

The standalone (SISO) SAR results were considered acceptable for the MIMO simultaneous transmission analysis as the MIMO power does not exceed the SISO power and the antenna separation distance will not be less than 50mm.

8. RF Exposure Conditions

Body

Test Configurations	Antenna-to- edge/surface	SAR Required	Note
Horizontal Top	9.5 mm	Yes	
Horizontal Bottom	9.5 mm	Yes	
Horizontal Left	9.5 mm	Yes	
Horizontal Right	9.5 mm	Yes	
Vertical Top	9.5 mm	Yes	
Vertical Bottom	9.5 mm	Yes	

The antenna to edge/surface separation distance was selected so that none of the reported SAR measurements would exceed 0.8 W/kg.

Report No.: 13U14993-1B Issue Date: 7/15/2013

FCC ID: PPD-QCWB342

9. RF Output Power Measurement

9.1. WiFi (2.4 GHz Band)

All target powers are absolute maximums

Required Test Channels per KDB 248227 D01

Mada	Band	Band GHz		"Default Tes	t Channels"
Mode		GHZ	Channel	802.11b	802.11g
802.11b/g	2.4 GHz	2.412	1#	V	∇
		2.437	6	√	∇
		2.462	11 [#]	√	∇

Notes:

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

Band (MHz)	Mode	Ch#	Freq. (MHz)	Target Pwr CH0	Target Pwr CH1	Avg Pwr (dBm) (Chain 1)
		1	2412	16.83	17.15	16.9
	802.11b	6	2437	17.06	17.42	17.4
		11	2462	17.06	17.13	17.0
	802.11g	1	2412	13.25	13.24	13.1
		6	2437	17.07	17.09	16.9
2.4		11	2462	12.36	12.31	11.6
2.4	802.11n (HT20)	1	2412	12.11	12.42	11.9
		6	2437	17.05	17.00	16.8
		11	2462	12.11	12.02	11.7
	802.11n	3	2422	8.40	8.76	8.5
		6	2437	15.26	15.26	14.8
	(HT40)	9	2452	7.66	7.60	7.2

 $[\]sqrt{\ }$ = "default test channels"

^{∇ =} possible 802.11g channels with maximum average output ¼ dB ≥ the "default test channels"

^{1.} SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. As per KDB 248227.

9.2. WiFi (5 GHz Bands)

All target powers are absolute maximums

Required Test Channels per KDB 248227 D01

D.4	ode	Band	GHz	Channel	"Default Te	st Channels"
IVI	oue	Danu	GHZ	Channel	802	2.11a
			5.180	36	√	
		5.2 GHz	5.200	40		*
		5.2 GHZ	2.220	44		*
			5.240	48	√	
			5.260	52	√	
		E 2 CU-	5.280	56		*
		5.3 GHz	5.300	60		*
			5.320	64	√	
		5.5 GHz	5.500	100		*
	UNII (15.407)		5.520	104	√	
	(13.407)		5.540	108		*
802.11a			5.560	112		*
602.11a			5.580	116	√	
			5.600	120		*
			5.620	124	√	
			5.640	128		*
			5.660	132		*
			5.680	136	√	
			5.700	140		*
			5.745	149	1	
	DTO		5.765	153		*
	DTS (15.247)	5.8 GHz	5.785	157	√	
	(13.247)		5.805	161		*
			5.825	165	√	

 $[\]sqrt{\ }$ = "default test channels"

^{* =} possible 802.11a channels with maximum average output > the "default test channels"

