System Check_H2450_20210520

Frequency: 2450 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.881$ S/m; $\epsilon_r = 38.199$; $\rho = 1000$ kg/m³ DASY5 Configuration:

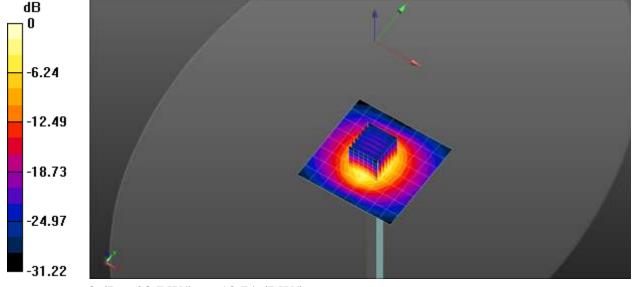
- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE3 Sn393; Calibrated: 2021/4/9
- Probe: EX3DV4 SN3820; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 2020/6/25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

System Performance Check at Frequencies above 1 GHz/Pin=250mW 2/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 23.7 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250mW 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.3 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.51 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 46%

Maximum value of SAR (measured) = 23.9 W/kg

0 dB = 23.7 W/kg = 13.74 dBW/kg

System Check_H5G

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5200 MHz; σ = 4.589 S/m; ϵ_r = 36.13; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE3 Sn393; Calibrated: 2021/4/9
- Probe: EX3DV4 SN3820; ConvF(4.75, 4.75, 4.75) @ 5200 MHz; Calibrated: 2020/6/25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

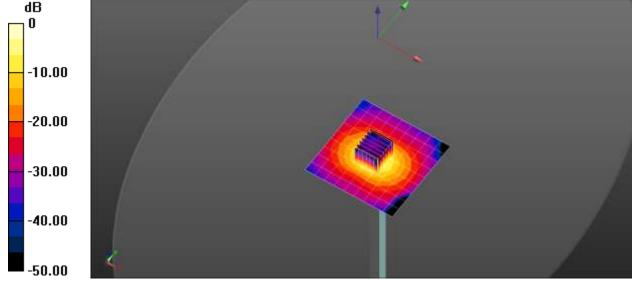
Configuration/Pin=100mW 1/Area Scan (10x10x1): Measurement grid: dx=10mm, dv=10mm

Maximum value of SAR (measured) = 18.0 W/kg

Configuration/Pin=100mW 1/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 62.12 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 37.0 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 49.1%

Maximum value of SAR (measured) = 21.2 W/kg

0 dB = 21.2 W/kg = 13.26 dBW/kg

System Check_H5G

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used (interpolated): f = 5300 MHz; $\sigma = 4.692$ S/m; $\epsilon_r = 35.976$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE3 Sn393; Calibrated: 2021/4/9
- Probe: EX3DV4 SN3820; ConvF(4.75, 4.75, 4.75) @ 5300 MHz; Calibrated: 2020/6/25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

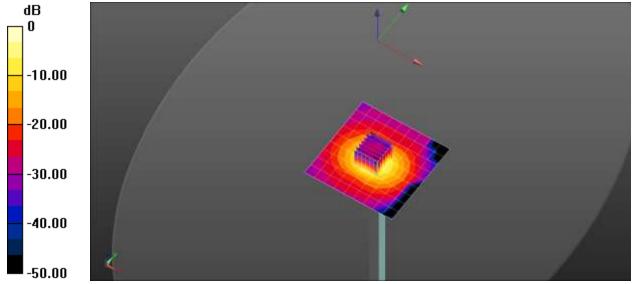
Configuration/Pin=100mW 2/Area Scan (10x10x1): Measurement grid: dx=10mm, dv=10mm

Maximum value of SAR (measured) = 17.8 W/kg

Configuration/Pin=100mW 2/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 62.31 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 8.44 W/kg; SAR(10 g) = 2.43 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 53.6%

Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

System Check H5G

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5600 MHz; $\sigma = 5.047 \text{ S/m}$; $\varepsilon_r = 35.227$; $\rho = 1000 \text{ kg/m}^3$ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE3 Sn393; Calibrated: 2021/4/9
- Probe: EX3DV4 SN3820; ConvF(4.37, 4.37, 4.37) @ 5600 MHz; Calibrated: 2020/6/25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW 3/Area Scan (10x10x1): Measurement grid: dx=10mm,

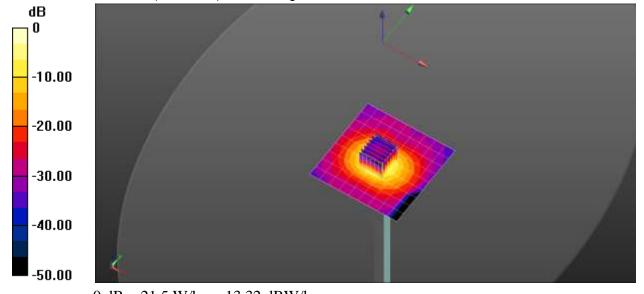
dy=10mm

Maximum value of SAR (measured) = 17.7 W/kg

Configuration/Pin=100mW 3/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dv=4mm, dz=2mm

Reference Value = 59.54 V/m: Power Drift = 0.07 dB


Peak SAR (extrapolated) = 36.2 W/kg

SAR(1 g) = 8.25 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 50.8%

Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

System Check_H5G

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5800 MHz; σ = 5.273 S/m; ϵ_r = 34.766; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE3 Sn393; Calibrated: 2021/4/9
- Probe: EX3DV4 SN3820; ConvF(4.4, 4.4, 4.4) @ 5800 MHz; Calibrated: 2020/6/25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

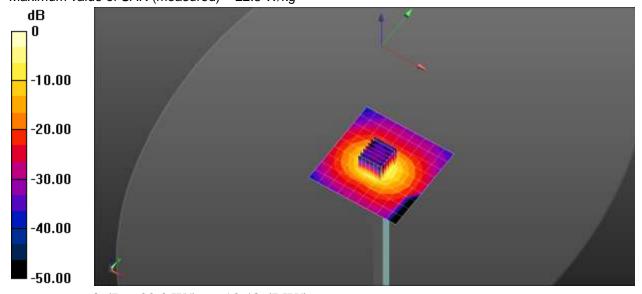
Configuration/Pin=100mW 4/Area Scan (10x10x1): Measurement grid: dx=10mm, dv=10mm

Maximum value of SAR (measured) = 19.0 W/kg

Configuration/Pin=100mW 4/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 53.36 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 38.8 W/kg

SAR(1 g) = 8.43 W/kg; SAR(10 g) = 2.39 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 49%

Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg