

FCC Test Report (BT-LE)

Report No.: RF150226E05E-3

FCC ID: PPD-QCA9008-TBD1

Test Model: QCA9008-TBD1

Received Date: May 23, 2017

Test Date: June 02 to 23, 2017

Issued Date: June 23, 2017

Applicant: Qualcomm Atheros, Inc.

- Address: 1700 Technology Drive, San Jose, CA 95110
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
- **Test Location (1):** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
- **Test Location (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 Summary of Test Results
2.1 Modification Record
3 General Information
3.1General Description of EUT (BT-LE)63.2Description of Test Modes83.2.1Test Mode Applicability and Tested Channel Detail93.3Description of Support Units103.3.1Configuration of System under Test103.4General Description of Applied Standards11
4 Test Types and Results 12
4.1Conducted Output Power Measurement124.1.1Limits of Conducted Output Power Measurement124.1.2Test Setup124.1.3Test Instruments124.1.4Test Procedures124.1.5Deviation from Test Standard124.1.6EUT Operating Conditions124.1.7Test Results134.2Radiated Emission and Bandedge Measurement144.2.1Limits of Radiated Emission and Bandedge Measurement144.2.2Test Instruments154.2.3Test Procedures174.2.4Deviation from Test Standard174.2.5Test Setup184.2.6EUT Operating Conditions184.2.7Test Results19
5 Pictures of Test Arrangements
Appendix – information on the resting Laboratories

	Re	elease Control Re	ecord	
Issue No.	Description			Date Issued
RF150226E05E-3	Original release.			June 23, 2017
		Dage No. 2 / 24		Depart Formet Version: 6.1.1

1 Certificate of Conformity

Product:	802.11abgn/ac/ad+BT module
Brand:	Qualcomm Atheros
Test Model:	QCA9008-TBD1
Sample Status:	ENGINEERING SAMPLE
Applicant:	Qualcomm Atheros, Inc.
Test Date:	June 02 to 23, 2017
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	C- <_	, Da	ate:	June 23, 2017	
	Claire Kuan / Specialist				
Approved by :	May Chen / Manager	, Da	ate:	June 23, 2017	

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	part C (SEC ⁻	TION 15.247)
FCC Clause	Test Item	Result	Remarks
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -3.5dB at 171.00MHz.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.

NOTE:

1. This report is prepared for FCC Class II change. Only Radiated Emissions and Band Edge and Maximum Peak Output Power Measurement was presented in this test report.

2.1 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	802.11abgn/ac/ad+BT module
Brand	Qualcomm Atheros
Test Model	QCA9008-TBD1
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 3.3V from host equipment
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	40
Output Power	1.995mW
Antenna Type	See item 3.2
Antenna Connector	See item 3.2
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC Class II change. The difference compared with the Report No.: RF150226E05-3 design is as the following information:

♦ /	Add one	new	antenna	as	following table:
-----	---------	-----	---------	----	------------------

Original										
Transmitter Circuit	Brand	Model	Ant. Type	2.4GHz Gain with cable loss (dBi)	5GHz Gain with cable loss (dBi)	2.4GHz Cable Loss (dBi)	5GHz Cab Loss (dBi)	le	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.005	PIFA	3.00	5.15~5.35GHz: 2.56 5.47~5.725GHz: 4.76 5.725~5.85GHz:	1.15	5.15~5.35G 1.70 5.47~5.725G 1.74 5.725~5.85G	GHz:	IPEX	300
Chain (1)	WNC	81-EBJ15.005	PIFA	3.62	4.76 5.15~5.35GHz: 3.08 5.47~5.725GHz: 3.31 5.725~5.85GHz: 2.42	1.15	1.79 5.15~5.35G 1.70 5.47~5.725G 1.74 5.725~5.85G 1.79	GHz:	IPEX	300
Newly					-					
Transmitter Circuit	Brand	Model		Ant. Type	2.4GHz Gain with cable loss (dBi)		Gain with loss (dBi)		inector Jype	Cable Length (mm)
Chain (0)	INPAQ	DAM-J7-H-DL-065-10	-34	Dipole	1.94		1.37		1A RP Plug	625
Chain (1)	INPAQ	DAM-J7-H-DL-065-10	-34	Dipole	1.94		1.37		IA RP Plug	625

Note: 1. Above antenna gains of antenna are Total (H+V).

