

0659

FCC Radio Test Report

FCC ID: PPD-QCNFA425

: BTL-FCCP-1-2102T061 Report No.

: Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 1216 Type Card Equipment

Model Name QCNFA425

Brand Name Qualcomm Atheros Qualcomm Atheros, Inc. Applicant

Address : 1700 Technology Dr, San Jose, California 95110, United States

Radio Function : Bluetooth

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2021/2/8

Date of Test : 2021/2/8 ~ 2021/4/16

Issued Date : 2021/5/10

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2102T061 Page 2 of 45 Report Version: R01

19

1	SUMMARY OF TEST RESULTS	5
1.1	TEST FACILITY	6
1.2	MEASUREMENT UNCERTAINTY	6
1.3	TEST ENVIRONMENT CONDITIONS	6
2	GENERAL INFORMATION	7
2.1	DESCRIPTION OF EUT	7
2.2	TEST MODES	9
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4	SUPPORT UNITS	10
3	AC POWER LINE CONDUCTED EMISSIONS TEST	11

CONTENTS

3.1	LIMIT	11
3.2	TEST PROCEDURE	11
3.3	DEVIATION FROM TEST STANDARD	11
3.4	TEST SETUP	12
3.5	TEST RESULT	12
4	RADIATED EMISSIONS TEST	13
4.1	LIMIT	13
4.2	TEST PROCEDURE	14
4.3	DEVIATION FROM TEST STANDARD	14
4.4	TEST SETUP	15
4.5	EUT OPERATING CONDITIONS	16
4.6	TEST RESULT – 30 MHZ TO 1 GHZ	16
4.7	TEST RESULT – ABOVE 1 GHZ	16
5	LIST OF MEASURING EQUIPMENTS	17
6	EUT TEST PHOTO	18
7	EUT PHOTOS	18

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	24
APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	27
APPENDIX D	REFERENCE INFORMATION	44

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2102T061	R00	Original Report.	2021/4/21
BTL-FCCP-1-2102T061	R01	Revised report to address TCB's comments.	2021/5/10

Project No.: 2102T061 Page 4 of 45 Report Version: R01

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Description	Test Result	Judgement	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass				

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: PPD-QCNFA425) to be incorporated to the host device (Model number: Personal Computer, Product name: SATELLITE PRO C40-H, SATELLITE PRO C50-H, SATELLITE PRO C40-G, SATELLITE PRO C50-G). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

Project No.: 2102T061 Page 5 of 45 Report Version: R01

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB08 □ CB11 □ CB15 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	20 °C, 71 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Jay Kao

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Single Stream 802.11a/b/g/n/ac + BT 4.1 M.2 1216 Type Card
Model Name	QCNFA425
Brand Name	Qualcomm Atheros
Model Difference	N/A
Power Source	Supplied from host equipment.
Power Rating	3.3Vdc
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Host device information	
Equipment	Personal Computer
Model Name	SATELLITE PRO C40-H, SATELLITE PRO C50-H, SATELLITE PRO C40-G, SATELLITE PRO C50-G
Brand Name	dynabook
Model Difference	Differ in marketing purpose.
Power Source	DC voltage supplied from External Power Supply.
Power Rating	I/P: 100-240V~ 50-60Hz, 1.5A, O/P: 19.0V==2.1A 39.9W
Products Covered	1 * Adapter: BSY / BSY065T1902102 D
Test Model	SATELLITE PRO C40-H
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE

 For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Project No.: 2102T061 Page 7 of 45 Report Version: R01

(3) Table for Filed Antenna:

Antenna SPEC-SLEingB219790280 374:

Antenna	Manufacture	Part number	Type	Frequency Range (MHz)	Gain (dBi)
				2400-2500	1.22
				5150-5250	1.74
Main	SLEing	SLEingB219790280	Folded Dipole	5250-5350	1.72
				5470-5725	1.30
				5725-5850	1.84
	SLEing	SLEing SLEingB219790374	Folded Dipole	2400-2500	1.74
				5150-5250	1.36
Aux				5250-5350	1.57
				5470-5725	1.37
				5725-5850	1.62

Antenna SPEC-SLEingB219790388 491:

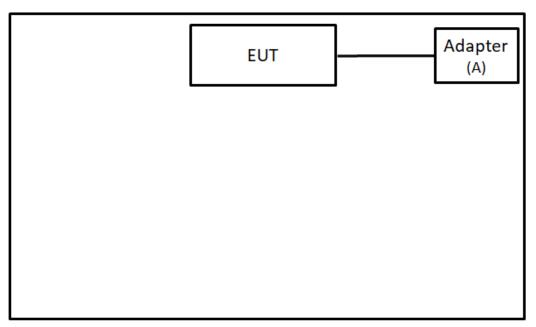
Antenna	Manufacture	Part number	Type	Frequency Range (MHz)	Gain (dBi)
		SLEingB219790388		2400-2500	0.84
				5150-5250	1.69
Main	SLEing		Folded Dipole	5250-5350	1.24
				5470-5725	1.72
				5725-5850	1.54
	SLEing	SLEingB219790491	Folded Dipole	2400-2500	1.64
				5150-5250	-0.91
Aux				5250-5350	-0.91
				5470-5725	1.85
				5725-5850	1.85

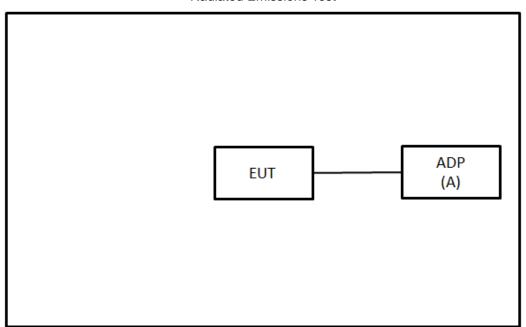
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
- (4) There were no emissions found below 30 MHz within 20 dB of the limit.


Project No.: 2102T061 Page 9 of 45 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	BSY	BSY065T1902102D	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
-	-	-	-	-	-

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

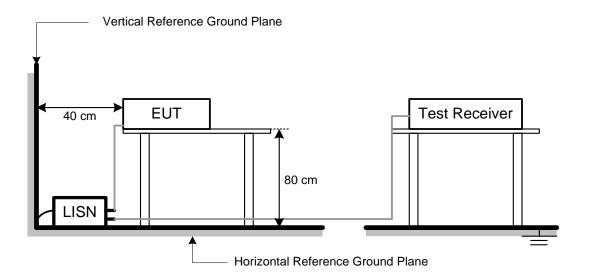
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2102T061 Page 11 of 45 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

	· · · · · · · · · · · · · · · · · · ·	,
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance	
(IVIHZ)	Peak	Average	(meters)	
Above 1000	74	54	3	

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

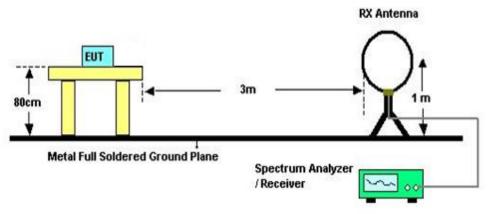
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

	_
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

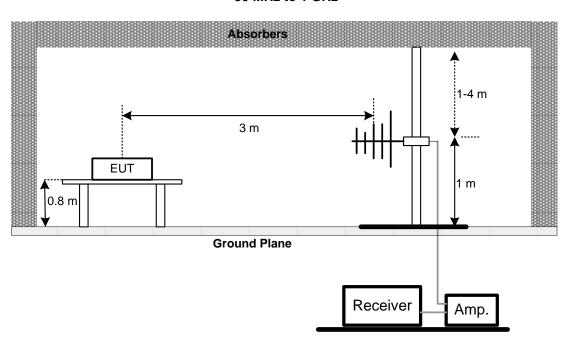
Project No.: 2102T061 Page 13 of 45 Report Version: R01

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to

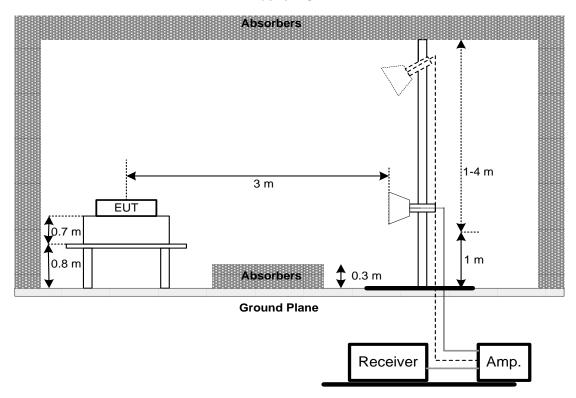

	meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
	i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
	4.3 DEVIATION FROM TEST STANDARD
	No deviation.
ı	

Project No.: 2102T061 Page 14 of 45 Report Version: R01



4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions									
Item	em Kind of Manufacturer Equipment		Type No. Serial No.		Calibrated Date	Calibrated Until				
1	TWO-LINE V-NETWORK R&S ENV216 101050		2020/6/11	2021/6/10						
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7				
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14				
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

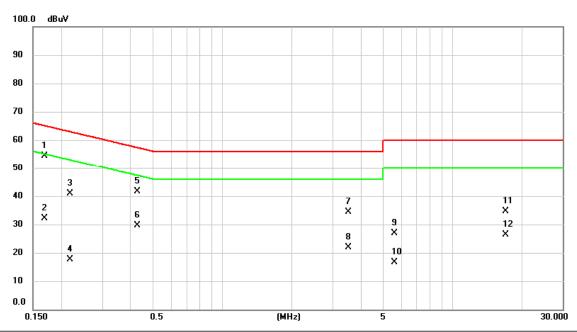
			Radiated Emission	ons		
Item	em Kind of Manufacturer Equipment		Type No. Serial No.		Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
6	MXE EMI Receiver Agilent		N9038A MY554200087		2020/6/10	2021/6/9
7	Signal Analyzer	Agilent	N9010A MY56480554		2020/8/25	2021/8/24
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
12	12 Measurement EZ Software		EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2102T061 Page 17 of 45 Report Version: R01

6 EUT TEST PHOTO							
Please refer to document Appendix No.: TP-2102T061-FCCP-1 (APPENDIX-TEST PHOTOS).							
7 EUT PHOTOS							
Please refer to document Appendix No.: EP-2102T061-1 (APPENDIX-EUT PHOTOS).							

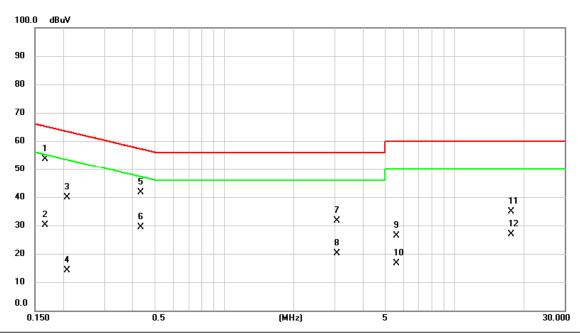
Project No.: 2102T061 Page 18 of 45 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2102T061 Page 19 of 45 Report Version: R01

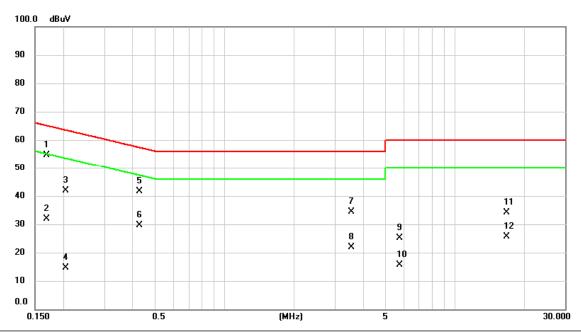
Test Mode	Normal	Tested Date	2021/3/4
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1680	44.78	9.68	54.46	65.06	-10.60	QP	
2		0.1680	22.39	9.68	32.07	55.06	-22.99	AVG	
3		0.2175	31.15	9.67	40.82	62.91	-22.09	QΡ	
4		0.2175	7.96	9.67	17.63	52.91	-35.28	AVG	
5		0.4290	32.05	9.68	41.73	57.27	-15.54	QP	
6		0.4290	19.96	9.68	29.64	47.27	-17.63	AVG	
7		3.5205	24.57	9.78	34.35	56.00	-21.65	QP	
8		3.5205	12.22	9.78	22.00	46.00	-24.00	AVG	
9		5.6197	16.98	9.84	26.82	60.00	-33.18	QP	
10		5.6197	6.71	9.84	16.55	50.00	-33.45	AVG	
11		16.9485	24.58	9.95	34.53	60.00	-25.47	QP	
12		16.9485	16.39	9.95	26.34	50.00	-23.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

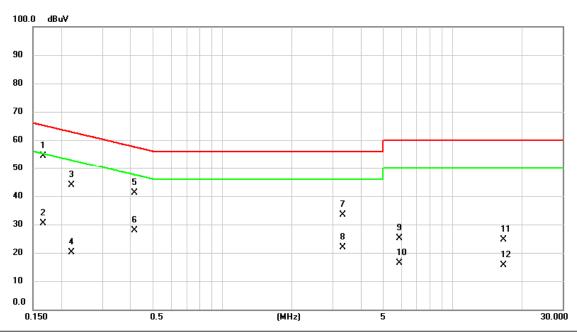
Test Mode	Normal	Tested Date	2021/3/4
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1658	43.93	9.68	53.61	65.17	-11.56	QP	
2		0.1658	20.44	9.68	30.12	55.17	-25.05	AVG	
3		0.2072	30.17	9.67	39.84	63.32	-23.48	QP	
4		0.2072	4.34	9.67	14.01	53.32	-39.31	AVG	
5		0.4335	31.85	9.68	41.53	57.19	-15.66	QΡ	
6		0.4335	19.81	9.68	29.49	47.19	-17.70	AVG	
7		3.0840	21.98	9.76	31.74	56.00	-24.26	QР	
8		3.0840	10.42	9.76	20.18	46.00	-25.82	AVG	
9		5.5950	16.53	9.84	26.37	60.00	-33.63	QP	
10		5.5950	6.84	9.84	16.68	50.00	-33.32	AVG	
11		17.5673	24.84	9.96	34.80	60.00	-25.20	QP	
12		17.5673	17.00	9.96	26.96	50.00	-23.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/4
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1680	44.86	9.68	54.54	65.06	-10.52	QP	
2		0.1680	22.29	9.68	31.97	55.06	-23.09	AVG	
3		0.2040	32.09	9.67	41.76	63.45	-21.69	QP	
4		0.2040	4.92	9.67	14.59	53.45	-38.86	AVG	
5		0.4290	32.01	9.68	41.69	57.27	-15.58	QP	
6		0.4290	20.00	9.68	29.68	47.27	-17.59	AVG	
7		3.5363	24.65	9.78	34.43	56.00	-21.57	QP	
8		3.5363	12.03	9.78	21.81	46.00	-24.19	AVG	
9		5.7638	15.37	9.84	25.21	60.00	-34.79	QP	
10		5.7638	5.71	9.84	15.55	50.00	-34.45	AVG	
11		16.7258	24.22	9.95	34.17	60.00	-25.83	QP	
12		16.7258	15.64	9.95	25.59	50.00	-24.41	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/4
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1658	44.67	9.68	54.35	65.17	-10.82	QP	
2		0.1658	20.67	9.68	30.35	55.17	-24.82	AVG	
3		0.2198	34.10	9.67	43.77	62.83	-19.06	QΡ	
4		0.2198	10.46	9.67	20.13	52.83	-32.70	AVG	
5		0.4177	31.53	9.68	41.21	57.49	-16.28	QP	
6		0.4177	18.10	9.68	27.78	47.49	-19.71	AVG	
7		3.3248	23.52	9.77	33.29	56.00	-22.71	QР	
8		3.3248	12.13	9.77	21.90	46.00	-24.10	AVG	
9		5.8718	15.38	9.84	25.22	60.00	-34.78	QP	
10		5.8718	6.55	9.84	16.39	50.00	-33.61	AVG	
11		16.6808	14.77	9.95	24.72	60.00	-35.28	QP	
12		16.6808	5.59	9.95	15.54	50.00	-34.46	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2102T061 Page 24 of 45 Report Version: R01

	Test Mo	ode		1Mbps)		Test Date			1/3/19	
Te	est Frequ			80MHz		Polarization	ı		rtical	
	Temp		2	3°C		Hum.		6	6%	
80.0 c	IBuV/m									٦
70										
60										
50										-
40							5 X		6 X	
30	2 X	3 X		*			×		^	
20										
10										
0.0										
30.000		224.00	321.00	418.00			9.00 80 6.	00	1000.00	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	30.0000	42.39	-9.06	33.33	40.00	-6.67	QP		
2		104.4637	42.19	-12.40	29.79	43.50	-13.71	peak		
3		243.2383	39.03	-9.54	29.49	46.00	-16.51	peak		
4		428.6377	33.04	-4.18	28.86	46.00	-17.14	peak		
5		799.0160	31.52	2.55	34.07	46.00	-11.93	peak		
6		928.3170	29.78	4.68	34.46	46.00	-11.54	peak	·	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				BT(1						est Date				1/3/19	
Te	est Frequ					0MH	Z				arizatio	on			zontal	
	Temp)			2	3°C					Hum.			6	6%	
80.0 c	IBuV/m															
70																
60																-
50																
40	×					4 ×							5 X		,	ŧ
30	x	2 X		X												
20																
10																-
0.0																
30.000		224.0)0	321.	00	418.	00	515.	00 6	612.00		09.00		.00	1000.00	МН
No.	Mk.	Freq.	•		ding vel		rrect actor		easure- ment		Limit		Over			
		MHz		dB	uV		dB	dl	BuV/m	dl	BuV/m		dB	Detector	Comm	ent
1	*	104.49	60	46	.96	-1.	2.39		34.57	4	43.50		-8.93	peak		
2		176.082		37	.42	-6	9.30	- 2	28.12	4	43.50		15.38	peak		
3		277.35	00	39	.11	-8	3.02	- (31.09	4	46.00		14.91	peak		
4		399.34	36	39	.54	-4	.85	- (34.69	4	46.00	-	11.31	peak		
5		798.78	95	32	.21	2	.55	- (34.76	4	46.00	-	11.24	peak		
6		983.83	33	31	.89	5	.52	(37.41	Ę	54.00	-	16.59	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

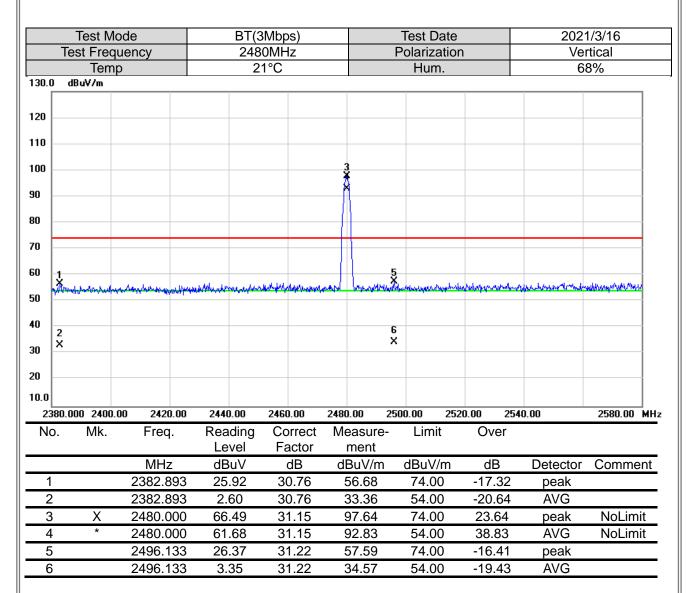
APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2102T061 Page 27 of 45 Report Version: R01


	Test Mo	ode			Mbps)			Test Da			1/3/16	
Tes	t Frequ	uency			2MHz			Polarizat	ion		rtical	
	Temp)		21	1°C			Hum.		6	8%	
130.0 dB	uV/m											7
120												
10												1
00												-
10						Ī						
30												
70												-
so	1										5.	
50 /~//\~/\	X Mys. Palouga nt	Harry Hoperton and In	war against the first of the second	بالماليسيحيس	مبسومين والإيوان	may .	Maryana	aaan gaaandii gee	***	والمحافظ والمستحار والماكي والماكي	5 Marina dalah	4
30												
40	2										6	1
30	×										×	-
20 🗀												
20												
	0 2322.0	00 2342.0	10 236	2.00	2382.00	2402	2.00 2	2422.00	2442.00 2	2462.00	2502.00	_
10.0	0 2322.0 Mk.	00 23 4 2.0 Freq.		2. 00 ading	2382.00 Correct		.00 2 easure-	2422.00 Limit	2442.00 2 Over		2502.00	МН
0.0 2302.00		Freq.	Rea Le	ading evel	Correct Factor	Me	easure- ment	Limit	Over			
0.0 2302.00 No.		Freq. MHz	Rea Le	ading evel BuV	Correct Factor dB	Me I dE	easure- ment BuV/m	Limit dBuV/n	Over n dB	Detector	2502.00 Comme	
0.0 2302.00 No.		Freq. MHz 2316.52	Rea Le dE 27 26	ading evel BuV 6.72	Correct Factor dB 30.50	Me I dE	easure- ment BuV/m 57.22	Limit dBuV/n 74.00	Over n dB -16.78	Detector 3 peak		
0.0 2302.000 No. 1	Mk.	Freq. MHz 2316.52 2316.52	Rea Le dE 27 26 27 3	ading evel BuV 6.72	Correct Factor dB 30.50 30.50	Me dE 5	easure- ment BuV/m 57.22 33.52	Limit dBuV/n 74.00 54.00	Over n dB -16.78 -20.48	Detector peak AVG	Comme	ent
0.0 2302.000 No. 1 2 3	Mk.	Freq. MHz 2316.52 2316.52 2402.00	Rea Le dl 27 26 27 3	ading evel BuV 6.72 .02	Correct Factor dB 30.50 30.50 30.84	Me dE 5	easure- ment BuV/m 57.22 33.52 97.82	dBuV/n 74.00 54.00 74.00	Over 1 dB -16.78 -20.48 23.82	Detector B peak B AVG peak	Comme	ent
2302.000 No.	Mk.	Freq. MHz 2316.52 2316.52	Rea Le dB 27 26 27 3 00 66 00 65	ading evel BuV 6.72	Correct Factor dB 30.50 30.50	Me dE 5	easure- ment BuV/m 57.22 33.52	Limit dBuV/n 74.00 54.00	Over n dB -16.78 -20.48	Detector B peak B AVG peak AVG	Comme	ent

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Т	Test Mo			1Mbps) 30MHz		Test Date	•		1/3/16
16	est Frequence	•		1°C		Polarization	1		rtical 8%
130.0 d	Temp BuV/m)		1 6		Hum.		00	070
130.0 0	DUT7III								
120									
110									
100									
90 —									
80									
70									
60 						5		est att sei methologischen men gelin	
50 X	والمراجب المالية	hermania mper	hately the same of	saper mala made the	Mary Mary	ant Both when well	hypopean alamadon y	engethaderedteligterregensylle	ganaturandori, Mataghita
40 2	!					6 ×			
30 ×	•								
20									
10.0									
2380.0	00 2400.0	00 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	0.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
4		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
<u>1</u> 2		2386.453 2386.453	25.19 2.64	30.77	55.96 33.41	74.00 54.00	-18.04 -20.59	peak AVG	
3	Х	2480.000	66.71	30.77	97.86	74.00	23.86	peak	NoLimit
4	*	2480.000	65.82	31.15	96.97	54.00	42.97	AVG	NoLimit
-		2501.367	26.55	31.23	57.78	74.00	-16.22	peak	HOLIIII
5		Z001.007	20.00						


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test M				1Mbps)		Test Date			1/3/16
	Test Fred				2MHz		Polarization	n		rtical
130.0	Ten dBuV/m	np		2	1°C		Hum.		68	8%
130.0	aga4/m									
120 _										
110										
100										
90										
30										
70 F										
60 <u> </u>										
50		_								
40 L		1 X								
30		2 X								
20										
10.0										
1000	0.000 3550).00 6100).00	8650.00	11200.00	13750.00 1		850.00 214	00.00	26500.00 MH
No.	Mk.	Freq	•	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	<u>-</u>	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.0	000	52.85	-10.03	42.82	74.00	-31.18	peak	
2	*	4804.0	000	41.88	-10.03	31.85	54.00	-22.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo				BT(1	Mbp	s)				Test D					1/3/16	
		Freq Tem	uency				2MH 1°C	<u>Z</u>				Polariza Hum					zontal 8%	
130.0	dBuV		J				10					Hull	<u>. </u>			00	O /0	
120																		
110 _																		
100																		
90																		
BO _																		
70 F																		
50 <u> </u>																		
50																		
40 L			1 X															
30			2 X															
20																		
10.0																		
	0.000				8650		1120			50.00		300.00		50.00	2140	0.00	26500.00	МН
No.	N	Лk.	Freq		Rea Le			rrect		easur ment		Limi	t	Ove	er			
			MHz		dB			dΒ	dl	3uV/r	n	dBuV	/m	dB	}	Detector	Comme	nt
1			4804.0	00	53.	56	-1(0.03	4	43.53	1	74.0	0	-30.4	47	peak		
2		*	4804.0	000	42.	03	-10	0.03	- (32.00		54.0	0	-22.0	00	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				BT(1	Mbps	5)				Test D					1/3/16
16	est Freq					1MHz				<u> </u>	Polariza		1			rtical
130.0 d	Tem BuV/m	p			2	1°C					Hun	า.			6	8%
20																
10																
00																
10																
30 -																
o 🗀																
io																
io																
1		1 ×														
ю		2 X														
io		^														
20																
10.0																
	00 3550.			8650		11200		1375			300.00		50.00		00.00	26500.00 MI
No.	Mk.	Freq	•	Read Lev		Cor Fac			easur ment	e-	Limi	t	Ove	er		
		MHz		dB		d			3uV/r	n	dBuV	/m	dE	}	Detector	Comment
1		4882.0		52.		-9.			13.20		74.0		-30.		peak	
2	*	4882.0	00	43.	53	-9.	76	3	33.77		54.0	0	-20.	23	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					Mbps					Test D					1/3/16	
			uency				1MHz	<u> </u>				Polariza		1			zontal	
130.0	dBuV	Temp)			2	1°C					Hun	Դ.			6	8%	
JU.U	ubu¥	77111																٦
120 _																		-
10																		
00																		
00																		
10																		
0																		}
io																		-
io			_															1
			X X															
			2 X															
80 -																		1
20																		1
10.0	1 000	3550.0	00 6100	1 00	8650	1 00	11200	1 00	1375	50.00	16	300.00	188	50.00	2140	00.00	26500.00] I MH
No.		<u> </u>	Freq			ding		rect		easur		Limi		Ove		55.50	20300.00	
					Le			ctor		ment								
			MHz		dB	uV	d	В	dl	3uV/r	n	dBuV	/m	dE	3	Detector	Comme	nt
1			4882.0		53.			76		44.11		74.0		-29.		peak		
2		*	4882.0	000	43.	29	-9.	76	- (33.53		54.0	0	-20.	47	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(Mbps)		Test Date			1/3/16
10	est Frequ			0MHz 1°C		Polarization	1		rtical 8%
130.0	Temp			1-0		Hum.		0	5%
	abarriii								
120									
110 -									
100									
90									
во									
70 <u> </u>									
50 <u> </u>									
50		1							
10		1 ×							
30		2 X							
20									
0.0									
1000.	000 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	50.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.83	-9.49	44.34	74.00	-29.66	peak	
2	*	4960.000	43.85	-9.49	34.36	54.00	-19.64	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			1Mbps)		Test Date			1/3/16	
Te	Test Frequency Temp			30MHz		Polarization	1	Horizontal		
130.0 d	lemp dBuV/m)	2	21°C		Hum.		68	8%	
130.0	OBUY/M									
120										
110										
100										
90										
80										
70										
60										
50		1 X								
40		2								
30		×								
20										
10.0										
	000 3550.0	00 6100.00		11200.00			350.00 21 4	00.00	26500.00 MHz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000		-9.49	44.83	74.00	-29.17	peak		
2	*	4960.000	43.36	-9.49	33.87	54.00	-20.13	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M		BT	(3Mbps)		Test Date			1/3/16
	Test Fred			02MHz		Polarization	1		tical
130.0	Tem dBuV/m	р		21°C		Hum.		68	3%
130.0	ana/w								
120 _									
110									
100									
90									
30									
70 F									
50 <u> </u>									
50		_							
40 L		1 X							
30		2 X							
20									
10.0									
1000	0.000 3550.	.00 6100.0		11200.00	13750.00 1		50.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Readino Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	0 52.60	-10.03	42.57	74.00	-31.43	peak	
2	*	4804.00	0 41.93	-10.03	31.90	54.00	-22.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

