

0659

FCC Radio Test Report

FCC ID: PPD-QCNFA425

: BTL-FCCP-2-2102T061 Report No.

: Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 1216 Type Card Equipment

Model Name QCNFA425

Brand Name Qualcomm Atheros Qualcomm Atheros, Inc. Applicant

Address : 1700 Technology Dr, San Jose, California 95110, United States

Radio Function : Bluetooth Low Energy 4.0

FCC Rule Part(s) : FCC Part15, Subpart C (15.247) : ANSI C63.10-2013

: 2021/2/8

Measurement Procedure(s)

Date of Receipt Date of Test : 2021/2/8 ~ 2021/4/16

Issued Date : 2021/5/10

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2102T061 Page 1 of 37 Report Version: R01

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2102T061 Page 2 of 37 Report Version: R01

		CONTENTS	
1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
2	GENER	AL INFORMATION	7
2.1	DESC	CRIPTION OF EUT	7
2.2	TEST	MODES	9
2.3	BLOC	CK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4	SUPF	PORT UNITS	10
3	AC POW	VER LINE CONDUCTED EMISSIONS TEST	11
3.1	LIMIT		11
3.2	TEST	PROCEDURE	11
3.3	DEVI	ATION FROM TEST STANDARD	11
3.4	TEST	SETUP	12
3.5	TEST	RESULT	12
4	RADIATI	ED EMISSIONS TEST	13
4.1	LIMIT		13
4.2	TEST	PROCEDURE	14
4.3	DEVI	ATION FROM TEST STANDARD	14
4.4	TEST	SETUP	15
4.5		OPERATING CONDITIONS	16
4.6	TEST	RESULT – 30 MHZ TO 1 GHZ	16
4.7	_	RESULT – ABOVE 1 GHZ	16
5		MEASURING EQUIPMENTS	17
6		ST PHOTO	18
7	EUT PH	OTOS	18
APF	PENDIX A	AC POWER LINE CONDUCTED EMISSIONS	19
APF	PENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	24
APF	PENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	27
APF	PENDIX D	REFERENCE INFORMATION	36

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-2-2102T061	R00	Original Report.	2021/4/21
BTL-FCCP-2-2102T061	R01	Revised report to address TCB's comments.	2021/5/10

Project No.: 2102T061 Page 4 of 37 Report Version: R01

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section	Test Result	Judgement	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass			
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass			

NOTE

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: PPD-QCNFA425) to be incorporated to the host device (Model number: Personal Computer, Product name: SATELLITE PRO C40-H, SATELLITE PRO C50-H, SATELLITE PRO C40-G, SATELLITE PRO C50-G).
 - Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

Project No.: 2102T061 Page 5 of 37 Report Version: R01

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

oxin C05 oxin CB08 oxin CB11 oxin CB15 oxin CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 71 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Jay Kao

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 1216 Type Card			
Model Name	QCNFA425			
Brand Name	Qualcomm Atheros			
Model Difference	N/A			
Power Source	Supplied from host equipment.			
Power Rating	3.3Vdc			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2402 MHz ~ 2480 MHz			
Host device information				
Equipment	Personal Computer			
Model Name	SATELLITE PRO C40-H, SATELLITE PRO C50-H, SATELLITE PRO C40-G, SATELLITE PRO C50-G			
Brand Name	dynabook			
Model Difference	Differ in marketing purpose.			
Power Source	DC voltage supplied from External Power Supply.			
Power Rating	I/P: 100-240V~ 50-60Hz, 1.5A, O/P: 19.0V==2.1A 39.9W			
Products Covered	1 * Adapter: BSY / BSY065T1902102 D			
Test Model	SATELLITE PRO C40-H			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency	Channel	Frequency
Chamer	(MHz)	Chamilei	(MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Project No.: 2102T061 Page 7 of 37 Report Version: R01

(3) Table for Filed Antenna:

Antenna SPEC-SLEingB219790280 374:

Antenna of Lo-ockingbe 197 30200 574.					
Antenna	Manufacture	Part number	Type	Frequency Range (MHz)	Gain (dBi)
				2400-2500	1.22
				5150-5250	1.74
Main	SLEing	SLEingB219790280	Folded Dipole	5250-5350	1.72
				5470-5725	1.30
				5725-5850	1.84
				2400-2500	1.74
				5150-5250	1.36
Aux	Aux SLEing SLEingB21979	SLEingB219790374	Folded Dipole	5250-5350	1.57
			5470-5725	1.37	
				5725-5850	1.62

Antenna SPEC-SLEingB219790388 491:

Antenna	Manufacture	Part number	Туре	Frequency Range (MHz)	Gain (dBi)
				2400-2500	0.84
				5150-5250	1.69
Main	SLEing	SLEingB219790388	Folded Dipole	5250-5350	1.24
				5470-5725	1.72
				5725-5850	1.54
				2400-2500	1.64
				5150-5250	-0.91
Aux	SLEing	SLEingB219790491	Folded Dipole	5250-5350	-0.91
			5470	5470-5725	1.85
				5725-5850	1.85

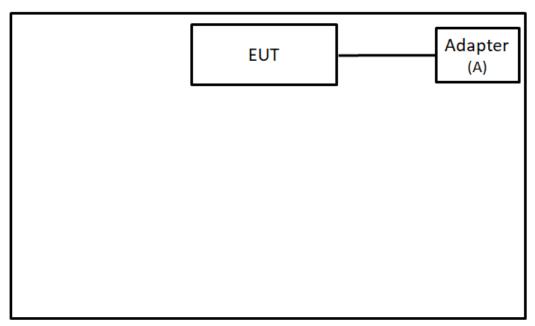
Project No.: 2102T061 Page 8 of 37 Report Version: R01

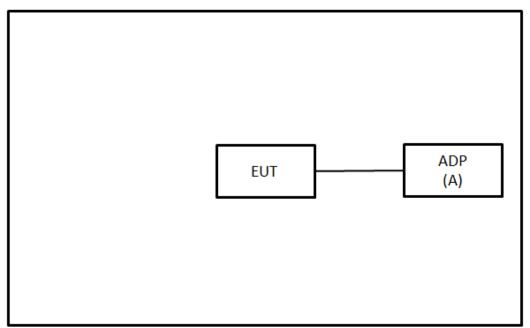
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1 Mbps	00/39	Bandedge
(above 1GHz)	1 Mbps	00/19/39	Harmonic

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (4) There were no emissions found below 30 MHz within 20 dB of the limit.


Project No.: 2102T061 Page 9 of 37 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

2.4 SUPPORT UNITS

П	Item	Equipment	Brand	Model No.	Series No.	Remarks
	Α	Adapter	BSY	BSY065T1902102D	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
-	=	-	-	-	-

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level Correct Factor			Measurement Value	
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	ı	60	II	-18.33

The following table is the setting of the receiver.

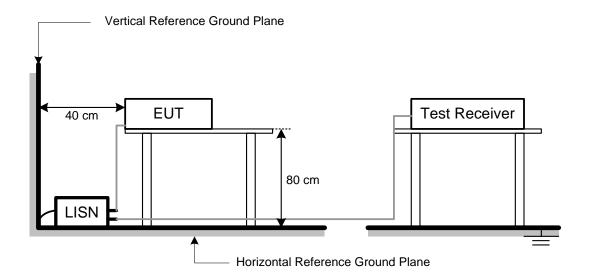
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2102T061 Page 11 of 37 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11		21.22

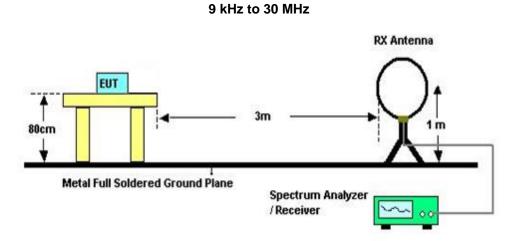
Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

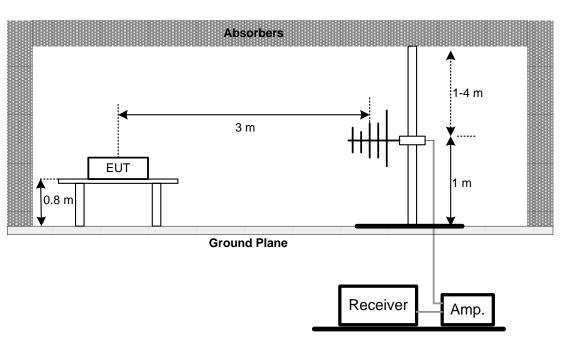
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2102T061 Page 13 of 37 Report Version: R01

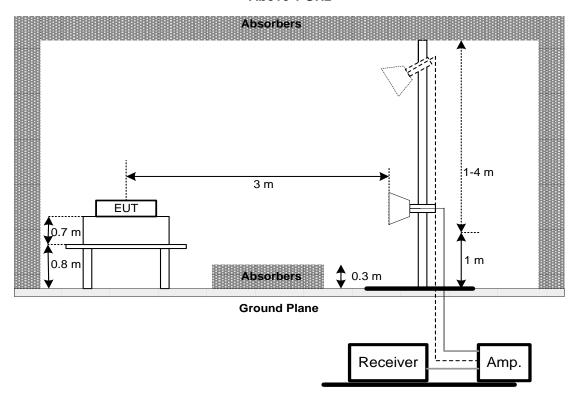
4.2 **TEST PROCEDURE**


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- adings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak

	Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
	(above 1GHz) i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
	4.3 DEVIATION FROM TEST STANDARD
	No deviation.
I	


Project No.: 2102T061 Page 14 of 37 Report Version: R01

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 LIST OF MEASURING EQUIPMENTS

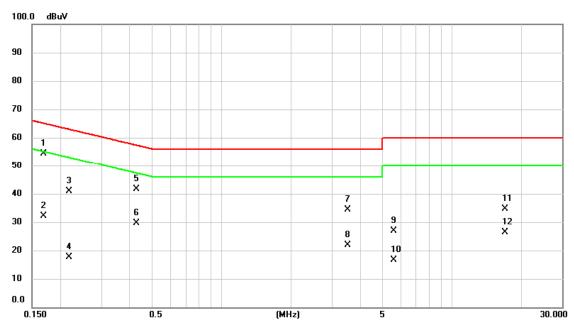
		AC Pow	er Line Conducted	d Emissions		
Item	Kind of Equipment	Manufacturer	Manufacturer Type No. Serial No.		Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI 100080		2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
12	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

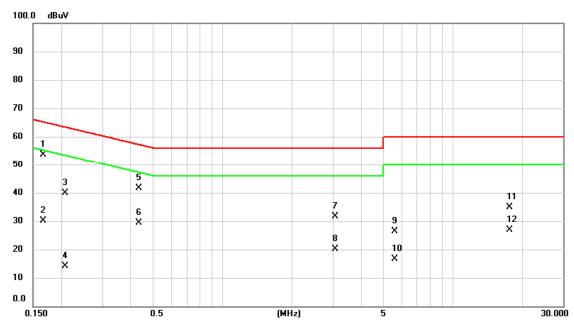
Project No.: 2102T061 Page 17 of 37 Report Version: R01

6 EUT TEST PHOTO							
Please refer to document Appendix No.: TP-2102T061-FCCP-1 (APPENDIX-TEST PHOTOS).							
7 EUT PHOTOS							
Please refer to document Appendix No.: EP-2102T061-1 (APPENDIX-EUT PHOTOS).							