2. According to above condition, Only Radiated Emissions and Band Edge and Maximum Peak Output Power Measurement was presented in this test report.

- 3. There are Bluetooth technology and WLAN (2.4GHz, 5GHz & 60GHz) technology used for the EUT.
- 4. The EUT support multiple function, therefore the WLAN OFDM will be cover BT OFDM (low power) scenario.
- 5. The power setting are list as below:

Modulation Mode	Frequency	Power	Frequency	Power	Frequency	Power
	(MHz)	Setting	(MHz)	Setting	(MHz)	Setting
GFSK	2402	default	2440	default	2480	default

6. WLAN/BT coexistence mode:

• 2x2 WLAN + BT:

- > 5GHz 802.11a/an (or 11ac) transmit concurrent with BT.
- > 2.4GHz: timely shared coexistence. (2.4GHz & BT technology can't transmit at same time.)
- > 2.4GHz & 5GHz technology can't transmit at same time.
- 7. The emission (conducted & radiated emission) of the simultaneous operation (WiFi <5GHz> & Bluetooth) have been evaluated and no non-compliance found. The detail combinations of transmitters / frequencies / modes as below table

Mode	Available Channel	Tested Channel	Modulation Technology
5 GHz (802.11a)	36 to 165	157	OFDM
+ Bluetooth (GFSK)	0 to 78	0	FHSS

