

RSE TEST REPORT

of

FCC Part 15 Subpart C §15.247 / RSS-210 Issue8, RSS-Gen Issue 3

FCC ID / IC Certification: PPD-QCMD335 / 4104A-QCMD335

Equipment Under Test	÷	QCMD335 (Tested inside of Samsung Notebook PC NP450R5G)
Model Name	:	QCMD335
Serial No.	:	N/A
Applicant	:	Qualcomm Atheros, Inc.
Manufacturer	:	SAMSUNG ELECTRONICS CO., LTD.
Date of Test(s)	:	2013.07.04 ~ 2013.07.10
Date of Issue	:	2013.07.25

In the configuration tested, the EUT complied with the standards specified above.

the	Date:	2013.07.25	
Harim Lee			
3	Date:	2013.07.25	
Feel Jeong			
	S	Harim Lee J Date:	Harim Lee J Date: 2013.07.25

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGSKorea Co, Ltd (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions	7
3. Maximum Peak Output Power	15

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

 Telephone
 :
 +82 31 428 5700

 FAX
 :
 +82 31 427 2371

1.2. Details of Manufacturer

Applicant	:	SAMSUNG ELECTRONICS CO., LTD.
Address	:	129, Samsung-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, KR
Contact Person	:	Lee, Sang-cheong
Phone No.	:	+82 31 277 4784

1.3. Details of Manufacturer

Kind of Product	QCMD335(Tested inside of Samsung Notebook PC NP450R5G)
Model Name	QCMD335
Serial Number	N/A
Power Supply	DC 11.1 V
Frequency Range	2 402 Mb ~ 2 480 Mb (BT, BT LE), 2 412 Mb ~ 2 462 Mb (11b/g/n_HT20), 2 422 Mb ~ 2 452 Mb (11n_HT40)
Modulation Technique	DSSS, OFDM, GFSK, π/4DQPSK, 8DPSK
Number of Channels	11 channel (11b/g/n_HT20), 7 channel (11n_HT40), 79 channel (BT), 40 channel (BT LE)
Antenna Type	Internal type
Antenna Gain	2 402 MHz ~ 2 480 MHz, 2 412 MHz ~ 2 462 MHz, 2 422 MHz ~ 2 452 MHz : -4.23 dB i

1.4. Declaration by the manufacturer

- WLAN & BT do not transmit simultaneously

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

1.5. Information about the FHSS characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.5.2. Equal Hopping Frequency Use

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

1.5.3. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mb

1.5.4. Equipment Description

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKoreaCo, Ltd. (GunpoLaboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

Page: 5 of 16

1.6. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Spectrum Analyzer	Agilent	N9030A	US51340132	Oct. 30, 2012	Annual	Oct. 30, 2013
Signal Generator	R&S	SMBV100A	255834	Jun, 26. 2013	Annual	Jun, 26. 2014
Signal Generator	R&S	SMR40	100272	Aug. 23, 2012	Annual	Aug. 23, 2013
Bluetooth Tester	TESCOM	TC-3000C	3000C000142	Dec. 24, 2012	Annual	Dec. 24, 2013
High Pass Filter	Wainwright	WHK3.0/18G-10SS	344	Jun. 08, 2013	Annual	Jun. 08, 2014
High Pass Filter	Wainwright	WHK7.5//26.5G-6SS	N/A	Jun. 08, 2013	Annual	Jun. 08, 2014
Low Pass Filter	Mini-Circuits	NLP-1200+	V8979400903-1	Jul. 12, 2013	Annual	Jul. 12, 2014
Power Sensor	R&S	NRP-Z81	100669	Apr. 05, 2013	Annual	Apr. 05, 2014
DC power Supply	Agilent	U8002A	MY49030063	Dec. 20, 2012	Annual	Dec. 20, 2013
Preamplifier	H.P.	8447F	2944A03909	Jul. 28, 2013	Annual	Jul. 28, 2014
Preamplifier	R&S	SCU 18	10117	Jan. 14, 2013	Annual	Jan. 14, 2014
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Jul. 13, 2013	Annual	Jul, 13, 2014
Test Receiver	R&S	ESU26	100109	Feb. 28, 2013	Annual	Feb. 28, 2014
Loop Antenna	R&S	HFH2-Z2	100118	Aug. 24, 2011	Biennial	Aug. 24, 2013
Bilog Antenna	SCHWARZBECK	VULB9163	396	Apr. 19, 2012	Biennial	Apr. 19, 2014
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170431	May 15, 2012	Biennial	May 15, 2014
Horn Antenna	R&S	HF 906	100326	Nov. 23, 2011	Biennial	Nov. 23, 2013
Antenna Master	INN-CO	MM4000	N/A	N.C.R.	N/A	N.C.R.
Turn Table	INN-CO	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.

Support equipment

Description	Manufacturer	Model	Serial Number
N/A	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

1.7. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15 subpart C					
Section	Test Item	Result			
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions	Complied			

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

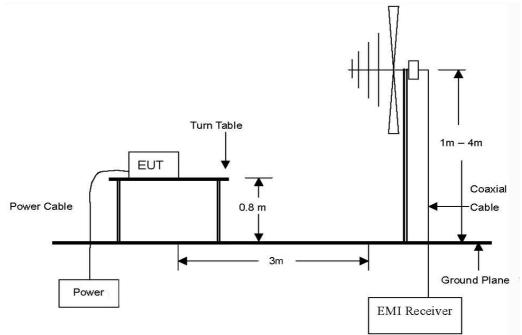
1.8.1. Radiation test

Field strength level ($dB\mu M/m$) = Measured level ($dB\mu M$) + Antenna factor (dB) + Cable loss (dB) – amplifier gain (dB)

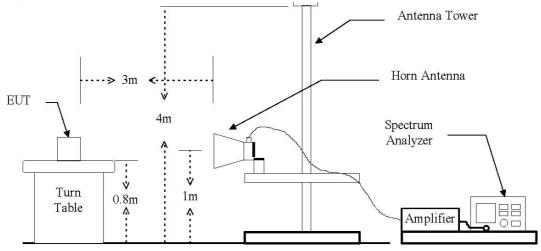
1.9. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL006719	Initial
1	F690501/RF-RTL006719-1	Modify type error
2	F690501/RF-RTL006719-2	Modify applicant

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040



2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission


2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 \mathbb{G} Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission .The spurious emissions were investigated form 1 Gl_2 to the 10th harmonic of the highest fundamental frequency or 40 Gl_2 , whichever is lower.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKoreaCo, Ltd. (GunpoLaboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.2. Limit

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section \$15.205(a), must also comply the radiated emission limits specified in section \$15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (账)	Distance (Meters)	Field Strength (dB µV/m)	Field Strength (µV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. Thistest report cannot be reproduced, except in full, without prior written permission of the Company.SGSKoreaCo, Ltd. (GunpoLaboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of DA000705

2.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE ;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.
- 4. When Average result is different from peak result over 20 dB (over-averaging), According to 15.35 (c), as a "duty cycle correction factor", pulse averaging with 20 log(duty cycle) has to be used.
- 5. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes.

2.4. Test Results

Ambient temperature	:	(23	± 2) °C
Relative humidity	:	47	% R.H.

2.4.1. Spurious Radiated Emission (Worst case configuration_ GFSK mode, 1 Mbps, High channel)

The frequency spectrum from 30 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radiated Emissions		Ant	Corre	Correction Factors		Total	al FCC Limit		
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	AMP (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
140.77	47.63	Peak	Н	8.21	2.01	25.38	32.47	43.50	11.03
141.36	45.94	Peak	V	8.22	2.01	25.38	30.79	43.50	12.71
212.07	49.03	Peak	Н	10.87	2.45	25.18	37.17	43.50	6.33
258.24	45.75	Peak	V	12.01	2.65	25.08	35.33	46.00	10.67
372.60	49.66	Peak	Н	14.51	3.26	25.65	41.78	46.00	4.22
Above 400.00	Not detected	-	-	-	-		-	-	-

Remark:

- 1. All spurious emissions at channels are almost the same below 1 ${\rm Ghz}$, so that middle channel was chosen at representative in final test.
- 2. Actual = Reading + AF AMP + CL

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.4.2. Spurious Radiated Emission

The frequency spectrum above 1 000 M was investigated. Emission levels are not reported much lower than the limits by over 30 dB.

Operating Mode: GFSK(1 Mbps)

A. Low Channel (2 402 Mb)

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (朏)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	23.21	Peak	V	28.05	7.56	58.82	74.00	15.18
*2 390.00	12.34	Average	V	28.05	7.56	47.95	54.00	6.05

Radiated Emissions			Ant	Correction Factors		Total	FCC L	imit
Frequency (胚)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 803.21	35.69	Peak	Н	32.28	-32.64	35.33	74.00	38.67
*4 803.21	21.84	Average	Н	32.28	-32.64	21.48	54.00	32.52
Above 4 900.00	Not detected	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

B. Middle Channel (2 441 Mtz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB _/ N/m)	Limit (dBµV/m)	Margin (dB)
*4 883.36	33.86	Peak	Н	32.86	-32.38	34.34	74.00	39.66
*4 883.36	20.54	Average	Н	32.86	-32.38	21.02	54.00	32.98
Above 4 900.00	Not detected	-	-	-	-	-	-	-

C. High Channel (2 480 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (雁)	Reading (dB ₄ N)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	24.65	Peak	V	28.31	7.67	60.63	74.00	13.37
*2 483.50	12.66	Average	V	28.31	7.67	48.64	54.00	5.36

Radiated Emissions			Ant	Correction Factors		Total	FCC Li	mit
Frequency (雕)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
*4 959.93	34.09	Peak	Н	33.31	-32.27	35.13	74.00	38.87
*4 959.93	21.62	Average	Н	33.31	-32.27	22.66	54.00	31.34
Above 5 000.00	Not detected	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

www.ee.sgs.com/korea

Operating Mode: 8DPSK(3 Mbps)

A. Low Channel (2 402 Mb)

Radiated Emissions			Ant	Correctio	n Factors	Total	FCC L	imit
Frequency (畑)	Reading (dB _# N)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 390.00	23.35	Peak	V	28.05	7.56	58.96	74.00	15.04
*2 390.00	12.37	Average	V	28.05	7.56	47.98	54.00	6.02

Radiated Emissions			Ant	Correction Factors		Total	FCC L	imit
Frequency (M地)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµ∛/m)	Margin (dB)
*4 803.06	34.07	Peak	Н	32.28	-32.64	33.71	74.00	40.29
*4 803.06	21.92	Average	Н	32.28	-32.64	21.56	54.00	32.44
Above 4 900.00	Not detected	-	-	-	-	-	-	-

B. Middle Channel (2 441 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (啦)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dB _/ N/m)	Limit (dBµV/m)	Margin (dB)
*4 881.69	32.81	Peak	Н	32.85	-32.41	33.25	74.00	40.75
*4 881.69	20.74	Average	Н	32.85	-32.41	21.18	54.00	32.82
Above 4 900.00	Not detected	-	-	-	-	-	-	-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

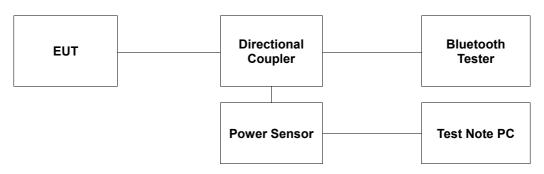
C. High Channel (2 480 Mb)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (畑)	Reading (dB _# V)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	22.72	Peak	V	28.31	7.67	58.70	74.00	15.30
*2 483.50	12.70	Average	V	28.31	7.67	48.68	54.00	5.32

Radiated Emissions			Ant	Correction Factors		Total	FCC Li	mit
Frequency (胚)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*4 959.14	34.27	Peak	Н	33.31	-32.27	35.31	74.00	38.69
*4 959.14	21.61	Average	Н	33.31	-32.27	22.65	54.00	31.35
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Remarks:

- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + AF + AMP + CL


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKoreaCo, Ltd. (GunpoLaboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

^{1. &}quot;*" means the restricted band.

3. Maximum Peak Output Power Measurement

3.1. Test Setup

3.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 5 805 Mb band: 1 Watt.

3.3. Test Procedure

All data rates and modes were investigated for this test. The test follows DA000705. Using the power sensor instead of a spectrum analyzer.

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.
- 3. Test program : (S/W name : R&S Power Viewer, Version : 3.2.0)
- 4. Measure peak & average power each channel.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. Thistest report cannot be reproduced, except in full, without prior written permission of the Company.SGSKoreaCo, Ltd. (GunpoLaboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

3.4. Test Results

Operation Mode	Data Rate	Channel	Channel Frequency (쌘)	Directional coupler + Cable offset (dB)	Average Power Result (dB m)	Peak Power Result (dB m)
			2 402		-5.39	-1.61
GFSK	1 Mbps	Middle	2 441		-5.41	-1.89
		High	2 480		-4.05	-1.28
		Low	2 402		-4.91	-0.30
π/4DQPSK	2 Mbps	Middle	2 441	17.16	-4.84	-0.51
		High	2 480		-4.87	-0.41
		Low	2 402		-4.77	0.14
8DPSK	3 Mbps	Middle	2 441		-4.81	0.07
		High	2 480		-4.92	0.03

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This
test report cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd. (Gunpo Laboratory)18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040