

FCC TEST REPORT(Bluetooth)

REPORT NO.: RF130207E09-2 R1

MODEL NO.: QCSNFA282

FCC ID: PPD-QCSNFA282

IC: 4104A-QCSNFA282

RECEIVED: Feb. 27, 2013

TESTED: Mar. 06 to Aug. 06, 2013

ISSUED: Aug. 28, 2013

APPLICANT: Qualcomm Atheros, Inc.

ADDRESS: 1700 Technology Drive, San Jose, CA 95110

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS : No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

- **TEST LOCATION (1):** No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.
- **TEST LOCATION (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

RELEA	SE CONTROL RECORD	5
1	CERTIFICATION	6
2	SUMMARY OF TEST RESULTS	7
2.1	MEASUREMENT UNCERTAINTY	8
3	GENERAL INFORMATION	9
3.1	GENERAL DESCRIPTION OF EUT(BLUETOOTH)	9
3.2	DESCRIPTION OF ANTENNA	11
3.3	DESCRIPTION OF TEST MODES	
3.4	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:	. 13
3.5	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 15
3.6	DESCRIPTION OF SUPPORT UNITS	
3.7	CONFIGURATION OF SYSTEM UNDER TEST	. 16
4	TEST PROCEDURES AND RESULTS	. 17
4.1	MAXIMUM PEAK OUTPUT POWER	
4.1.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	. 17
4.1.2	INSTRUMENTS	. 17
4.1.3	TEST PROCEDURES	
4.1.4	DEVIATION FROM TEST STANDARD	. 17
4.1.5	TEST SETUP	. 18
4.1.6	EUT OPERATING CONDITION	. 18
4.1.7	TEST RESULTS	. 19
4.2	AVERAGE OUTPUT POWER	
4.2.1	FOR REFERENCE	. 21
4.2.2	INSTRUMENTS	. 21
4.2.3	TEST PROCEDURES	
4.2.4	TEST SETUP	. 21
4.2.5	EUT OPERATING CONDITION	. 21
4.2.6	TEST RESULTS	. 22
4.3	CHANNEL BANDWIDTH	. 23
4.3.1	LIMITS OF CHANNEL BANDWIDTH	. 23
4.3.2	TEST INSTRUMENTS	. 23
4.3.3	TEST PROCEDURE	. 23
4.3.4	DEVIATION FROM TEST STANDARD	. 23
4.3.5	TEST SETUP	. 24
4.3.6	EUT OPERATING CONDITION	. 24
4.3.7	TEST RESULTS	. 25
4.4	OCCUPIED BANDWIDTH MEASUREMENT	. 27
4.4.1	TEST INSTRUMENTS	. 27
4.4.2	TEST PROCEDURE	. 27

4.4.3	DEVIATION FROM TEST STANDARD	
4.4.4		
4.4.5		
4.4.6	TEST RESULTS	
4.5	HOPPING CHANNEL SEPARATION	
4.5.1	LIMIT OF HOPPING CHANNEL SEPARATION	
4.5.2	TEST INSTRUMENTS	
4.5.3	TEST PROCEDURES	
4.5.4	DEVIATION FROM TEST STANDARD	30
4.5.5	TEST SETUP	
4.5.6	TEST RESULTS	-
4.6	NUMBER OF HOPPING FREQUENCY USED	33
4.6.1	LIMIT OF HOPPING FREQUENCY USED	33
4.6.2	TEST INSTRUMENTS	33
4.6.3	TEST PROCEDURES	33
4.6.4	DEVIATION FROM TEST STANDARD	33
4.6.5	TEST SETUP	34
4.6.6	TEST RESULTS	34
4.7	DWELL TIME ON EACH CHANNEL	35
4.7.1	LIMIT OF DWELL TIME USED	35
4.7.2	TEST INSTRUMENTS	
4.7.3	TEST PROCEDURES	35
4.7.4	DEVIATION FROM TEST STANDARD	35
4.7.5	TEST SETUP	
4.7.6	TEST RESULTS	
4.8	CONDUCTED OUT-BAND EMISSION MEASUREMENT	45
4.8.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	
4.8.2	TEST INSTRUMENTS.	
4.8.3	TEST PROCEDURE	
4.8.4	DEVIATION FROM TEST STANDARD	
4.8.1	TEST SETUP	-
4.8.5	EUT OPERATING CONDITION	
4.8.6	TEST RESULTS	
4.9	RADIATED EMISSION MEASUREMENT	
4.9.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.9.2	TEST INSTRUMENTS	
4.9.3	TEST PROCEDURES	
4.9.4	DEVIATION FROM TEST STANDARD	
4.9.4	TEST SETUP	
4.9.5	EUT OPERATING CONDITIONS	
4.9.0 4.9.7	TEST RESULTS	
4.9.7 4.10	CONDUCTED EMISSION MEASUREMENT	
4.10		02

		AUI
4.10.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	62
4.10.2	TEST INSTRUMENTS	
4.10.3	TEST PROCEDURES	63
4.10.4	DEVIATION FROM TEST STANDARD	63
4.10.5	TEST SETUP	63
4.10.6	EUT OPERATING CONDITIONS	64
4.10.7	TEST RESULTS	65
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	67
6	INFORMATION ON THE TESTING LABORATORIES	
7	APPENDIX A - MODIFICATIONS RECORDERS FOR CHANGES TO THE EUT BY THE LAB	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF130207E09-2	Original release	Aug. 14, 2013
RF130207E09-2 R1	Revise the "Product Name".	Aug. 28, 2013

1 CERTIFICATION

PRODUCT :	Low Power 2x2 802.11 a/b/g/n + BT Card
BRAND NAME :	Qualcomm Atheros
MODEL NO. :	QCSNFA282
TEST SAMPLE :	ENGINEERING SAMPLE
APPLICANT :	Qualcomm Atheros, Inc.
TESTED :	Mar. 06 to Aug. 06, 2013
STANDARDS :	FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10-2009
	Canada RSS-210 Issue 8 (2010-12)
	Canada RSS-Gen Issue 3 (2010-12)

The above equipment (Model: QCSNFA282) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and was in compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Midoli Peng, Specialist) DATE: <u>Aug. 28, 2013</u> , DATE: Aug. 28, 2013 APPROVED BY (May Chen, Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C; RSS-210; RSS-Gen				
STANDARI	O SECTION				
FCC Part 15	RSS-Gen RSS-210	TEST TYPE AND LIMIT	RESULT	REMARK	
15.207	RSS-Gen 7.2.4	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -24.92dB at 2.21094MHz.	
15.247(a)(1) (iii)	RSS-210 A8.1(b)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.	
15.247(a)(1) (iii)	RSS-210 A8.1(d)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.	
15.247(a)(1)	RSS-210 A8.1(d)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.	
15.247(b)	RSS-210 A8.4(2)	Maximum Peak Output Power	PASS	Meet the requirement of limit.	
15.247(d)	RSS-210 A8.5	Transmitter Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -1.3dB at 2361.06MHz.	
15.247(d)	RSS-210 A8.5	Conducted Out-Band Emission Measurement	PASS	Meet the requirement of limit.	
-	RSS-Gen Occupied Bandwidth 4.6 Measurement		-	Meet the requirement.	
15.203	-	Antenna Requirement PASS Antenna connector is I standard connector.		Antenna connector is IPEX not a standard connector.	