^{# =} when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

Measured Results

Band	Mode	Ch#	Freq.	Target Pwr	Target Pwr	Avg Pwr
(MHz)	iviode	CII#	(MHz)	(dBm) Chain 0	(dBm) Chain 1	(dBm) Chain1
		36	5180	11.10	11.79	11.70
	802.11a	40	5200	11.71	11.37	11.30
	002.11a	44	5220	11.71	11.37	11.10
		48	5240	11.33	11.44	11.30
	802.11n	36	5180	11.76	12.42	12.30
	(HT20)	40	5200	12.12	12.43	12.20
	(11120)	48	5240	11.95	12.13	11.90
5.2	802.11n	38	5190	12.51	12.52	12.30
	(HT40)	46	5230	13.30	13.15	12.90
		36	5180	11.72	12.02	11.90
	802.11ac20VHT	40	5200	12.30	12.31	11.65
		48	5240	12.33	11.49	11.43
	802.11ac40VHT	38	5190	11.90	12.31	12.20
	002.11ac40VIII	46	5230	13.38	13.02	12.80
	802.11ac80VHT	42	5220	9.58	9.40	9.41
		52	5260	15.52	14.40	14.20
	802.11a	56	5280	15.54	14.53	14.50
	002.11a	60	5300	15.54	14.53	15.20
		64	5320	15.25	14.26	14.30
	802.11n	52	5260	14.58	13.49	13.20
	(HT20)	60	5300	14.49	13.75	13.30
	` ′	64	5320	14.42	13.69	13.30
5.3	802.11n	54	5270	13.75	12.55	12.40
	(HT40)	62	5310	11.89	10.77	10.50
		52	5260	14.63	13.56	13.24
	802.11ac20VHT	60	5300	14.69	13.69	13.21
		64	5320	14.63	13.76	13.20
	802.11ac40VHT	54	5270	13.42	12.52	12.45
	002.1180407111	62	5280	12.84	11.86	11.45
	802.11ac80VHT	58	5320	8.61	8.21	8.07

Note(s):

SAR is not required for 802.11n HT20/HT40/ac40VHT/ac80VHT channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. As per KDB 248227.

Report No.: 13U14993-1B Issue Date: 7/15/2013 FCC ID: PPD-QCWB342

Band	Mode	Ch#	Freq.	Target Pwr	Target Pwr	Avg Pwr
(MHz)	iviode	Cn#	(MHz)	(dBm) Chain 0	(dBm) Chain 1	(dBm) Chain1
		100	5500	15.11	14.98	14.90
		104	5520	15.02	15.42	15.30
		108	5540	15.02	15.42	15.20
		112	5560	15.02	15.42	15.30
		116	5580	15.02	15.42	15.10
	802.11a	120	5600	15.02	15.42	14.90
		124	5620	15.02	15.42	15.00
		128	5640	15.02	15.42	15.30
		132	5660	15.02	15.42	15.20
		136	5680	15.02	15.42	15.40
		140	5700	14.67	15.47	15.20
		100	5500	14.01	14.03	13.50
	802.11n	104	5520	13.82	14.57	14.28
5.5	(HT20)	136	5680	13.82	14.57	14.46
		140	5700	13.77	14.48	14.30
	000.44	102	5510	9.89	9.99	9.60
	802.11n	110	5550	12.85	13.23	13.20
	(HT40)	134	5670	12.85	13.23	13.11
		100	5500	13.96	14.29	14.15
	000 44 00) // UT	104	5520	13.70	14.60	14.31
	802.11ac20VHT	136	5680	13.70	14.60	14.42
		140	5700	13.70	14.60	14.22
		102	5510	9.25	9.36	9.12
	802.11ac40VHT	110	5550	12.67	13.73	13.29
		134	5670	12.77	13.51	13.34
	000 4400\/LIT	106	5530	6.80	6.61	6.15
	802.11ac80VHT	138	5690	10.46	11.54	11.20
		149	5745	15.00	15.40	15.30
		153	5765	15.39	15.04	15.00
	802.11a	157	5785	15.39	15.04	14.80
		161	5805	15.39	15.04	15.00
		165	5825	15.10	15.04	14.70
	222.11	149	5745	13.87	14.46	13.90
	802.11n	157	5785	14.00	14.45	13.90
	(HT20)	165	5805	14.00	14.45	14.10
5.8	802.11n	151	5755	12.92	13.26	13.20
	(HT40)	159	5795	13.27	13.10	13.00
	- /	149	5745	13.21	14.74	14.45
	802.11ac20VHT	157	5785	14.07	14.09	13.99
		165	5825	13.87	14.22	14.17
		151	5755	13.35	12.76	12.53
	802.11ac40VHT	159	5795	13.24	13.09	12.98
	802.11ac80VHT	155	5775	10.39	11.78	11.65

Note(s):

SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels. As per KDB 248227.