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

		APPLIC	ABLE TO	0			DESCRIPTION
MODE	RE≥1	G RE	<1G	AP	РСМ		
-	\checkmark		\checkmark	-	\checkmark		-
		Emission above 10 Conducted Emissic				Emission below 1G ort Conducted Meas	
Z-plane. Radiated Em	ission Te	st (Above 1Gł	<u>Hz):</u>				as found when positioned on ossible combinations
between a architectu	available r re).		ata rate	s and ante	enna port	s (if EUT with a	ntenna diversity
AVAILABLE		TESTED CHAN		MODULATIO		DATA RATE (Mb	ps)
	39	0, 19, 39		GFSK	ĸ	1	
Radiated Em	has been available r		determi				ossible combinations ntenna diversity
Adiated Em Pre-Scan between a architectu Following	has been available r re). channel(s	conducted to c nodulations, da s) was (were) s	determi ata rate electec	s and ante	enna port	s (if EUT with a s listed below.	ntenna diversity
Radiated Em Pre-Scan between a architectu	has been available r re). channel(s CHANNEL	conducted to c nodulations, da	determi ata rate electec	s and ante	enna port nal test a DN TYPE	s (if EUT with a	ntenna diversity
Radiated Em Image: Arrow of the second structure of the seco	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re).	conducted to o nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem Ill test value of conducted to o nodulations, da	determi ata rate electec NEL nent: each m determi ata rate	es and ante d for the fin MODULATIO GFSM node, but o ine the wor es and ante	enna port nal test a DN TYPE K Donly inclu rst-case enna port	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a	ntenna diversity
Radiated Em Image: Arrow of the second structure	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re). channel(s	conducted to c nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem Ill test value of conducted to c nodulations, da s) was (were) s	determi ata rate electec NEL each m determi ata rate electec	s and ante d for the fin MODULATIO GFSM node, but o ine the wor is and ante d for the fin	enna port nal test a DN TYPE K Donly inclu rst-case enna port nal test a	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a s listed below.	ntenna diversity ps) olot of worst value of each ossible combinations ntenna diversity
Radiated Em Image: Arrow of the second structure of the seco	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re). channel(s CHANNEL	conducted to o nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem Ill test value of conducted to o nodulations, da	determi ata rate electec NEL each m determi ata rate electec	es and ante d for the fin MODULATIO GFSM node, but o ine the wor es and ante	enna port nal test a DN TYPE K Donly inclu rst-case enna port nal test a DN TYPE	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a	ntenna diversity ps) olot of worst value of each ossible combinations ntenna diversity
Radiated Em Pre-Scan between a architectu Following AVAILABLE 0 to Antenna Port This item mode. Pre-Scan between a architectu Following Available Available Available	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re). channel(s CHANNEL 39	conducted to c nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem all test value of conducted to c nodulations, da s) was (were) s TESTED CHAN 0, 19, 39	determi ata rate electec NEL each m determi ata rate electec NEL	s and ante d for the fin MODULATIO GFSK node, but o ine the wor is and ante d for the fin MODULATIO GFSK	enna port nal test a DN TYPE K conly inclu rst-case enna port nal test a DN TYPE K	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a s listed below. DATA RATE (Mb 1	ntenna diversity
Radiated Em Image: Addited Em	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re). channel(s CHANNEL 39 Dn: BLE TO	conducted to o nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem Ill test value of conducted to o nodulations, da s) was (were) s TESTED CHAN	determi ata rate electec NEL determi ata rate electec NEL AL CONE	es and ante d for the fin MODULATIO GFSM node, but o ine the wor is and ante d for the fin MODULATIO GFSM	enna port nal test a N TYPE K only inclu rst-case enna port nal test a N TYPE K	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a s listed below. DATA RATE (Mb	ntenna diversity ps) plot of worst value of each ossible combinations ntenna diversity
Radiated Em Image: Pre-Scan between a architectu Image: Pre-Scan between a architectu Image: Available 0 to Image: Pre-Scan between a architectu	has been available r re). channel(s CHANNEL 39 t Conduc includes a has been available r re). channel(s CHANNEL 39 DE: BLE TO G	conducted to o nodulations, da s) was (were) s TESTED CHAN 39 ted Measurem all test value of conducted to o nodulations, da s) was (were) s TESTED CHAN 0, 19, 39 ENVIRONMENTA	determi ata rate electec NEL determi ata rate electec NEL AL CONE 69%RH	es and ante d for the fin MODULATIO GFSM node, but o ine the wor is and ante d for the fin MODULATIO GFSM	enna port nal test a DN TYPE K conly inclu rst-case enna port nal test a DN TYPE K INPUT PC 120	s (if EUT with a s listed below. DATA RATE (Mb 1 des spectrum p mode from all p s (if EUT with a s listed below. DATA RATE (Mb 1) WER (SYSTEM)	ntenna diversity

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
А	NOTEBOOK COMPUTER	Lenovo	0769	NA	NA	Supplied by Client
В	PCI-E Test tool	Qualcomm	NA	NA	NA	Supplied by Client

NOTE: All power cords of the above support units are non-shielded (1.8 m).

3.3.1 Configuration of System under Test

NOTEBOOK	PCI-	E Test too	ol (B)
COMPUTER (A)		EUT	

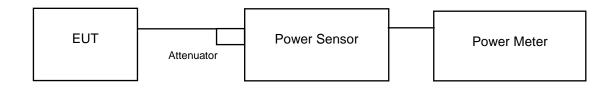
3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v03r05

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.


4 Test Types and Results

4.1 Conducted Output Power Measurement

4.1.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.1.2 Test Setup

4.1.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : June 02, 2017

4.1.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.1.5 Deviation from Test Standard

No deviation.

4.1.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.1.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	1.845	2.66	30	Pass
19	2440	1.945	2.89	30	Pass
39	2480	1.995	3.00	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.535	1.86
19	2440	1.667	2.22
39	2480	1.652	2.18