NOTE: Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.98 dB
Radiated emissions (30MHz-1GHz)	5.63 dB
Radiated emissions (1GHz -6GHz)	3.73 dB
Radiated emissions (6GHz -18GHz)	3.90 dB
Radiated emissions (18GHz -40GHz)	4.11 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT(BLUETOOTH)

PRODUCT	Low Power 2x2 802.11 a/b/g/n + BT Card
MODEL NO.	QCSNFA282
POWER SUPPLY	DC 3.3V from host equipment
MODULATION TYPE	GFSK, π /4-DQPSK, 8DPSK
MODULATION TECHNOLOGY	FHSS
OPRTAING FREQUENCY	2402MHz ~ 2480MHz
DATE RATE	Up to 3Mbps
NUMBER OF CHANNEL	Bluetooth 2.1+ EDR: 79
MAXIMUM OUTPUT POWER	GFSK: 7.244 mW 8DPSK: 10.186 mW
ANTENNA TYPE	See item 3.2
ANTENNA CONNECTOR	See item 3.2
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

- 1. There are Bluetooth technology and WLAN technology used for the EUT.
- 2. The Bluetooth supports version 4.0.
- 3. The EUT has two variant designs with different filter. Detail as described in table below.

Version	Description
Version 631	Use TDK D2033 (R081) filter
Version 731	Use TDK D6107 (R083) w/3G filter

From the above Versions, the worst case was found in **Version 731**. Therefore only the test data of the version was recorded in this report.

Working mode	chain 0	chain 1	Note
1X1+BT	11a/b/g/n (MCS0~7)	ВТ	WLAN/BT concurrent
2X2+BT	11a/n (MCS0~15)	11a/n (MCS0~15)+ BT	WLAN/BT concurrent only when WLAN is 802.11an.
2x2 WLAN only	11a/b/g/n (MCS0~15)	11a/b/g/n (MCS0~15)	-

4. The device has below configurations

5. Spurious Emission (radiated emission) of the simultaneous operation (WiFi & Bluetooth) have been evaluated and no non-compliance found. The detail combinations of transmitters / frequencies / modes as below table

 combinations of transmitters / meddencies / modes as below ta					
Mode	Mode Available Tested C		Modulation Technology		
2.4 GHz (802.11g)	1 to 11	6	OFDM		
+ Bluetooth	0 to 78	39	FHSS		
5 GHz (802.11a)	149 to 165	149	OFDM		
+ Bluetooth	0 to 78	39	FHSS		

6. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF ANTENNA

Brand	Model	Antenna Type	2.4G Gain with cable loss (dBi)	5G Gain with cable loss (dBi)	2.4G Cable Loss (dBi)	5G Cable Loss (dBi)	Connector Type	Cable Length (mm)
WNC	81.EBJ15.005	PIFA	3.62	Band 1&2: 3.08 Band 3: 4.76 Band 4: 4.76	1.15	Band1&2: 1.70 Band 3: 1.74 Band 4: 1.79	IPEX	300

The antenna provided to the EUT, please refer to the following table:

Note: 1. Above antenna gains of antenna are Total (H+V).

2. All of antenna can be application for WLAN and Bluetooth.

3.3 DESCRIPTION OF TEST MODES

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

79 channels are provided to this EUT.

3.4 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

CONFIGURE		APPLICABLE TO				DESCRIPTION		
MODE	PLC	RE < 1G	RE ³ 1G	APCM	ОВ		DESCRIPTION	
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		-	
/here PLC:	Power Line	Conducted E	mission	RE <	1G: Radia	ated Emission be	elow 1GHz	
RE ³	1G: Radiate	ed Emission at	oove 1GHz	APC	M: Antenna	a Port Conducte	d Measurement	
	JT's antenn	Dut-Band Emis a had been pr			ed of each	3 axis. The wor	st case was found when positic	
ower Line C	onducte	d Emissior	n Test:					
							n all possible combinatio	
		modulatior	ns, data r	ates and a	antenna	ports (if EUT	with antenna diversity	
architect Followin	,	(s) was (we	ara) salar	ted for the	a final to	st as listed be	Nor	
	lablo			Modulatio	n			
	nnel	Tested Cha	annel	Туре	··· P	acket Type		
Cha						DUIE		
0 to adiated Em Pre-Sca between architect	<u>ission Te</u> n has bee available ure).	n conducte modulatior	d to detens, data r	ates and a	antenna	ports (if EUT	n all possible combinatio with antenna diversity	
0 to adiated Em Pre-Sca between architect Followin Avai	o 78 ission Te n has bee available ure). g channe lable	est (Below en conducte e modulatior	d to detens, data r	rmine the ates and a cted for the Modulatic	antenna e final te	ase mode fror	with antenna diversity	
0 to adiated Em Pre-Scar between architect Followin Avai Cha	o 78 ission Te n has bee available ure). g channe lable	est (Below ? n conducte modulatior I(s) was (we	d to detens, data r	rmine the ates and a	antenna e final te	ase mode fror ports (if EUT st as listed be	with antenna diversity	
0 to adiated Em Pre-Scal between architect Followin Avai Cha 0 to adiated Em Pre-Scal between architect Followin	o 78 ission Te available ure). g channe lable nnel o 78 ission Te available ure). g channe lable	est (Below 7 en conducte e modulation I(s) was (we Tested Cha 39 est (Above e modulation I(s) was (we	d to deterns, data rens, select	rmine the ates and a cted for the Modulatic Type 8DPSK rmine the ates and a cted for the	antenna e final te: on P worst-ca antenna e final te:	ase mode fror ports (if EUT st as listed be acket Type DH5 ase mode fror ports (if EUT st as listed be	with antenna diversity elow. m all possible combinatio with antenna diversity	
0 to adiated Em Pre-Scal between architect Followin Avai Cha 0 to Atai Pre-Scal between architect Followin	o 78 ission Te available ure). g channe lable nnel o 78 ission Te available ure). g channe lable	est (Below 7 en conducte e modulation I(s) was (we Tested Cha 39 est (Above en conducte e modulation	d to deterns, data rens, select	rmine the ates and a cted for the Modulatic Type 8DPSK rmine the ates and a cted for the Modulatic Type	antenna e final te: on P worst-ca antenna e final te:	ase mode fror ports (if EUT st as listed be acket Type DH5 ase mode fror ports (if EUT	with antenna diversity elow. m all possible combinatio with antenna diversity	
0 to adiated Em Pre-Scal between architect Followin Avai O to adiated Em Pre-Scal between architect Followin Avai Cha 0 to	o 78 ission Te available ure). g channe lable nnel o 78 ission Te available ure). g channe lable	est (Below 7 en conducte e modulation I(s) was (we Tested Cha 39 est (Above e modulation I(s) was (we	d to deterns, data rens, data ren	rmine the ates and a cted for the Modulatic Type 8DPSK rmine the ates and a cted for the Modulatic	antenna e final te: on P worst-ca antenna e final te:	ase mode fror ports (if EUT st as listed be acket Type DH5 ase mode fror ports (if EUT st as listed be	with antenna diversity elow. m all possible combinatio with antenna diversity	

Conducted Out-Band Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	Packet Type
0 to 78	0, 39, 78	GFSK	DH5
0 to 78	0, 39, 78	8DPSK	DH5

Antenna Port Conducted Measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type	Packet Type	
0 to 78	0, 39, 78	GFSK	DH5	
0 to 78	0, 39, 78	8DPSK	DH5	

TEST CONDITION:

APP	LICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
	PLC	26deg. C, 66%RH	120Vac, 60Hz	Jyunchun Lin
R	RE<1G	25deg. C, 66%RH	120Vac, 60Hz	Chilin Lee
	DE340	26deg. C, 64%RH	120Vac, 60Hz	Tim Ho
ĸ	RE ³ 1G	30deg. C, 70%RH	120Vac, 60Hz	Nelson Teng
4	АРСМ	25deg. C, 60%RH	120Vac, 60Hz	James Chan
	ОВ	25deg. C, 60%RH	120Vac, 60Hz	James Chan

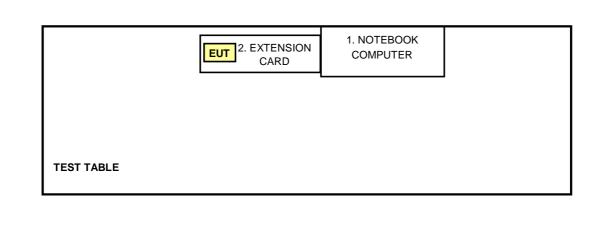
3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.247) ANSI C63.10-2009 Canada RSS-210 Issue 8 (2010-12) Canada RSS-Gen Issue 3 (2010-12)

All test items have been performed and recorded as per the above standards.