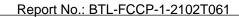
		t Mo					SMbps					Test D Polariz		,			1/3/16 zontal	
Test Frequency Temp				2402MHz 21°C						Hum.						68%		
130.0	dBuV/											Tiul					<i>57</i> 0	
120																		
110																		
100																		
90																		
BO _																		
70 🗀																		
SO																		
50																		
40			1 X															
30			2 X															
20																		
10.0																		
	0.000 3				8650		11200		1375			300.00		50.00		00.00	26500.00 MI	
No.	M	k.	Freq	•		ding vel		rect ctor		easur ment		Lim	it	Ov	er			
			MHz	7	dB	uV	C	ΙB	dl	3uV/r	n	dBuV	//m	dE	3	Detector	Comment	
1			4804.0	000	51.	.75	-10	0.03	4	11.72		74.0	0	-32.	28	peak		
2		*	4804.0	000	41.	.61	-10	0.03	3	31.58		54.0	0	-22.	42	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test I					BT(3	3Mbp	s)				Test D					1/3/16
Test Frequency Temp				2441MHz 21°C						Polarization Hum.					Vertical 68%		
130.0	dBuV/m	пр					1 0					Hull	(l			0	070
20																	
110 -																	
100 -																	
90																	
30																	
,, <u> </u>																	
:0																	
50																	
10			1 X														
10			2 X														
20 10.0																	
	000 355	0.00	6100	0.00	8650	0.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 Mi
No.	Mk.		Freq			ding vel		rrect ctor		easur ment		Lim	it	Ov	er		
			MHz	<u>.</u>		uV		IB		3uV/r		dBuV	/m	dE	3	Detector	Comment
1			4882.0	00		.92	-9	.76		13.16		74.0		-30.	84	peak	
2	*		4882.0	000	43	.35	-9	.76	(33.59		54.0	0	-20.		AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

To	Test Mo		BT(:	3Mbps) 1MHz		Test Date Polarization	2		1/3/16
Test Frequency Temp				1°C		Hum.	Horizontal 68%		
130.0 d	BuV/m		_			T IGITI.			<i>570</i>
120									
110 -									
00									
10									
80									
o <u> </u>									
0 —									
0		1 X							
0		2							
o 📙		X							
0.0									
	100 3550.C	00 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000		-9.76	43.12	74.00	-30.88	peak	Comment
2	*	4882.000	43.15	-9.76	33.39	54.00	-20.61	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo				BT(3	3Mbps	s)				Test D					1/3/16	
			uency				0MH	<u> </u>				Polariz		<u> </u>			tical	
130.0	dBuV	Temp	0			2	1°C					Hun	n			6	3%	
																		1
20																		
10 _																		-
00																		
10																		
<u> </u>																		1
0 —																		
0 —																		
50			1															1
10 L			X X															
10			2 X															
0.0																		ĺ
	0.000	3550.	00 6100).00	8650	.00	1120	0.00	1375	50.00	16	300.00	188	50.00	2140	00.00	26500.00	j MH
No.	ľ	Иk.	Freq	•	Rea Le	ding vel		rect		easur ment		Lim	it	Ove	er			
			MHz	<u>-</u>	dB			В		BuV/r		dBuV	/m	dB	3	Detector	Comme	nt
1			4960.0		54.			.49		44.69		74.0		-29.3	31	peak		
2		*	4960.0	000	43.	.71	-9	.49	(34.22		54.0	0	-19.	78	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Тс	Test Mo			BMbps) BOMHz		Test Date Polarization			1/3/16
Test Frequency Temp				1°C		Hum.	Horizontal 68%		
30.0 d	BuV/m			10		T IQIII.			370
20									
10									
00 -									
o									
o									
, <u> </u>									
,									
0		1 X							
		2 X							
,									
0.0									
	00 3550.0		8650.00	11200.00				00.00	26500.00 MF
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	53.64	-9.49	44.15	74.00	-29.85	peak	
2	*	4960.000	43.24	-9.49	33.75	54.00	-20.25	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D REFERENCE INFORMATION

Project No.: 2102T061 Page 44 of 45 Report Version: R01

Output Power:

Band	Mode	Channel	Frequency (MHz)	Max. Peak Power (dBm)
		0	2402	7.74
BR	DH5	39	2441	7.95
		78	2480	7.11
		0	2402	7.55
	2DH5	39	2441	7.94
EDR		78	2480	8.01
EDK		0	2402	8.19
	3DH5	39	2441	8.46
		78	2480	8.23

End of Test Report