4.2 Radiated Emission and Bandedge Measurement

4.2.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Test Receiver Agilent	N9038A	MY50010156	Aug. 18, 2016	Aug. 17, 2017	
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018	
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018	
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 17, 2017	Jan. 16, 2018	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	May 06, 2017	May 05, 2018	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Dec. 29, 2016	Dec. 28, 2017	
RF Cable	8D	966-3-1 966-3-2 Apr. 01, 2017 966-3-3		Mar. 31, 2018	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Oct. 05, 2016	Oct. 04, 2017	
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 28, 2016	Dec. 27, 2017	
Pre-Amplifier EMCI	EMC12630SE	980384	Feb. 02, 2017	Feb. 01, 2018	
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160922 150317 150322	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018	
Spectrum Analyzer Keysight	N9030A	MY54490520	July 29, 2016	July 28, 2017	
Pre-Amplifier EMCI	EMC184045SE	980386	Feb. 02, 2017	Feb. 01, 2018	
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017	
RF Cable SUCOFLEX 102		36432/2 36433/2 Jan. 15, 207		Jan. 14, 2018	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	1F780208406 NA 1		
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3.
- 4. The FCC Site Registration No. is 147459
- 5. The CANADA Site Registration No. is 20331-1
- 6. Tested Date: June 22 to 23, 2017

For below 1GHz test:

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Agilent	N9038A	MY50010156	Aug. 11, 2014	Aug. 10, 2015
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 12, 2014	Nov. 11, 2015
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Feb. 09, 2015	Feb. 08, 2016
RF Cable	8D-FB	CHHCAB-001- 1 CHHCAB-001- 2	Oct. 05, 2014	Oct. 04, 2015
	RF-141	CHHCAB-004	Oct. 05, 2014	Oct. 04, 2015
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. H.

3. The FCC Site Registration No. is 797305.

4. The CANADA Site Registration No. is IC 7450H-3.

5. Tested Date: Mar. 21, 2015

4.2.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup <Frequency Range below 1GHz> Ant. Tower 1-4m Variable 3m EUT& Support Units Turn Table 80cm 00 **Ground Plane Test Receiver** 0 0 0 0 000 G <Frequency Range above 1GHz> Ant. Tower 1-4m Variable EUT& 3m **Support Units Turn Table** Absorber 150cm \circ \mathbf{O} **Ground Plane Test Receiver** 0 0 0 0 0 0 0 G For the actual test configuration, please refer to the attached file (Test Setup Photo). 4.2.6 **EUT Operating Conditions** 1. Connect the EUT with the support unit A (Notebook Computer) which is placed on a testing table.

2. The communication partner run test program "QCRT-CONN30033.exe" to enable EUT under transmission/receiving condition continuously at specific channel frequency.

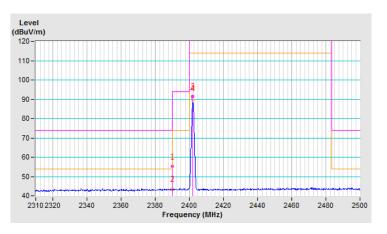
4.2.7 Test Results

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	55.1 PK	74.0	-18.9	3.05 H	319	56.7	-1.6		
2	2390.00	43.5 AV	54.0	-10.5	3.05 H	319	45.1	-1.6		
3	*2402.00	91.5 PK			3.05 H	319	93.0	-1.5		
4	*2402.00	90.3 AV			3.05 H	319	91.8	-1.5		

REMARKS:

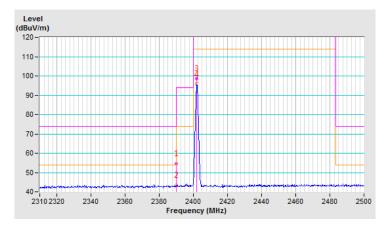

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

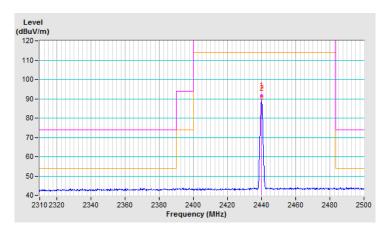


CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	54.7 PK	74.0	-19.3	1.25 V	191	56.3	-1.6		
2	2390.00	43.5 AV	54.0	-10.5	1.25 V	191	45.1	-1.6		
3	*2402.00	98.8 PK			1.25 V	191	100.3	-1.5		
4	*2402.00	95.8 AV			1.25 V	191	97.3	-1.5		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

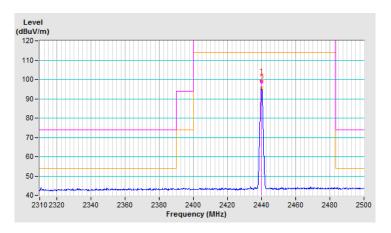


CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	91.6 PK			3.08 H	303	92.8	-1.2		
2	*2440.00	90.3 AV			3.08 H	303	91.5	-1.2		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.



CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

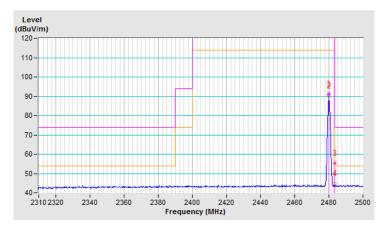
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2440.00	98.6 PK			1.26 V	182	100.1	-1.5	
2	*2440.00	95.5 AV			1.26 V	182	97.0	-1.5	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	91.3 PK			3.04 H	325	92.7	-1.4		
2	*2480.00	90.2 AV			3.04 H	325	91.6	-1.4		
3	2483.50	55.4 PK	74.0	-18.6	3.04 H	325	56.8	-1.4		
4	2483.50	44.7 AV	54.0	-9.3	3.04 H	325	46.1	-1.4		

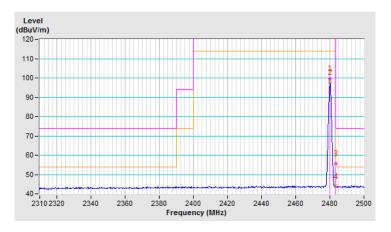

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

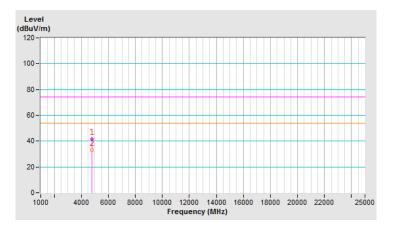


CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2480.00	99.8 PK			1.31 V	184	101.2	-1.4		
2	*2480.00	97.8 AV			1.31 V	184	99.2	-1.4		
3	2483.50	55.7 PK	74.0	-18.3	1.31 V	184	57.1	-1.4		
4	2483.50	43.9 AV	54.0	-10.1	1.31 V	184	45.3	-1.4		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.

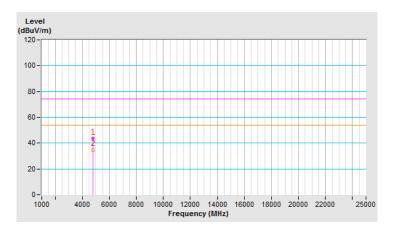


CHANNEL	RX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4804.00	41.8 PK	74.0	-32.2	1.36 H	256	38.8	3.0	
2	4804.00	32.9 AV	54.0	-21.1	1.36 H	256	29.9	3.0	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



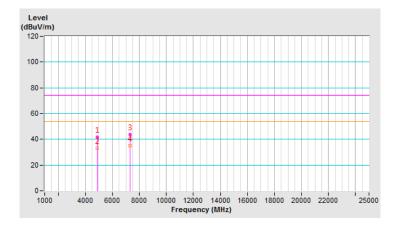
CHANNEL	RX Channel 0	DETECTOR	Peak (PK)	
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	4804.00	43.5 PK	74.0	-30.5	3.43 V	128	40.5	3.0		
2	4804.00	34.7 AV	54.0	-19.3	3.43 V	128	31.7	3.0		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

CHANNEL	RX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)


	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	4880.00	41.9 PK	74.0	-32.1	1.32 H	268	38.7	3.2		
2	4880.00	33.0 AV	54.0	-21.0	1.32 H	268	29.8	3.2		
3	7320.00	43.8 PK	74.0	-30.2	1.46 H	298	34.9	8.9		
4	7320.00	35.0 AV	54.0	-19.0	1.46 H	298	26.1	8.9		

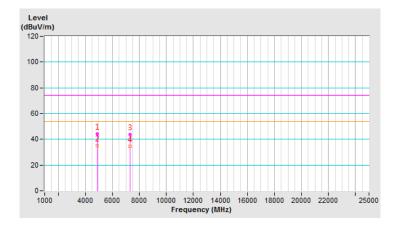
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value

CHANNEL	RX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)

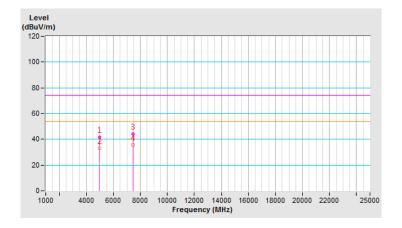

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	4880.00	44.1 PK	74.0	-29.9	3.46 V	140	40.9	3.2		
2	4880.00	35.2 AV	54.0	-18.8	3.46 V	140	32.0	3.2		
3	7320.00	43.7 PK	74.0	-30.3	1.68 V	311	34.8	8.9		
4	7320.00	34.6 AV	54.0	-19.4	1.68 V	311	25.7	8.9		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

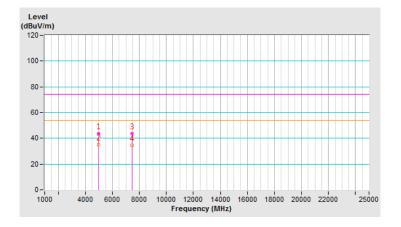


CHANNEL	RX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	4960.00	41.8 PK	74.0	-32.2	1.34 H	246	38.6	3.2		
2	4960.00	33.2 AV	54.0	-20.8	1.34 H	246	30.0	3.2		
3	7440.00	44.3 PK	74.0	-29.7	1.38 H	308	35.1	9.2		
4	7440.00	35.7 AV	54.0	-18.3	1.38 H	308	26.5	9.2		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



CHANNEL	RX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 12.5GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	4960.00	43.8 PK	74.0	-30.2	3.47 V	115	40.6	3.2		
2	4960.00	35.1 AV	54.0	-18.9	3.47 V	115	31.9	3.2		
3	7440.00	43.6 PK	74.0	-30.4	1.63 V	303	34.4	9.2		
4	7440.00	34.7 AV	54.0	-19.3	1.63 V	303	25.5	9.2		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	100.00	39.0 QP	43.5	-4.5	2.00 H	27	51.6	-12.6		
2	171.00	40.0 QP	43.5	-3.5	2.00 H	84	49.1	-9.1		
3	323.20	35.7 QP	46.0	-10.3	1.00 H	191	42.3	-6.6		
4	431.82	41.4 QP	46.0	-4.6	2.00 H	242	45.5	-4.1		
5	697.00	39.8 QP	46.0	-6.2	1.50 H	310	39.3	0.5		
6	796.60	41.4 QP	46.0	-4.6	1.00 H	114	39.4	2.0		

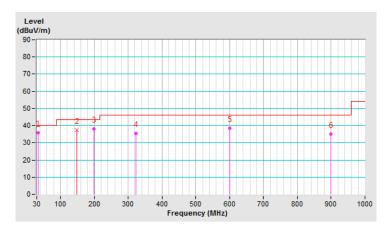
REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value



CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	34.30	35.8 QP	40.0	-4.2	1.00 V	233	44.8	-9.0	
2	149.10	37.3 QP	43.5	-6.2	1.50 V	139	45.5	-8.2	
3	199.20	38.1 QP	43.5	-5.4	2.00 V	255	49.4	-11.3	
4	323.09	35.6 QP	46.0	-10.4	1.50 V	199	42.2	-6.6	
5	599.45	38.5 QP	46.0	-7.5	1.50 V	100	39.4	-0.9	
6	899.27	34.9 QP	46.0	-11.1	1.50 V	252	31.9	3.0	

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----