3.6 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	
1	NOTEBOOK COMPUTER	DELL	E6420	H62T3R1	FCC DoC	
	EXTENSION	Qualcomm			N14	
	CARD	Atheros	HPCBM194-0	NA	NA	

No.	Signal cable description
1	NA
2	NA

Note: The power cords of the above support units were unshielded (1.8m).

3.7 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST PROCEDURES AND RESULTS

4.1 MAXIMUM PEAK OUTPUT POWER

4.1.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Limit is 125mW.

4.1.2 INSTRUMENTS

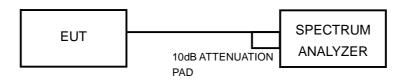
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	May 17, 2013	May 16, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013

4.1.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

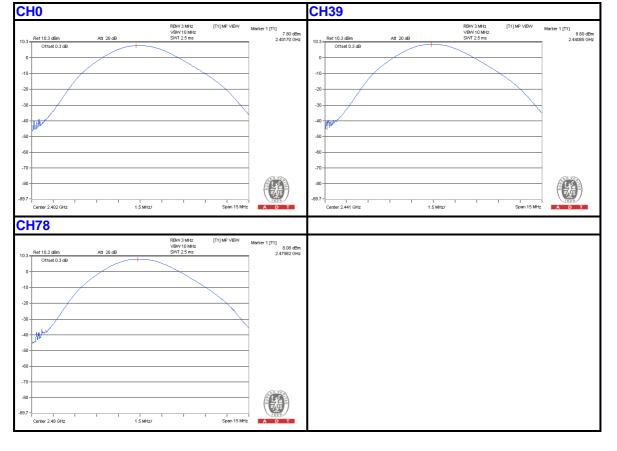
4.1.4 DEVIATION FROM TEST STANDARD

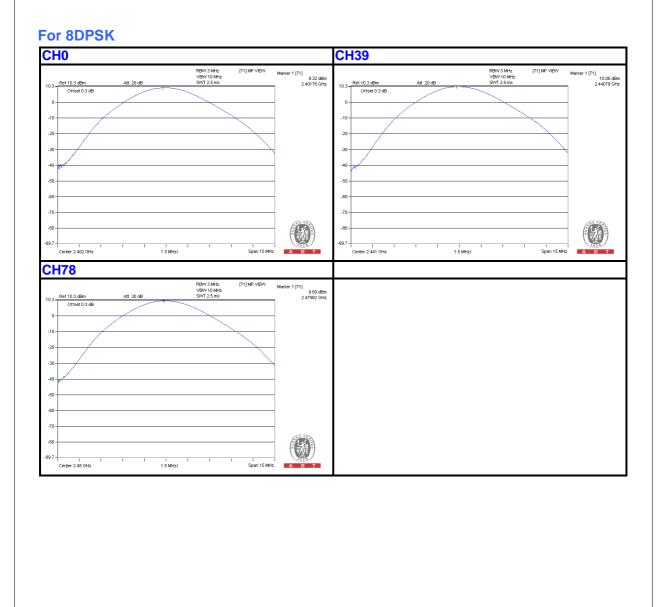
No deviation

4.1.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.1.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)		OUTPUT POWER (mW) (dBm)		POWER LIMIT (mW)	PASS / FAIL	
		GFSK	8DPSK	GFSK	8DPSK		
0	2402	6.026	8.551	7.80	9.32	125	PASS
39	2441	7.244	10.186	8.60	10.08	125	PASS
78	2480	6.427	9.311	8.08	9.69	125	PASS

4.2 AVERAGE OUTPUT POWER

4.2.1 FOR REFERENCE.

4.2.2 INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER	WODEL NO.	NO.	DATE	UNTIL
Power Meter	ML2495A	0824006	May 20, 2013	May 19, 2014
Peak Power Sensor	MA2411B	0738172	May 20, 2013	May 19, 2014

Note:


1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013

4.2.3 TEST PROCEDURES

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power sensor. Record the average power level.

4.2.4 TEST SETUP

4.2.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.2.6 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	AVERAGE POWER OUTPUT (dBm)		
	· · /	GFSK	8DPSK	
0	2402	7.72	7.64	
39	2441	8.56	8.49	
78	2480	7.96	7.83	

4.3 CHANNEL BANDWIDTH

4.3.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.3.2 TEST INSTRUMENTS

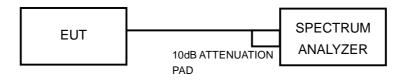
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013

4.3.3 TEST PROCEDURE

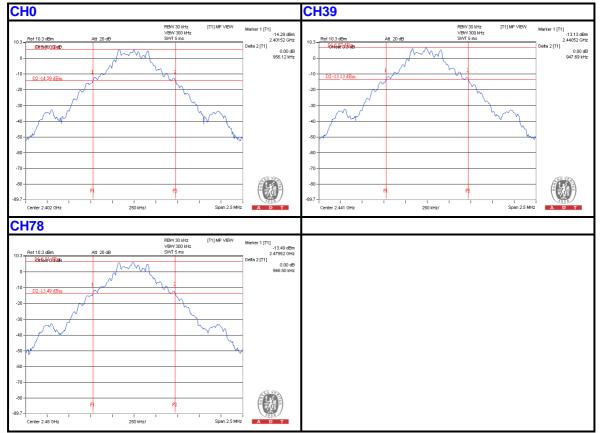

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

4.3.6 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	FREQUENCY	20dB BANDWIDTH (MHz)			
ONANIZE	(MHz)	GFSK	8DPSK		
0	2402	0.95	1.30		
39	2441	0.94	1.30		
78	2480	0.94	1.30		

For GFSK

For 8DPSK CH0 **CH39** RBW 30 kHz VBW 300 kHz SWT 5 ms [T1] MP VIEW Marker 1 [T1] -13.82 dBm 2.40134 GHz [T1] MP VIEW RBWV 30 kHz VBVV 300 kHz SIAT 5 ms Marker 1 [T1] -13.04 dBm 2.44034 GHz Ref 10.3 dBm Att 20 dB Ref 10.3 dBm Att 20 dB 10.3 10.: elta 2 [T1] etta 2 [T1] 0.00 dB 1.30 MHz 0.00 dB 1.30 MHz -11 -11 D2 -13.82 dE -51 -80 -89.7 -89.7 Span 2.5 MHz Center 2.402 GHz l Span 2.5 MHz Center 2.441 GHz 1 250 kHz/ 1 250 kHz/ A A **CH78** RBWY 30 kHz VBWY 300 kHz SIAT 5 ms [T1] MP VIEV Marker 1 [T1] -13.49 dBm 2.47934 GHz ef 10.3 dBm Orfeenlor Sma Detta 2 [T1] 0.00 dB 1.30 MHz m -41 -51 .6 -71 -81 -89.3 Span 2.5 MHz Center 2.48 GHz 1 250 kHz/ A

4.4 OCCUPIED BANDWIDTH MEASUREMENT

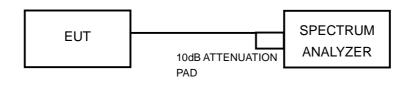
4.4.1 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013


4.4.2 TEST PROCEDURE

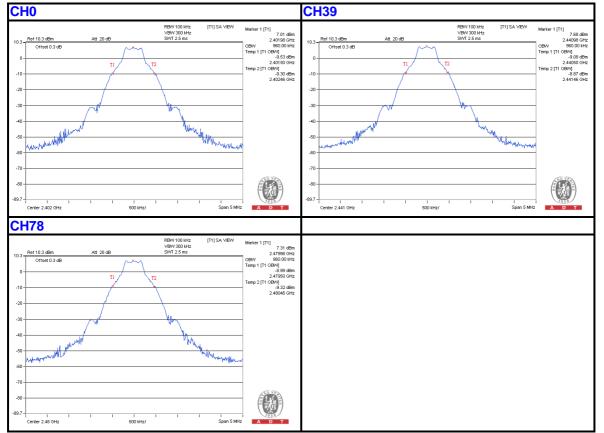
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4.4 TEST SETUP

4.4.5 EUT OPERATING CONDITION


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.6 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	OCCUPIED BANDWIDTH (MHz)			
		GFSK	8DPSK		
0	2402	0.96	1.28		
39	2441	0.96	1.26		
78	2480	0.96	1.28		

For GFSK

For 8DPSK CH0 **CH39** RBW 100 kHz VBW 300 kHz SWT 2.5 ms REW 100 kHz VBW 300 kHz SAT 2.5 ms [T1] SA VIEW [T1] SA VIEW Marker 1 (T1) Marker 1 (T1) arker 1 [T1] 7.75 dBm 2.44038 GHz BW 1.26 MHz emp 1 [T1 OBW] -6.44 dBm 2.44035 GHz 7.03 dBm 2.40188 GHz OBW 1.28 MHz Temp 1 [T1 OBM] -7.57 dBm 2.40135 GHz Temp 2 [T1 OBM] -7.57 dBm 2.40263 GHz 7.03 Ref 10.3 dBm Offset 0.3 dB Ref 10.3 dBm Offset 0.3 dB Att 20 dB Att 20 dB 10.3 10.3 Mu M p 2 [T1 C OBW] -6.11 dBm 2.44161 GHz -11 41 w . Aur 6 min A -51 -51 -71 -71 -81 -80 -89.7 -89.7 Center 2.441 GHz Span 5 MHz Center 2.402 GHz 1 500 kHz/ l Span 5 MHz 1 500 kHz/ A A **CH78** RBW 100 kHz VBW 300 kHz SAT 2.5 ms [T1] SA VIE ker 1 [T1] Marker 1 [T1] 2.47982 CHz OBW 1.28 MHz Temp 1 [T1 OBM] 2.47934 CHz 7.56 dBm 2.47934 CHz Temp 2 [T1 OBM] 6.76 dBm 2.48062 CHz Ref 10.3 dBm Offset 0.3 dB rn -3 -41 -51 -61 -71 -81 -89.3 Span 5 MHz Center 2.48 GHz 500 kHz/ A

4.5 HOPPING CHANNEL SEPARATION

4.5.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25 kHz or two-thirds of 20dB hopping channel bandwidth (whichever is greater).

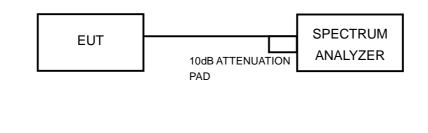
4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013

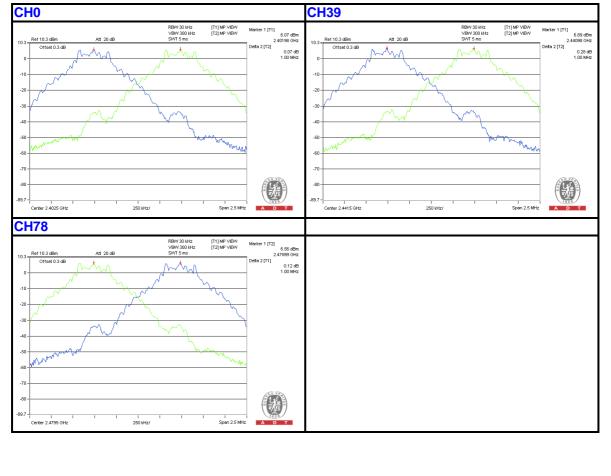

4.5.3 TEST PROCEDURES

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

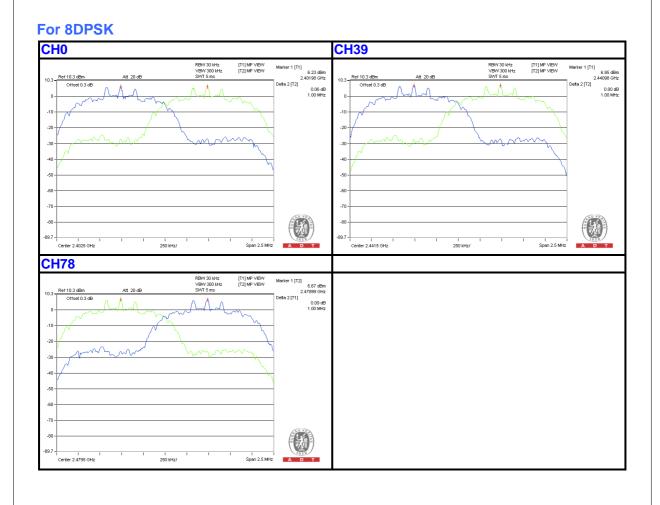
4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP



4.5.6 TEST RESULTS


CHANNEL	ANNEL FREQUENCY (MHz)		ADJACENT CHANNEL SEPARATION (MHz)		20dB BANDWIDTH (MHz)		MINIMUM LIMIT (MHz)	
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.95	1.30	0.64	0.87	PASS
39	2441	1.00	1.00	0.94	1.30	0.63	0.87	PASS
78	2480	1.00	1.00	0.94	1.30	0.63	0.87	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.

For GFSK

4.6 NUMBER OF HOPPING FREQUENCY USED

4.6.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 hopping frequencies, and should be equally spaced.

4.6.2 TEST INSTRUMENTS

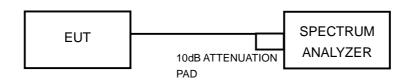
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

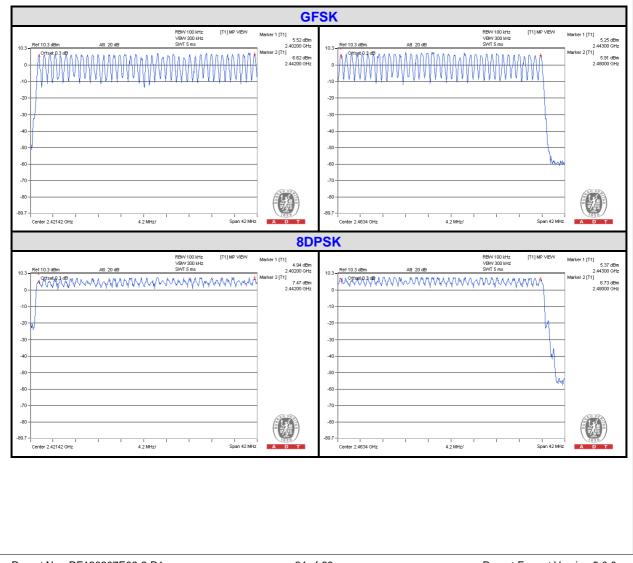
2. Tested date : July 31, 2013

4.6.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation



4.6.5 TEST SETUP

4.6.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.7 DWELL TIME ON EACH CHANNEL

4.7.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 TEST INSTRUMENTS

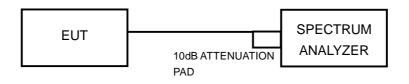
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013

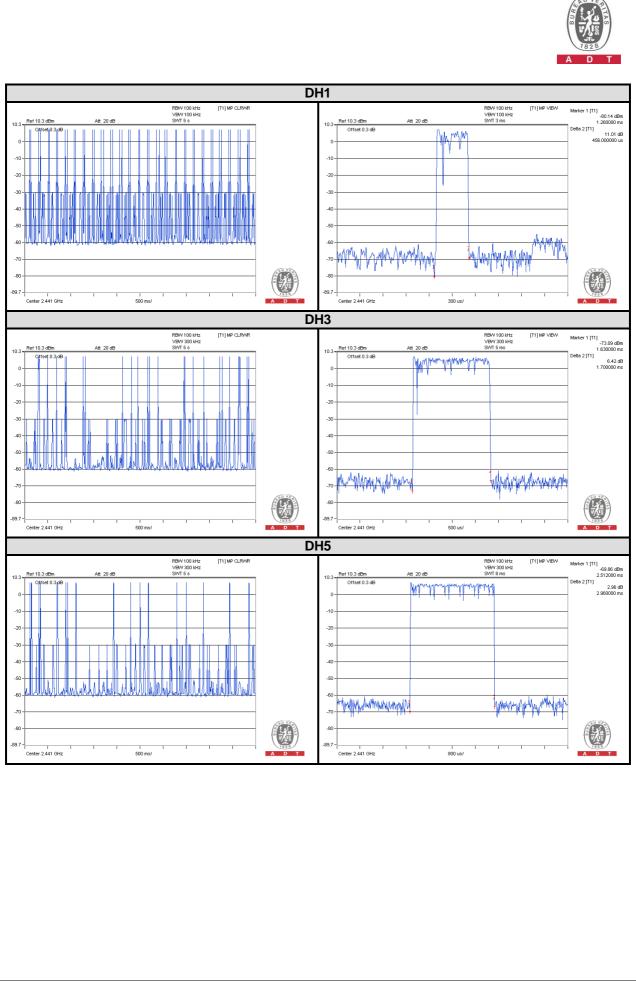
4.7.3 TEST PROCEDURES


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

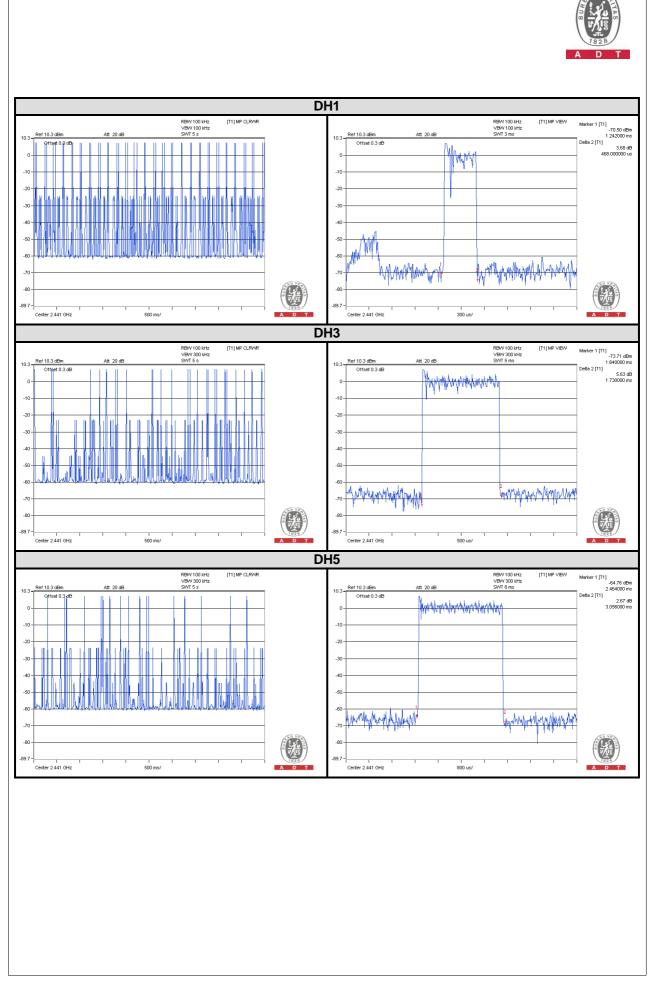


4.7.6 TEST RESULTS

For GFSK:

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316 times	0.456	144.1	400
DH3	25 (times / 5 sec) *6.32=158 times	1.7	268.6	400
DH5	17 (times / 5 sec) *6.32=107.44 times	2.96	318.02	400

For GFSK(AFH):


Mode	Number of transmission in a 8 (20Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *1.6=80 times	0.456	36.48	400
DH3	26 (times / 5 sec) *1.6=41.6 times	1.74	72.384	400
DH5	18 (times / 5 sec) *1.6=28.8 times	3	86.4	400

For 8DPSK:

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) *6.32=316 times	0.468	147.89	400
DH3	25 (times / 5 sec) *6.32=158 times	1.73	273.34	400
DH5	17 (times / 5 sec) *6.32=107.44 times	3.056	328.34	400

For 8DPSK(AFH):

Mode	Number of transmission in a 8 (20Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	51 (times / 5 sec) *1.6=81.6 times	0.438	35.741	400
DH3	27 (times / 5 sec) *1.6=43.2 times	1.7	73.44	400
DH5	18 (times / 5 sec) *1.6=28.8 times	2.95	84.96	400

4.8 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

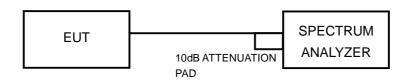
4.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
R&S Spectrum Analyzer	FSP40	100036	Jan. 21, 2013	Jan. 20, 2014	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : July 31, 2013


4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW a of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

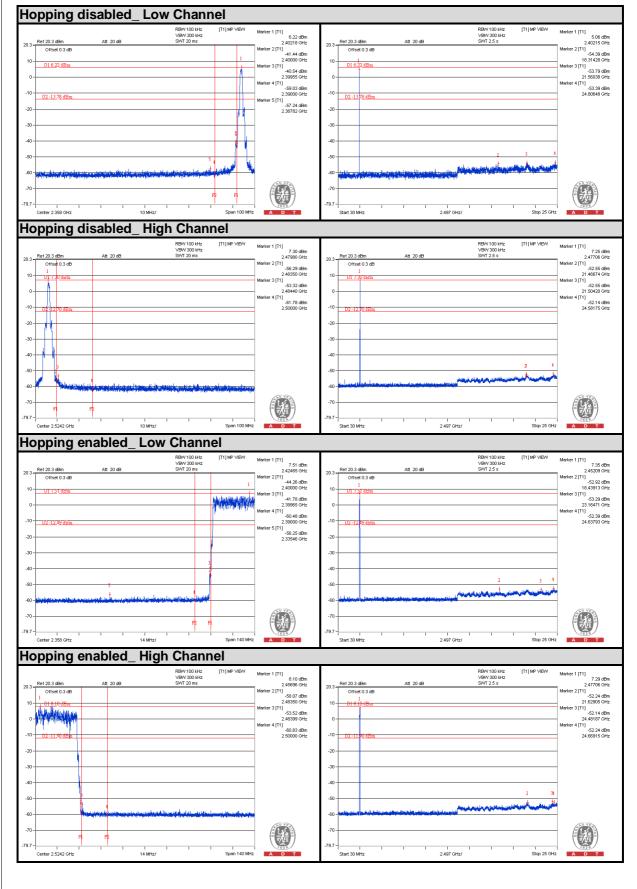
No deviation

4.8.1 TEST SETUP

4.8.5 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS


The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

For GFSK Hopping disabled_ Low Channel RBW 100 kHz VBW 300 kHz SWT 2.5 s RBW 100 kHz VBW 300 kHz SWT 20 ms [T1] MP VIEW Marker 1 [T1] Marker 1 [T1] 6.23 dBm 2.40215 GHz -53.11 dBm -53.51 dBm 24.65915 GHz Marker 4 [T1] -52.47 dBm 24.86266 GHz Marker 1 [T1] Aarker 1 [T1] 6.48 dBm 2.40205 GHz 4arker 2 [T1] 53.50 dBm 2.40000 GHz 4arker 3 [T1] 52.70 dBm 2.39922 GHz 4arker 4 [T1] Ref 20.3 dBm Offset 0.3 dB Att 20 dt 20.3 - Ref 20.3 dBm Offset 0.3 dB 20.3 -10 1 D1 6.48 10 D1 6.48 dB 2.39922 GHz Marker 4 [T1] -59.32 dBm 2.39000 GHz Marker 5 [T1] -56.46 dBm -10 -10 -56.46 dBm 2.33615 GHz -20 -20 -30 -30 -60 -60 -70 -70 F -79.7 -79.7 I Stop 25 GH T Start 30 MHz 1 2.497 GHz/ 10 MHz . 358 GH2 Hopping disabled_ High Channel Marker 1 [T1] 6.85 dBm 2.48015 GHz Marker 2 [T1] -58 34 dBm 2.48350 GHz Marker 3 [T1] 2.48375 GHz Marker 4 [T1] -50.88 dBm RBW 100 kHz VBW 300 kHz SWT 20 ms [T1] MP VIEW RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW Marker 1 [T1] Marker 1 [T1] 5.75 dBm 2.47706 GHz Marker 2 [T1] -54.54 dBm 20.42425 GHz Marker 3 [T1] -53.73 dBm 21.58662 GHz Marker 4 [T1] -54.33 dBm 24.68163 GHz Ref 20.3 dBm Offset 0.3 dB Ref 20.3 dB Att 20 dE Att 20 dB 20.3 -20.3 Offset 0.3 dB 10 D1 6.8 -60.88 dBm 2.50000 GHz -10 -11 D2 -13 D2 -1. -20 -20 -30 -31 -40 -50 -50 -60 --60 -70 -70 No. -79.7 79.7 1 10 MHz/ I Span 100 MH Start 30 MHz 1 2.497 GHz/ I Stop 25 GHz Center 2.5242 GHz Hopping enabled_ Low Channel Marker 1 [T1] 2.44565 OHz Marker 2 [T1] Marker 2 [T1] 2.53.09 dBm 2.52293 OHz Marker 3 [T1] -53.11 dBm 24.38824 OHz Marker 4 [T1] -52.33 dBm 24.74406 OHz RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s IT11 MP VIEW IT11 MP VIEW ker 1 [T1] r 1 [T1] 7.57 dBm 2.42800 GHz r 2 [T1] -54.77 dBm 2.40000 GHz Ref 20.3 dBm Offset 0.3 dB Ref 20.3 dBm Offset 0.3 dB 20.3 20.3 10 DI 7.57 dBm . 3 (11) -54,70 dBm 2,39996 OHz 4 [T1] DI er 3 (T1) Philippin 0 0 1] -57.74 dBm 2.39000 GHz -10 -10 5 [T1] -57.49 dBm 2.38590 GHz -20 -20 -4(-50 -51 والمستعد والجرو -60 -60 -70 -70 79. 79.7 I Span 140 MH l 2.497 GHz/ I Center 2.358 GHz 14 MHz/ Start 30 MHz I Stop 25 GHz Hopping enabled_ High Channel RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW [T1] MP VIEW Marker 1 [T1] tarker 1 [T1] 7.80 dBm 2.45679 OHz 4arker 2 [T1] 61.34 dBm 2.48350 OHz 4arker 3 [T1] -57.63 dBm 2.48465 OHz 4arker 4 [T1] 59.52 dBm 2.50000 OHz Marker 1 [T1] Ref 20.3 dBm Offset 0.3 dB 20.3 Offset 0.3 dE 10 DI A DA -10 -10 -20 -21 -30 -30 -40 -41 -50 -50 ليسامية سيقيهماناه -80 -61 -70 Ŵ -79.7 -79. I Span 140 MHz 1 2.497 GHz/ Stop 25 GHz Center 2.5242 GHz 14 MHz/ A Start 30 MHz A

For 8DPSK

4.9 RADIATED EMISSION MEASUREMENT

4.9.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.9.2 TEST INSTRUMENTS

pelow 1GHz test							
DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED DATE	CALIBRATED UNTIL			
Spectrum Analyzer Agilent	E4446A	MY48250253	Sep. 03, 2012	Sep. 02, 2013			
MXE EMI Receiver Agilent	N9038A	MY51210105	Jan. 29,2013	Jan. 28,2014			
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-03	Nov. 14, 2012	Nov. 13, 2013			
Pre-Amplifier Agilent	8449B 3008A02578 June 25, 2013		June 24, 2014				
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 14, 2012	Nov. 13, 2013			
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-360	Mar. 19, 2013	Mar. 18, 2014			
Horn_Antenna AISI	AIH.8018	0000320091110	Nov. 19, 2012	Nov. 18, 2013			
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 12, 2012	Oct. 11, 2013			
RF Cable NA		RF104-201 RF104-203 RF104-204	Dec. 25, 2012	Dec. 24, 2013			
RF Cable	NA	CHGCAB_001	Oct. 06, 2012	Oct. 05, 2013			
Software	ADT_Radiated _V8.7.07	NA	NA	NA			
Antenna Tower & Turn Table CT	NA	NA	NA	NA			

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3 The test was performed in 966 Chamber No. G.

4. The FCC Site Registration No. is 966073.

5 The VCCI Site Registration No. is G-137.

6 The CANADA Site Registration No. is IC 7450H-2.

7 Tested Date: Aug. 06, 2013

For GFSK: above	1GHz test
-----------------	-----------

DESCRIPTION & MANUFACTURER	MODEL NO SERIAL NO		CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer Agilent	E4446A	4446A MY48250253		Sep. 02, 2013
MXE EMI Receiver Agilent	N9038A	MY51210105	Jan. 29,2013	Jan. 28,2014
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-03	Nov. 14, 2012	Nov. 13, 2013
Pre-Amplifier Agilent	8449B	3008A02578	June 26, 2012	June 25, 2013
Pre-Amplifier SPACEK LABS	SLKKa-48-6		Nov. 14, 2012	Nov. 13, 2013
Trilog Broadband Antenna SCHWARZBECK			Apr. 09, 2012	Apr. 08, 2013
Horn_Antenna AISI	AIH.8018	0000320091110	Nov. 19, 2012	Nov. 18, 2013
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 12, 2012	Oct. 11, 2013
RF Cable NA		RF104-201 RF104-203 RF104-204	Dec. 25, 2012	Dec. 24, 2013
RF Cable	NA	CHGCAB_001	Oct. 06, 2012	Oct. 05, 2013
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 3 The test was performed in 966 Chamber No. G.
- 4. The FCC Site Registration No. is 966073.
- 5 The VCCI Site Registration No. is G-137.
- 6 The CANADA Site Registration No. is IC 7450H-2.
- 7 Tested Date: Mar. 07, 2013

For 8DPSK: above 1GHz test

DESCRIPTION & MANUFACTURER	MODEL NO I SERIAL NO I		CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer Agilent	E4446A	MY48250253	Sep. 03, 2012	Sep. 02, 2013
MXE EMI Receiver Agilent	N9038A	MY50010156	Jan. 16, 2013	Jan. 15, 2014
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 14, 2012	Nov. 13, 2013
Pre-Amplifier Agilent	8449B	3008A01923	Oct. 30, 2012	Oct. 29, 2013
Pre-Amplifier SPACEK LABS			Nov. 14, 2012	Nov. 13, 2013
Trilog Broadband Antenna SCHWARZBECK			Mar. 25, 2013	Mar. 24, 2014
Horn_Antenna AISI	AIH.8018	0000220091110	Nov. 27, 2012	Nov. 26, 2013
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 12, 2012	Oct. 11, 2013
RF Cable NA		RF104-205 RF104-207 RF104-202	Dec. 26, 2012	Dec. 25, 2013
RF Cable	NA	CHHCAB_001	Oct. 07, 2012	Oct. 06, 2013
Software	ADT_Radiated _V8.7.05	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3 The test was performed in 966 Chamber No. H.

4. The FCC Site Registration No. is 797305.

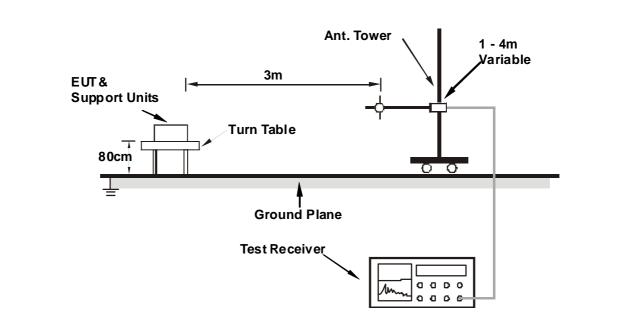
5 The CANADA Site Registration No. is IC 7450H-3.

6 Tested Date: Aug. 06, 2013

4.9.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.9.4 DEVIATION FROM TEST STANDARD

No deviation

4.9.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.9.6 EUT OPERATING CONDITIONS

- 1. Connect the EUT with the support unit 1 (Notebook Computer) which is placed on a testing table.
- 2. The communication partner run test program "BtUART.exe Version:2.1.2" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

4.9.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

BT_8DPSK

CHANNEL	TX Channel 39	DETECTOR	Oursei Deals (OD)
FREQUENCY RANGE	Below 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	99.70	40.9 QP	43.5	-2.6	2.00 H	139	58.92	-18.02
2	222.72	36.2 QP	46.0	-9.9	1.00 H	120	52.48	-16.33
3	646.89	41.0 QP	46.0	-5.0	1.00 H	241	45.50	-4.54
4	696.59	40.5 QP	46.0	-5.5	1.00 H	146	44.51	-3.98
5	800.17	41.3 QP	46.0	-4.7	1.50 H	211	43.22	-1.92
6	895.75	40.0 QP	46.0	-6.0	1.50 H	239	40.47	-0.51
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	99.81	33.2 QP	43.5	-10.3	2.00 V	272	51.16	-17.96
2	323.95	38.8 QP	46.0	-7.2	1.50 V	196	50.78	-11.96
3	646.83	36.3 QP	46.0	-9.8	1.50 V	164	40.79	-4.54
4	722.27	39.0 QP	46.0	-7.0	2.00 V	293	42.76	-3.72
5	845.88	39.7 QP	46.0	-6.3	1.50 V	47	41.06	-1.35
6	897.11	38.9 QP	46.0	-7.1	1.50 V	185	39.29	-0.43

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

ABOVE 1GHz DATA

BT_GFSK

CHANNEL	INELTX Channel 0UENCY RANGE1GHz ~ 25GHz	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2313.95	59.2 PK	74.0	-14.8	1.45 H	118	27.52	31.68
2	2313.95	47.6 AV	54.0	-6.4	1.45 H	118	15.92	31.68
3	2322.00	61.1 PK	74.0	-12.9	1.45 H	118	29.38	31.72
4	2322.00	52.4 AV	54.0	-1.6	1.45 H	118	20.68	31.72
5	*2402.00	105.8 PK			1.40 H	127	73.77	32.03
6	*2402.00	103.3 AV			1.40 H	127	71.27	32.03
7	4804.00	46.9 PK	74.0	-27.1	1.11 H	127	7.37	39.53
8	4804.00	36.9 AV	54.0	-17.1	1.11 H	127	-2.63	39.53
		ANTENNA	A POLARIT	(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2313.95	56.9 PK	74.0	-17.1	1.00 V	60	25.22	31.68
2	2313.95	48.1 AV	54.0	-5.9	1.00 V	60	16.42	31.68
3	2321.99	57.9 PK	74.0	-16.1	1.22 V	300	26.18	31.72
4	2321.99	46.1 AV	54.0	-7.9	1.22 V	300	14.38	31.72
5	*2402.00	102.2 PK			1.00 V	295	70.17	32.03
6	*2402.00	99.4 AV			1.00 V	295	67.37	32.03
7	4804.00	46.5 PK	74.0	-27.5	1.11 V	159	6.97	39.53
8	4804.00	36.0 AV	54.0	-18.0	1.11 V	159	-3.53	39.53

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

 Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39		Peak (PK)				
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)				
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						

		ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2361.06	60.8 PK	74.0	-13.2	1.40 H	127	28.93	31.87	
2	2361.06	52.7 AV	54.0	-1.3	1.40 H	127	20.83	31.87	
3	*2441.00	102.4 PK			1.40 H	127	70.27	32.13	
4	*2441.00	99.7 AV			1.40 H	127	67.57	32.13	
5	2483.50	58.4 PK	74.0	-15.6	1.40 H	127	26.16	32.24	
6	2483.50	46.7 AV	54.0	-7.3	1.40 H	127	14.46	32.24	
7	4882.00	47.4 PK	74.0	-26.6	1.22 H	193	7.68	39.72	
8	4882.00	36.3 AV	54.0	-17.7	1.22 H	193	-3.42	39.72	
9	7323.00	56.4 PK	74.0	-17.6	1.17 H	331	8.82	47.58	
10	7323.00	44.2 AV	54.0	-9.8	1.17 H	331	-3.38	47.58	
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2361.06	56.1 PK	74.0	-17.9	1.00 V	65	24.23	31.87	
2	2361.06	47.3 AV	54.0	-6.7	1.00 V	65	15.43	31.87	
3	*2441.00	100.1 PK			1.21 V	285	67.97	32.13	
4	*2441.00	95.5 AV			1.21 V	285	63.37	32.13	
5	2483.50	57.4 PK	74.0	-16.6	1.18 V	295	25.16	32.24	
6	2483.50	45.6 AV	54.0	-8.4	1.18 V	295	13.36	32.24	
7	4882.00	46.7 PK	74.0	-27.3	1.19 V	165	6.98	39.72	
8	4882.00	36.0 AV	54.0	-18.0	1.19 V	165	-3.72	39.72	
9	7323.00	56.5 PK	74.0	-17.5	1.22 V	358	8.92	47.58	
10	7323.00	44.0 AV	54.0	-10.0	1.22 V	358	-3.58	47.58	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	105.6 PK			1.39 H	128	73.37	32.23
2	*2480.00	103.0 AV			1.39 H	128	70.77	32.23
3	2483.50	59.2 PK	74.0	-14.8	1.39 H	128	26.96	32.24
4	2483.50	46.8 AV	54.0	-7.2	1.39 H	128	14.56	32.24
5	4960.00	47.6 PK	74.0	-26.4	1.16 H	184	7.65	39.95
6	4960.00	36.6 AV	54.0	-17.4	1.16 H	184	-3.35	39.95
7	7440.00	56.2 PK	74.0	-17.8	1.20 H	299	8.80	47.40
8	7440.00	44.0 AV	54.0	-10.0	1.20 H	299	-3.40	47.40
		ANTENNA		& TEST D	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	101.9 PK			1.11 V	303	69.67	32.23
2	*2480.00	99.0 AV			1.11 V	303	66.77	32.23
3	2483.50	58.5 PK	74.0	-15.5	1.11 V	303	26.26	32.24
4	2483.50	45.8 AV	54.0	-8.2	1.11 V	303	13.56	32.24
5	4960.00	47.7 PK	74.0	-26.3	1.24 V	166	7.75	39.95
6	4960.00	36.9 AV	54.0	-17.1	1.24 V	166	-3.05	39.95
7	7440.00	56.1 PK	74.0	-17.9	1.26 V	339	8.70	47.40
8	7440.00	44.3 AV	54.0	-9.7	1.26 V	339	-3.10	47.40

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.6 PK	74.0	-16.4	1.31 H	257	25.41	32.19
2	2390.00	45.3 AV	54.0	-8.7	1.31 H	257	13.11	32.19
3	*2402.00	103.1 PK			1.31 H	257	70.88	32.22
4	*2402.00	97.6 AV			1.31 H	257	65.38	32.22
5	4804.00	50.9 PK	74.0	-23.1	1.22 H	157	9.36	41.54
6	4804.00	40.2 AV	54.0	-13.8	1.22 H	157	-1.34	41.54
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.5 PK	74.0	-16.5	1.25 V	13	24.91	32.59
2	2390.00	45.0 AV	54.0	-9.0	1.25 V	13	12.41	32.59
3	*2402.00	103.0 PK			1.25 V	13	70.38	32.62
4	*2402.00	97.7 AV			1.25 V	13	65.08	32.62
5	4804.00	51.2 PK	74.0	-22.8	1.00 V	55	9.32	41.88
6	4804.00	39.1 AV	54.0	-14.9	1.00 V	55	-2.78	41.88