9.3. Bluetooth

Target Power is an absolute maximum

Target Power	Bluetooth (dBm)
Max	4.51

Mode	Channel #	Freq. (MHz)	Conducted Avg Power			
Mode	Charine #	rieq. (IVII IZ)	(dBm)	(mW)		
V3.0 + EDR,	0	2402	4.10	2.57		
GFSK	39	2441	4.21	2.64		
GFSK	78	2480	3.89	2.45		
V3.0 + EDR,	0	2402	4.34	2.72		
π/4 DQPSK	39	2441	4.29	2.69		
11/4 DQFSK	78	2480	4.05	2.54		
V3.0 + EDR,	0	2402	4.31	2.70		
8-DPSK	39	2441	4.32	2.70		
0-DF3K	78	2480	4.06	2.55		

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ead
raiget i requericy (ivii iz)	ϵ_{r}	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC OET Bulletin 65 Supplement C 01-01

arget Frequency (MHz)	Н	ead	Body		
arget Frequency (Wiriz)	ε_{r}	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

Report No.: 13U14993-1B Issue Date: 7/15/2013 FCC ID: PPD-QCWB342

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients			Frequency (MHz)								
(% by weight)	45	50	835		915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: >99% Pure Sodium Chloride Sugar: >98% Pure Sucrose HEC: Hvdroxvethvl Cellulose Water: De-ionized. >16 M Ω resistivity DGBE: >99% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 2450	e'	50.7000	Relative Permittivity (ε_r):	50.70	52.70	-3.80	5
	B00y 2450	e"	13.6900	Conductivity (σ):	1.86	1.95	-4.36	5
5/13/2013	Body 2410	e'	50.8300	Relative Permittivity (ε_r):	50.83	52.76	-3.66	5
3/13/2013	Dody 2410	e"	13.5700	Conductivity (σ):	1.82	1.91	-4.67	5
	Body 2475	e'	50.6700	Relative Permittivity (ε_r):	50.67	52.67	-3.79	5
	20dy 2110	e"	13.7600	Conductivity (σ):	1.89	1.99	-4.61	5
	Body 5180	e'	48.9501	Relative Permittivity (ε_r):	48.95	49.05	-0.20	10
		e"	17.9078	Conductivity (σ):	5.16	5.27	-2.15	5
	Body 5200	e'	48.9069	Relative Permittivity (ε_r):	48.91	49.02	-0.23	10
	,	e"	17.9092	Conductivity (σ):	5.18	5.29	-2.20	5
5/15/2013	Body 5600	e'	48.1333	Relative Permittivity (ε_r):	48.13	48.48	-0.71	10
		e"	18.2216	Conductivity (σ):	5.67	5.76	-1.51	5
	Body 5800	e'	47.9042	Relative Permittivity (ε_r):	47.90	48.20	-0.61	10
		e"	18.4570	Conductivity (σ):	5.95	6.00	-0.79	5
	Body 5825	e'	47.8291	Relative Permittivity (ε_r):	47.83	48.20	-0.77	10
		e"	18.5222	Conductivity (σ):	6.00	6.00	-0.01	5
	Body 5180	e'	48.9501	Relative Permittivity (ε_r):	48.95	49.05	-0.20	10
		e"	17.9078	Conductivity (σ):	5.16	5.27	-2.15	5
	Body 5200	e'	48.9069	Relative Permittivity (ε_r):	48.91	49.02	-0.23	10
	-	e"	17.9092	Conductivity (σ):	5.18	5.29	-2.20	5
5/19/2013	Body 5600	e'	48.1333	Relative Permittivity (ε_r):	48.13	48.48	-0.71	10
		e"	18.2216	Conductivity (σ):	5.67	5.76	-1.51	5
	Body 5800	e'	47.9042	Relative Permittivity (ε_r):	47.90	48.20	-0.61	10
	-	e"	18.4570	Conductivity (σ):	5.95	6.00	-0.79	5
	Body 5825	e' e"	47.8291	Relative Permittivity (ε_r):	47.83	48.20	-0.77	10
		_	18.5222	Conductivity (σ):	6.00	6.00	-0.01	5
	Body 5180	e' e"	47.8100	Relative Permittivity (ε_r):	47.81	49.05	-2.52	10
		e'	18.1100 47.7900	Conductivity (σ): Relative Permittivity (ε_r):	5.22 47.79	5.27 49.02	-1.05 -2.51	5 10
	Body 5200	e"	18.1400	Conductivity (σ):	5.24	5.29	-0.94	5
		e'	47.0200	Relative Permittivity (ε_r):	47.02		-3.01	10
6/4/2013	Body 5600	e"	18.3900	Conductivity (σ):	5.73	48.48 5.76	-0.60	5
		e'	46.8900	Relative Permittivity (ε_r):	46.89	48.20	-2.72	10
	Body 5800	e"	18.6400	Conductivity (σ):	6.01	6.00	0.19	5
		e'	46.7800	Relative Permittivity (ε_r):	46.78	48.20	-2.95	10
	Body 5825	e"	18.6100	Conductivity (σ):	6.03	6.00	0.46	5
		e'	46.1000	Relative Permittivity (ε_r):	46.10	49.05	-6.01	10
	Body 5180	e"	18.2900	Conductivity (σ):	5.27	5.27	-0.07	5
		e'	46.0800	Relative Permittivity (ε_r):	46.08	49.02	-6.00	10
	Body 5200	e"	18.3400	Conductivity (σ):	5.30	5.29	0.15	5
		e'	45.5200	Relative Permittivity (ε_r):	45.52	48.48	-6.10	10
7/5/2013	Body 5600	e"	18.6500	Conductivity (σ):	5.81	5.76	0.80	5
		e'	45.0900	Relative Permittivity (ε_r):	45.09	48.20	-6.45	10
	Body 5800	e"	18.7100	Conductivity (σ):	6.03	6.00	0.57	5
	l	e'	45.0500	Relative Permittivity (ε_r):	45.05	48.20	-6.54	10
	Body 5825	e"	18.8000	Conductivity (σ):	6.09	6.00	1.48	5

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm ± 0.5 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	I. Date Freq. (GHz)		Target SAR Values (mW/g)			
System Dipole	Senai No.	Cal. Date	Fieq. (GHZ)	1g/10g	Head	Body		
D2450V2	899	10/5/2012	2.45	1g	51.7	49.6		
D2450V2	099	10/5/2012	2.45	10g	24.3	23.4		
D5GHV2	1003	09/18/2012	5.6	1g	82.8	79.0		
D3GHV2 1003	1003	09/10/2012	5.6	10g	23.6	22.0		
			5.2	10g	23.6	73.2		
		ļ	5.2	10g	22.8	20.4		
D5GHV2	1138	10/09/2012	5.5	1g	83.6	77.9		
DOGITVZ	1130	10/09/2012	0/09/2012 5.5		23.8	21.7		
			F 0	1g	78.7	72.8		
			5.8	10g	22.4	20.1		

FORM NO: CCSUP4031G

Report No.: 13U14993-1B Issue Date: 7/15/2013 FCC ID: PPD-QCWB342

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

	System	Dipole	T.S.		Me	asured Res	ults	Target	Delta	Est./Zoom	Plot
Date Tested	Туре	Serial #	Liqui		Area Scan	Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	Ratio ±3 %	No.
5/14/2013	D2450V2	899	Body	1g	4.91	4.93	49.30	49.60	-0.60	-0.41	1,2
3/14/2013	D2430 V Z	099	body	10g	2.13	2.30	23.00	23.40	-1.71		1,2
5/15/2013	D5.2GHz	1138	Body	1g	6.68	6.83	68.30	73.20	-6.69	-2.25	3,4
3/13/2013	D3.2GHZ	1130	Бойу	10g	1.86	1.94	19.40	20.40	-4.90		3,4
5/15/2013	D5.5GHz	1138	Body	1g	6.97	7.48	74.80	77.90	-3.98	-7.32	5,6
3/13/2013	D3.30112	1130	Dody	10g	1.96	2.13	21.30	21.70	-1.84		5,0
5/15/2013	D5.6GHz	1003	Body	1g	7.35	7.98	79.80	79.00	1.01	-8.57	7,8
3/13/2013	D3.0GHZ	1003	Dody	10g	2.06	2.28	22.80	22.00	3.64		7,0
5/15/2013	D5.8GHz	1138	Rody	1g	6.13	6.68	66.80	72.80	-8.24	-8.97	9,10
3/13/2013	D3.0GHZ	1130	Body	10g	1.69	1.87	18.70	20.10	-6.97		9,10
5/18/2013	D5.2GHz	1138	Bodv	1g	6.42	7.07	70.70	73.20	-3.42	-10.12	11,12
5/16/2013	D3.2GHZ	1130	Бойу	10g	1.78	2.00	20.00	20.40	-1.96		11,12
5/18/2013	D5.5GHz	1138	Body	1g	7.25	7.76	77.60	77.90	-0.39	-7.03	13,14
5/16/2013	D3.3GHZ	1130	войу	10g	2.06	2.21	22.10	21.70	1.84		13,14
5/18/2013	D5.6GHz	1003	Body	1g	7.54	7.92	79.20	79.00	0.25	-5.04	15,16
3/10/2013	D3.00112	1003	Dody	10g	2.09	2.22	22.20	22.00	0.91		13,10
5/18/2013	D5.8GHz	1138	Body	1g	6.64	7.05	70.50	72.80	-3.16	-6.17	17,18
5/16/2013	D3.0GHZ	1130	воцу	10g	1.82	1.97	19.70	20.10	-1.99		17,10
6/4/2013	D5.2GHz	1138	Body	1g	7.26	7.60	76.00	73.20	3.83	-4.68	19,20
0/4/2013	D3.20112	1130	body	10g	2.01	2.14	21.40	20.40	4.90		19,20
7/5/2013	D5.6GHz	1138	Body	1g	7.05	7.68	76.80	77.90	-1.41	-8.94	15,16
1/3/2013	DJ.0GHZ	1130	Бойу	10g	1.99	2.26	22.60	21.70	4.15		13,10

12. SAR Test Results

12.1. Wi-Fi (2.4 GHz Band)

Test		Dist.		Freq.	Power (dB	m) Chain 1	1-g SAR (W	//kg) Chain1	Plot	
Position	Mode	(mm)	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No	Note
Horizontal			1	2412	17.15	16.9				1
Left	802.11b	9.5	6	2437	17.42	17.4	0.286	0.287		
Lon			11	2462	17.13	17.0				1
Horizontal			1	2412	17.15	16.9				1
Right	802.11b	9.5	6	2437	17.42	17.4	0.753	0.756	1	
Right			11	2462	17.13	17.0				1
l la viza estal			1	2412	17.15	16.9				1
Horizontal Top	802.11b	9.5	6	2437	17.42	17.4	0.089	0.089		
ТОР			11	2462	17.13	17.0				1
Harimantal			1	2412	17.15	16.9				1
Horizontal Bottom	802.11b	9.5	6	2437	17.42	17.4	0.0180	0.018		
Бошот			11	2462	17.13	17.0				1
\			1	2412	17.15	16.9				1
Vertical	802.11b	9.5	6	2437	17.42	17.4	0.053	0.053		
Тор			11	2462	17.13	17.0				1
\/a=tia=!			1	2412	17.15	16.9				1
Vertical Bottom	802.11b	9.5	6	2437	17.42	17.4	0.071	0.071		
Bottom			11	2462	17.13	17.0				1

According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.

Report No.: 13U14993-1B Issue Date: 7/15/2013

FCC ID: PPD-QCWB342

12.2. Wi-Fi (5 GHz Bands)

Band	Test	Dist.			Freq.	Power (dBr	m) Chain 1	1-g SAR (V	//kg) Chain 1	Plot	
(GHz)			Mode	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	Horizontal			36	5180	11.79	11.7	0.175	0.179		2
5.2	Right	9.5	802.11a	40	5200	11.71	11.3	0.145	0.159		2
	rtigrit			48	5240	11.44	11.3	0.130	0.134		2
				52	5260	15.52	14.0	0.205	0.291		2
5.3	Horizontal	9.5	802.11a	60	5300	15.54	14.2	0.216	0.294		2
3.3	Right	3.5		64	5320	15.25	14.2	0.307	0.391		2
			801.11ac	60	5300	14.69	13.2	0.285	0.401		1
				104	5520	15.42	15.3	0.521	0.536		2
5.5	Horizontal	9.5	802.11a	116	5580	15.42	15.1	0.525	0.565	3	2
5.5	Right	9.5	002.11a	124	5620	15.42	15.0	0.499	0.550		2
				136	5680	15.42	15.4	0.454	0.456		2
	5.8 Horizontal Right		802.11a	149	5745	15.40	15.3	0.322	0.330		2
5.8		9.5		157	5785	15.39	14.8	0.359	0.411		2
				165	5825	15.39	14.7	0.364	0.427		2

Band	Test	Dist.			Freq.	Power (dBi	m) Chain 1	1-g SAR (V	V/kg) Chain 1	Plot	
(GHz)	Position	(mm)	Mode	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			802.11a	36	5180	11.79	11.7	0.277	0.283		2
			002.11a	48	5240	11.44	11.3	0.235	0.243		2
			802.11n20	36	5180	12.42	12.3	0.251	0.258		
			002.111120	48	5240	12.13	11.9	0.155	0.163		
5.2	Horizontal	9.5	802.11n40	38	5190	12.52	12.3	0.197	0.207		
5.2	Left	9.5	002.111140	46	5230	13.15	12.9	0.232	0.246		
			802.11ac20	36	5180	12.02	11.9	0.323	0.332		
			802.11ac20	48	5240	11.49	11.4	0.193	0.196		
			802.11ac40	38	5190	12.31	12.2	0.209	0.214		
				46	5230	13.02	12.8	0.248	0.261		1
	Horizontal			52	5260	14.40	14.0	0.210	0.230		2
5.3	Left	9.5	802.11a	60	5300	14.53	14.2	0.174	0.188		2
	Leit			64	5320	14.26	14.2	0.218	0.221		2
				104	5520	15.42	15.3	0.401	0.412		2
	Horizontal		802.11a	116	5580	15.42	15.1	0.571	0.615		2
5.5	Left	9.5	002.11a	124	5620	15.42	15.0	0.656	0.723	2	2
	Leit			136	5680	15.42	15.4	0.427	0.429		2
			802.11ac	136	5680	14.60	14.4	0.295	0.307		1
				149	5745	15.40	15.3	0.301	0.308		2
5.8	Horizontal	9.5	802.11a	157	5785	15.39	14.8	0.546	0.625		2
5.6	Left	9.5		165	5825	15.10	14.7	0.546	0.599		2
			802.11ac	165	5825	14.22	14.2	0.508	0.514		1

^{1.} Highest Report SAR results for the given mode in the corresponding frequency band.