Project No.: 2102T061 Page 18 of 37 Report Version: R01

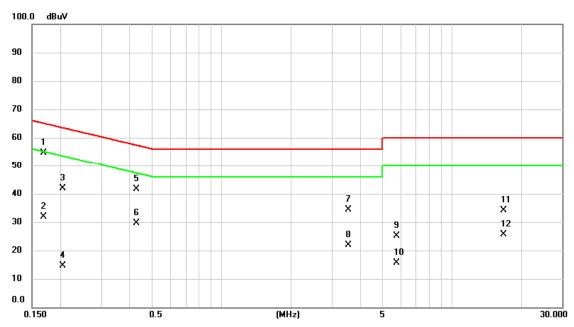
APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2102T061 Page 19 of 37 Report Version: R01


Test Mode	Normal	Tested Date	2021/3/4
Test Frequency	-	Phase	Line

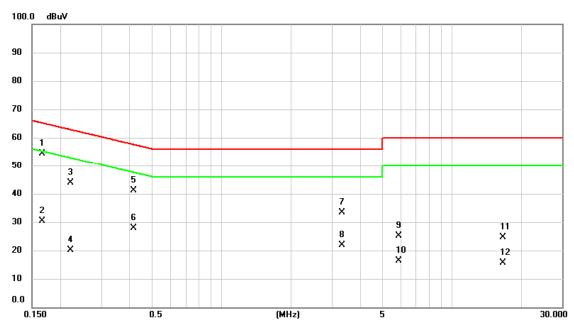
No. MI	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1680	44.78	9.68	54.46	65.06	-10.60	QP	
2	0.1680	22.39	9.68	32.07	55.06	-22.99	AVG	
3	0.2175	31.15	9.67	40.82	62.91	-22.09	QP	
4	0.2175	7.96	9.67	17.63	52.91	-35.28	AVG	
5	0.4290	32.05	9.68	41.73	57.27	-15.54	QP	
6	0.4290	19.96	9.68	29.64	47.27	-17.63	AVG	
7	3.5205	24.57	9.78	34.35	56.00	-21.65	QP	
8	3.5205	12.22	9.78	22.00	46.00	-24.00	AVG	
9	5.6197	16.98	9.84	26.82	60.00	-33.18	QP	
10	5.6197	6.71	9.84	16.55	50.00	-33.45	AVG	
11	16.9485	24.58	9.95	34.53	60.00	-25.47	QP	
12	16.9485	16.39	9.95	26.34	50.00	-23.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


Test Mode	Normal	Tested Date	2021/3/4	
Test Frequency	-	Phase	Neutral	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1658	43.93	9.68	53.61	65.17	-11.56	QP	
2		0.1658	20.44	9.68	30.12	55.17	-25.05	AVG	
3		0.2072	30.17	9.67	39.84	63.32	-23.48	QP	
4		0.2072	4.34	9.67	14.01	53.32	-39.31	AVG	
5		0.4335	31.85	9.68	41.53	57.19	-15.66	QP	
6		0.4335	19.81	9.68	29.49	47.19	-17.70	AVG	
7		3.0840	21.98	9.76	31.74	56.00	-24.26	QP	
8		3.0840	10.42	9.76	20.18	46.00	-25.82	AVG	
9		5.5950	16.53	9.84	26.37	60.00	-33.63	QP	
10		5.5950	6.84	9.84	16.68	50.00	-33.32	AVG	
11		17.5673	24.84	9.96	34.80	60.00	-25.20	QP	
12		17.5673	17.00	9.96	26.96	50.00	-23.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


Test Mode	Idle	Tested Date	2021/3/4
Test Frequency	-	Phase	Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1680	44.86	9.68	54.54	65.06	-10.52	QP	
2	0.1680	22.29	9.68	31.97	55.06	-23.09	AVG	
3	0.2040	32.09	9.67	41.76	63.45	-21.69	QP	
4	0.2040	4.92	9.67	14.59	53.45	-38.86	AVG	
5	0.4290	32.01	9.68	41.69	57.27	-15.58	QP	
6	0.4290	20.00	9.68	29.68	47.27	-17.59	AVG	
7	3.5363	24.65	9.78	34.43	56.00	-21.57	QP	
8	3.5363	12.03	9.78	21.81	46.00	-24.19	AVG	
9	5.7638	15.37	9.84	25.21	60.00	-34.79	QP	
10	5.7638	5.71	9.84	15.55	50.00	-34.45	AVG	
11	16.7258	24.22	9.95	34.17	60.00	-25.83	QP	
12	16.7258	15.64	9.95	25.59	50.00	-24.41	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Ш					
	Test Mode	Idle		2021/3/4	
	Test Frequency	-	Phase	Neutral	

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1658	44.67	9.68	54.35	65.17	-10.82	QP	
2	0.1658	20.67	9.68	30.35	55.17	-24.82	AVG	
3	0.2198	34.10	9.67	43.77	62.83	-19.06	QP	
4	0.2198	10.46	9.67	20.13	52.83	-32.70	AVG	
5	0.4177	31.53	9.68	41.21	57.49	-16.28	QP	
6	0.4177	18.10	9.68	27.78	47.49	-19.71	AVG	
7	3.3248	23.52	9.77	33.29	56.00	-22.71	QP	
8	3.3248	12.13	9.77	21.90	46.00	-24.10	AVG	
9	5.8718	15.38	9.84	25.22	60.00	-34.78	QP	
10	5.8718	6.55	9.84	16.39	50.00	-33.61	AVG	
11	16.6808	14.77	9.95	24.72	60.00	-35.28	QP	
12	16.6808	5.59	9.95	15.54	50.00	-34.46	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2102T061 Page 24 of 37 Report Version: R01

	Test Mo	de		BLE4.0	(1Mbps)		Test Date		2021	1/3/19	
Tes	st Frequ	ency			0MHz		Polarization	1		rtical	
	Temp			2	3°C		Hum.		60	6%	
70 60 50	uV/m									F	
30	2		3 X		4 *			5 X		6 X	
10											
0.0											
30.000	127.00	224.00		321.00	418.00			0.00 806	.00	1000.00	МН
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		30.0000)	42.37	-9.06	33.31	40.00	-6.69	QP		
2	*	104.463		49.28	-12.40	36.88	43.50	-6.62	peak		
3		245.178	3	39.38	-9.45	29.93	46.00	-16.07	peak		
4		427.603	0	33.57	-4.20	29.37	46.00	-16.63	peak		
5		746.668	3	31.42	1.86	33.28	46.00	-12.72	peak		
6		963.786	7	29.27	5.26	34.53	54.00	-19.47	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de		BLE4.0	(1Mbps)		Test Date		2021	1/3/19	
Te	est Frequ	iency			BOMHz		Polarizatio	n	Horiz	Horizontal	
	Temp			2	3°C		Hum.		60	6%	
80.0	IBuV/m										7
70											
60											
50											
40	1 ×							5 X		Š	}
30	_		2 X	3 X	* ×						
20											
10											-
0.0											
30.000		224.	00	321.00	418.00	515.00		9.00 806.	00	1000.00	МН
No.	Mk.	Freq		Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	100.35	73	50.75	-13.15	37.60	43.50	-5.90	QP		
2		243.17	′36	38.83	-9.54	29.29	46.00	-16.71	peak		
3		349.29	16	37.10	-6.16	30.94	46.00	-15.06	peak		
4		449.16	93	34.70	-3.71	30.99	46.00	-15.01	peak		
5		797.59	933	33.65	2.53	36.18	46.00	-9.82	peak		
6		987.68	310	31.85	5.56	37.41	54.00	-16.59	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Project No.: 2102T061 Page 27 of 37 Report Version: R01

	est Mo	de	BLE4.0	0 (1Mbps)		Test Date			1/3/16
Tes	t Frequ)2MHz		Polarization			rtical
	Temp		2	21°C		Hum.		68	8%
130.0 dB	ıV/m								
120									
10									
100									
90									
30									
70									
60				1 X					5
50 44tow	distribution	propher will and the property of	manufactural contributions	a programme to the second		<u>ؠؠؿڔڟڡڟۻڂڂۻڛڟؖٙڡڟڰڡؠؽؠ</u>	say and the say the said of the constraint	rhorage say tradelithing	epod Mepo Mala Mes
40				2					6 X
30				×					
20									
2202.00	2322.0	0 2342.00	2362.00	2382.00	2402.00 2	422.00 24	42.00 246	2.00	2502.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	42.00 246 Over	2.00	2302.00 MH
INO.	IVIK.	гтец.	Level	Factor	ment	LIIIII	Ovei		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2382.660	26.43	30.76	57.19	74.00	-16.81	peak	
2		2382.660	3.39	30.76	34.15	54.00	-19.85	AVG	
3	Χ	2402.000	60.74	30.84	91.58	74.00	17.58	peak	NoLimit
4	*	2402.000	59.49	30.84	90.33	54.00	36.33	AVG	NoLimit
5		2489.580	26.54	31.18	57.72	74.00	-16.28	peak	
6		2489.580	3.90	31.18	35.08	54.00	-18.92	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Te	est Mo	de	BLE ₄	4.0 (1Mbps)		Test Date		2021	1/3/16	
	Test	:Frequ		2	480MHz		Polarizatio	n		rtical	
		Temp)		21°C		Hum.		6	8%	
130.0	dBu	V/m									
120											
20											
10											
00											
"						\$					
10						X					
:0											
_											
'O											
io	1						and the second s	5			
50	سببيث	All freeze Agree of	harring the stage of the stage	a that when we we	whenewhere	maken harmen	and the property of the second	M. Tyrography has	hy fan Nogeright, himpolifica i pani	لمويده المصلوب بمارية ويصام المطلوبيات	
ŧo											
30	2 X							6 ×			
,,											
20											
10.0											
		2400.0			2460.00	2480.00			0.00	2580.00 M	4H
No		Mk.	Freq.	Readin	_		- Limit	Over			
			MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Commen	_
1			2383.940		30.77	56.03	74.00	и <u>ь</u> -17.97	peak	Commen	ΙĹ
2			2383.940		30.77	33.40	54.00	-20.60	AVG		_
3		Χ	2480.000		31.15	91.50	74.00	17.50	peak	NoLimit	_
4		*	2480.000		31.15	90.40	54.00	36.40	AVG	NoLimit	
5			2521.987		31.32	57.84	74.00	-16.16	peak	,	_
6			2521.987		31.32	33.50	54.00	-20.50	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				0 (1Mbps)			Test Da			1/3/16
les	t Frequ Temp				02MHz 21°C		P	olarizat Hum.			rtical 8%
130.0 dB	uV/m ⊔V/m)		4	210			i iuiii.		0	0 /0
120											
10											
00											
00											
80											
·o 🗀											
io											
50											
10		1 X									
		2 X									
80											
20											
10.0											
	0 3550.0			8650.00	11200.00	13750.00			18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measur ment	e-	Limit	Ove	er	
		MHz		dBuV	dB	dBuV/n	n (dBuV/n	n dE	B Detector	Comment
1		4804.00		53.48	-10.03	43.45		74.00			
2	*	4804.00	00	43.66	-10.03	33.63		54.00	-20.		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

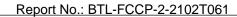
	Test Mo			1.0 (1Mbps)		Test Date			1/3/16	
Te	st Frequ		24	402MHz		Polarizatio	n	Horizontal 68%		
	Temp)		21°C		Hum.		6	3%	
130.0 d	BuV/m									
120										
110										
100										
10										
30										
70										
50										
50										
10		1 ×								
FU T		2								
30		×								
20										
10.0										
1000.0	00 3550.0	00 6100.0	0 8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH	
No.	Mk.	Freq.	Readin			e- Limit	Over			
		MHz	Level dBuV	Factor dB	ment dBuV/m	n dBuV/m	dB	Detector	Comment	
4		4804.00		-10.03	42.59	74.00	-31.41	peak	Comment	
1										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod				(1Mbps)			est Date			1/3/16
les	t Frequ				0MHz			larizatio	on		rtical
120.0	Temp			2	1°C			Hum.		6	8%
130.0 dB	uv/m										
120											
10											
'0											
00											
0 -											
:0											
·o 💳											
:0											
50		1 X									
10		2									
:0		×									
20											
0.0											
1000.00	3550.00	6100.	00 8	650.00	11200.00	13750.00	16300	0.00 18	B850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		eading	Correct	Measur	e-	Limit	Ove	r	
		N 41 '		Level	Factor	ment		D 1//	.ID	Datasi	0
		MHz		dBuV	dB	dBuV/r		BuV/m		Detector	Comment
1		4880.00		53.31	-9.77	43.54		74.00	-30.4	•	
2	*	4880.00)()	43.92	-9.77	34.15		54.00	-19.8	S AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo t Frequ				0 (1Mbps) 40MHz		Test Date Polarizatio			1/3/16 zontal
163	Temp				21°C		Hum.	11		8%
30.0 dB	.∨/m			<u> </u>			1101111			<u> </u>
20										
10										
00										
, 🗀										
) 										
,										
		1 ×								
)		2								
)		X								
,										
).0										
1000.000	3550.0	0 6100	.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MI
No.	Mk.	Freq		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.0	00	53.75	-9.77	43.98	74.00	-30.02	peak	
2	*	4880.0	00	43.15	-9.77	33.38	54.00	-20.62	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			(1Mbps)		Test D			1/3/16
Tes	t Frequ			80MHz		Polarization			rtical
	Temp		2	1°C		Hun	n	6	8%
130.0 dB	ıV/m								
120									
20									
10									
00									
o									
٠ 🗀									
0									
o 💳									
0									
0		1 ×							
0		2							
.0		×							
20									
0.0									
	3550.00		650.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.	eading Level	Correct	Measure	e- Limi	it Ove	er	
		MHz	dBuV	Factor dB	ment dBuV/n	n dBuV	/m dB	Detector	Comment
1		4960.00	53.66	-9.49	44.17				Comment
2	*	4960.00	44.18	-9.49	34.69	54.0		•	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de		4.0 (1Mbp:	s)		Test Date		202	1/3/16
Te	st Frequ		2	2480MHz			Polarization	on		zontal
	Temp)		21°C			Hum.		68	8%
130.0 dE	BuV/m									
120										
120										
110										
100										
90										
80										
70										
60										
50		1 *								
40		2								
30		×								
20										
10.0	0 3550.0	0 6100.0	0 8650.00	11200.00	13750	0.00 10	300.00 1	8850.00 21 4	00.00	26500.00 MHz
No.	Mk.	Freq.	Readir			asure-	Limit	Over	00.00	20300.00 MI
110.	IVIIX.	1 104.	Leve			nent	Liiiit	0 001		
		MHz	dBu√	′ dB	dB	uV/m	dBuV/m	dB	Detector	Comment
1		4960.00) 44	4.48	74.00	-29.52	peak	
2	*	4960.00	0 43.75	-9.49	34	4.26	54.00	-19.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D REFERENCE INFORMATION

Project No.: 2102T061 Page 36 of 37 Report Version: R01

Output Power:

Band	Mode	Channel	Frequency (MHz)	Max. Peak Power (dBm)
BLE	1M	0	2402	2.98
		19	2440	3.32
		39	2480	3.38

End of Test Report