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	105.3 PK			1.36 H	255	72.98	32.32
2	*2441.00	99.8 AV			1.36 H	255	67.48	32.32
3	4882.00	50.3 PK	74.0	-23.7	1.26 H	152	8.62	41.68
4	4882.00	39.8 AV	54.0	-14.2	1.26 H	152	-1.88	41.68
5	7323.00	56.1 PK	74.0	-17.9	1.11 H	137	9.93	46.17
6	7323.00	43.3 AV	54.0	-10.7	1.11 H	137	-2.87	46.17
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	103.3 PK			1.24 V	16	70.58	32.72
2	*2441.00	98.1 AV			1.24 V	16	65.38	32.72
3	4882.00	50.9 PK	74.0	-23.1	1.00 V	49	8.90	42.00
4	4882.00	38.9 AV	54.0	-15.1	1.00 V	49	-3.10	42.00
5	7323.00	55.3 PK	74.0	-18.7	1.22 V	87	8.70	46.60
6	7323.00	43.1 AV	54.0	-10.9	1.22 V	87	-3.50	46.60

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA I	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	105.0 PK			1.27 H	252	72.58	32.42
2	*2480.00	99.7 AV			1.27 H	252	67.28	32.42
3	2483.50	58.6 PK	74.0	-15.4	1.27 H	252	26.17	32.43
4	2483.50	46.2 AV	54.0	-7.8	1.27 H	252	13.77	32.43
5	4960.00	50.1 PK	74.0	-23.9	1.22 H	147	8.42	41.68
6	4960.00	39.7 AV	54.0	-14.3	1.22 H	147	-1.98	41.68
7	7440.00	56.4 PK	74.0	-17.6	1.11 H	151	9.98	46.42
8	7440.00	43.4 AV	54.0	-10.6	1.11 H	151	-3.02	46.42
		ANTENNA	POLARITY	(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	103.1 PK			1.25 V	7	70.28	32.82
2	*2480.00	97.6 AV			1.25 V	7	64.78	32.82
3	2483.50	58.0 PK	74.0	-16.0	1.25 V	7	25.17	32.83
4	2483.50	46.1 AV	54.0	-7.9	1.25 V	7	13.27	32.83
5	4960.00	50.7 PK	74.0	-23.3	1.02 V	46	8.71	41.99
6	4960.00	38.5 AV	54.0	-15.5	1.02 V	46	-3.49	41.99
7	7440.00	56.0 PK	74.0	-18.0	1.27 V	97	9.10	46.90
8	7440.00	43.5 AV	54.0	-10.5	1.27 V	97	-3.40	46.90

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

4.10 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz) CONDUCTED LIMIT (dBµV) Quasi-peak Average 0.15-0.5 66 to 56 56 to 46 0.5-5 56 46 5-30 60 50

4.10.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

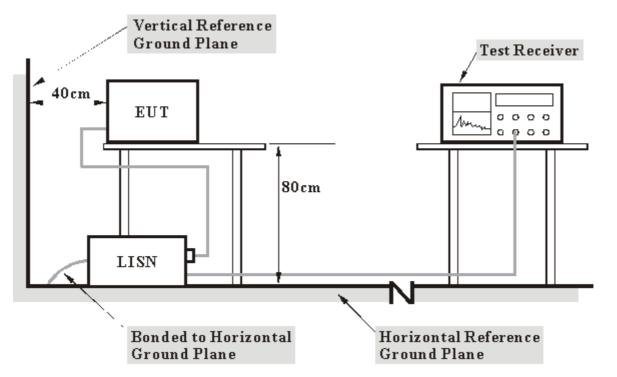
4.10.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Test Receiver ROHDE & SCHWARZ	ESCS 30	100375	Mar. 08, 2013	Mar. 07, 2014	
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK8127	8127-522	Sep. 06, 2012	Sep. 05, 2013	
Line-Impedance Stabilization Network (for Peripheral)	ENV216	100072	June 07,2013	June 06,2014	
RF Cable (JYEBAO)	5DFB	COCCAB-001	Mar. 11, 2013	Mar. 10, 2014	
50 ohms Terminator	50	EMC-3	Sep. 25, 2012	Sep. 24, 2013	
Software ADT	BV ADT_Cond_V7.3.7. 3	NA	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: July 24, 2013


4.10.3 TEST PROCEDURES

- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.
- **NOTE:** The resolution bandwidth of test receiver is 9kHz for Quasi-peak detection (QP) & Average detection (AV).

4.10.4 DEVIATION FROM TEST STANDARD

No deviation

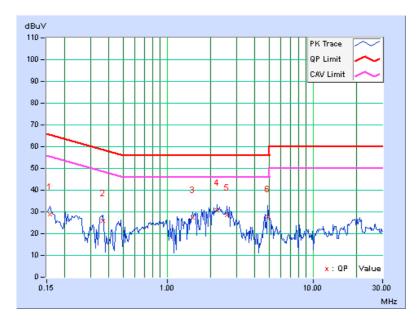
4.10.5 TEST SETUP

Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.10.6 EUT OPERATING CONDITIONS

Same as Item 4.9.6

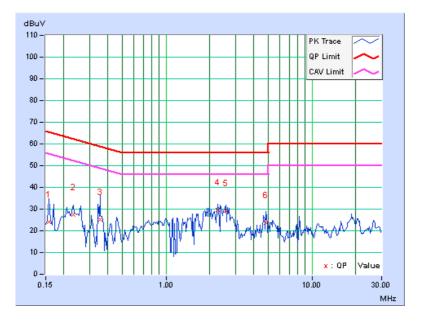


4.10.7 TEST RESULTS

PHASE			ine (L)			DETECT FUNCTI	-		Quasi-Peak (QP) / Average (AV)		
	Freq.	Corr.	Reading Value Emis		Emissio	ion Level Limit		nit	Margin		
No		Factor	[dB (uV)]		[dB	[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15781	0.12	28.95	19.78	29.07	19.90	65.58	55.58	-36.51	-35.68	
2	0.36484	0.17	25.62	20.81	25.79	20.98	58.62	48.62	-32.82	-27.63	
3	1.49219	0.25	27.18	16.47	27.43	16.72	56.00	46.00	-28.57	-29.28	
4	2.21094	0.29	30.29	20.79	30.58	21.08	56.00	46.00	-25.42	-24.92	
5	2.57422	0.30	28.19	19.58	28.49	19.88	56.00	46.00	-27.51	-26.12	
6	4.89063	0.40	27.54	11.29	27.94	11.69	56.00	46.00	-28.06	-34.31	

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



PHASE Neutral (N)	DETECTORQuasi-Peak (QP) /FUNCTIONAverage (AV)
-------------------	---

	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
No		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15781	0.10	24.07	11.90	24.17	12.00	65.58	55.58	-41.41	-43.58
2	0.23203	0.13	27.22	16.27	27.35	16.40	62.38	52.38	-35.03	-35.98
3	0.35313	0.16	24.87	15.43	25.03	15.59	58.89	48.89	-33.86	-33.30
4	2.26563	0.27	29.45	18.86	29.72	19.13	56.00	46.00	-26.28	-26.87
5	2.57422	0.28	28.87	19.94	29.15	20.22	56.00	46.00	-26.85	-25.78
6	4.84766	0.36	23.44	12.11	23.80	12.47	56.00	46.00	-32.20	-33.53

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission Level Limit value
- 4. Correction Factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---- END ----