^{2.} According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

Band Test		Dist.	Mode	Ch #.	Freq. (MHz)	Power (dE	Power (dBm) Chain 1		V/kg) Chain 1	Plot	NI-4-
(GHz) Position	(mm)	Mode	Tune-up limit			Meas.	Meas.	Scaled	No.	Note	
				36	5180	11.79	11.7	0.067	0.069		2
5.2	Horizontal Top	9.5	802.11a	40	5200	11.37	11.3	0.055	0.056		2
				48	5240	11.44	11.3	0.047	0.049		2
		9.5	802.11a	52	5260	14.40	14.0	0.078	0.086		2
5.3	Horizontal Top			60	5300	14.53	14.2	0.126	0.136		2
				64	5320	14.26	14.2	0.144	0.146		2
				104	5520	15.42	15.3	0.317	0.326	4	2
5.5	Horizontal Top	9.5	802.11a	116	5580	15.42	15.1	0.242	0.261		2
5.5	rionzontai rop	9.5	002.11a	124	5620	15.42	15.0	0.274	0.302		2
				136	5680	15.42	15.4	0.299	0.300		2
				149	5745	15.40	15.3	0.205	0.210		2
5.8	5.8 Horizontal Top	10	802.11a	157	5785	15.04	14.8	0.164	0.173		2
				165	5825	15.04	14.7	0.268	0.290		2

Band	Band Test Dist.		Mada	Ch #	Ch #. Freq. (MHz)	Power (dBm) Chain1		1-g SAR (W/kg)Chain 1		Plot	Note
(GHz)) Position (mm)	Mode	Cn #.	Tune-up limit		Meas.	Meas.	Scaled	No.	Note	
	Horizontal			36	5180	11.79	11.7	0.024	0.025		2
5.2	Bottom	9.5	802.11a	40	5200	11.37	11.3	0.038	0.039		2
	Dottom			48	5240	11.44	11.3	0.031	0.032		2
	Horizontal			52	5260	14.40	14.0	0.053	0.059		2
5.3	Bottom	9.5	802.11a	60	5300	14.53	14.2	0.070	0.075		2
	Dottom			64	5320	14.26	14.2	0.094	0.095		2
				104	5520	15.42	15.3	0.106	0.109		2
5.5	Horizontal	9.5	802.11a	116	5580	15.42	15.1	0.118	0.127		2
3.5	Bottom	9.5		124	5620	15.42	15.0	0.143	0.158		2
				136	5680	15.42	15.4	0.144	0.145		2
	Horizontal 9.5		9.5 802.11a	149	5745	14.47	14.3	0.121	0.126		2
5.8		9.5		157	5785	15.04	14.8	0.178	0.188	5	2
	Bottom			165	5825	15.04	14.7	0.158	0.171		2

^{1.} Highest Report SAR results for the given mode in the corresponding frequency band.

^{2.} According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

Band	Test	Dist. Mode		.	Freq. (MHz)	Power (dB	Power (dBm) Chain 1		//kg) Chain 1	Plot	
(GHz)	Position	(mm)	Mode	Ch #.		Tune-up limit	Meas.	Meas.	Scaled	No.	Note
				36	5180	11.79	11.7	0.059	0.060		2
5.2	Vertical Top	9.5	802.11a	40	5200	11.37	11.3	0.092	0.093		2
				48	5240	11.44	11.3	0.067	0.069		2
				52	5260	14.40	14.0	0.070	0.077		2
5.3	Vertical Top	9.5	9.5 802.11a	60	5300	14.53	14.2	0.054	0.058		2
				64	5320	14.26	14.2	0.085	0.086		2
				104	5520	15.42	15.3	0.144	0.148		2
5.5	Vertical Top	9.5	802.11a	116	5580	15.42	15.1	0.185	0.199	6	2
3.3	vertical rop	9.5	002.11a	124	5620	15.42	15.0	0.142	0.156		2
				136	5680	15.42	15.4	0.151	0.152		2
				149	5745	14.47	14.3	0.102	0.106		2
5.8	Vertical Top	9.5	802.11a	157	5785	15.04	14.8	0.127	0.134		2
				165	5825	15.04	14.7	0.106	0.115		2

Band	Test	Dist.	Mode	Ch #.	Freq. (MHz)	Power (dBm) Chain1		1-g SAR (W/kg)Chain 1		Plot	Note
(GHz)	Position	(mm)	Mode	CII#.		Tune-up limit	Meas.	Meas.	Scaled	No.	Note
	Vertical			36	5180	11.79	11.7	0.035	0.035		2
5.2	Bottom	9.5	802.11a	40	5200	11.37	11.3	0.029	0.029		2
	Dottom			48	5240	11.44	11.3	0.027	0.028		2
	Vertical			52	5260	14.40	14.0	0.046	0.051		2
5.3	Bottom	9.5	802.11a	60	5300	14.53	14.2	0.058	0.063		2
	Dottom			64	5320	14.26	14.2	0.070	0.071		2
				104	5520	15.42	15.3	0.076	0.079		2
5.5	Vertical	9.5	802.11a	116	5580	15.42	15.1	0.146	0.157	7	2
3.3	Bottom	9.5	002.11a	124	5620	15.42	15.0	0.107	0.118		2
				136	5680	15.42	15.4	0.116	0.117		2
	Vertical			149	5745	14.47	14.3	0.079	0.082		2
5.8	5.8 Vertical 9.5	802.11a	157	5785	15.04	14.8	0.046	0.049		2	
				165	5825	15.04	14.7	0.058	0.062		2

^{1.} Highest Report SAR results for the given mode in the corresponding frequency band.

^{2.} According to KDB 447498, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz.

12.3. Enhanced Energy Coupling

Enhanced Energy Coupling evaluation is not required according to KDB 447498 5.2.4 as the highest measured SAR is 0.4W/kg

13. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

13.1. The Highest Measured SAR Configuration in Each Frequency Band

Body Exposure Condition

Not Applicable. Highest measured SAR is < 0.80 W/kg.

13.2. Repeated Measurement Results

Body Exposure Condition

Not Applicable. Highest measured SAR is < 0.80 W/kg.

Report No.: 13U14993-1B Issue Date: 7/15/2013

FCC ID: PPD-QCWB342

13.3. Estimated SAR for Bluetooth

13.3.1. Standalone SAR Test Exclusion

Based on the criteria for Standalone SAR test exclusion listed in Section 4.3.1. of KDB 447498 D01 General RF Exposure Guidance v05:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f}(GHz)$] ≤ 3.0 , for 1-g SAR

Body-worn Accessory Exposure Conditions

Max. Power	of Channel	Min. Test Spearation Distance	Frequency	Result	
(dBm)	(mW)	(mm)	(GHz)	Kesuit	
4.51	3	10	2.441	0.5	

Conclusion:

The computed value is < 3; therefore, Bluetooth qualifies for Standalone SAR test exclusion.

13.3.2. Estimated SAR

As SAR was not measured for Bluetooth, estimated Standalone SAR values were computed for Bluetooth for the purpose of Simultaneous Transmission SAR Analysis using the following formula:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg,

With x = 7.5 for 1-g SAR

The estimated SAR results are as follow:

Test Position		Min. Test Spearation Distance (mm)	Frequency (GHz)	Estimated 1-g SAR Values (W/kg)
Body	3	10	2.441	0.066

- 1. Power and distance are rounded to the nearest mW and mm before calculation
- 2. If the minimum test separation distance is <5mm then 5mm is used in the calculation

13.4. Sum of the SAR for WiFi 5 GHz and Bluetooth

13.4.1. Sum of SAR for worst case standalone measurements

The worst case reported SAR across all conditions was 0.756 W/kg.

The worst case possible sum of SAR is therefore $2 \times 0.756 = 1.512 \text{ W/kg}$.

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is <
 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require such a calculation.

14. Appendixes

Refer to separated files for the following appendixes.

- 14.2. Worst Case SAR Test Plots
- 14.3. Calibration Certificate for E-Field Probe EX3DV3- SN 3531
- 14.4. Calibration Certificate for E-Field Probe EX3DV- SN 3773
- 14.5. Calibration Certificate for D2450V2- SN 899
- 14.6. Calibration Certificate for D5GHzV2- SN 1003
- 14.7. Calibration Certificate for D5GHzV2-SN 1138