

Page 221 of 448

8.8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	17.6249	17.6950
Mid	5580	17.6242	17.7122
High 1	5700	17.5915	17.6260
High 2	5720	17.6105	17.6990

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 222 of 448

99% BANDWIDTH, Chain 0

Page 223 of 448

99% BANDWIDTH, * Agilent 15:03:47 May 4, 2	Chain 0 HIG	GH 1 CH	RT	Freq/Channel
Ch Freq 5.7 Occupied Bandwidth	GHz	Averages: 100	Trig Free	Center Freq 5.7000000 GHz
				Start Freq 5.67500000 GHz
Ref 20 dBm Atten ' #Samp Log 10 dB/ Offst 21.4 dB Center 5 700 00 GHz			Shan 50 MHz	Stop Freq 5.72500000 GHz CF Step 5.00000000 MHz <u>Auto Mar</u> Freq Offset 0.00000000 Hz
#Res BW 300 kHz	#VBW 910 kHz	#Sweep 100	ms (601 pts)	Circal Track
Occupied Bandwid 17.59	dth 15 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	On <u>Off</u>
Transmit Freq Error x dB Bandwidth	64.571 kHz 19.670 MHz*			
Copyright 2000-2011 Agilent Te	chnologies			

Page 224 of 448

99% BANDWIDTH, Chain 1

Page 225 of 448

Page 226 of 448

8.8.3. AVERAGE POWER (No filter Unit)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 25.41 dB (including two 10 dB pads, 2.01 dB cables, and 3.4 dB power splitter) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0 Chain 1		Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	13.40	14.90	17.22
Mid	5580	12.70	13.80	16.30
High 1	5700	10.50	12.30	14.50
High 2	5720	12.60	14.10	16.42

Page 227 of 448

8.8.4. AVERAGE POWER (3G filter unit)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 25.41 dB (including two 10 dB pads, 2.01 dB cables, and 3.4 dB power splitter) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 0 Chain 1	
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
High 2	5720	10.30	12.52	14.56

Page 228 of 448

8.8.5. OUTPUT POWER AND PPSD (no filter unit)

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is the same for each chain. The directional gain is equal to the antenna gain.

Chain 0	Chain 1	Uncorrelated Chains			
Antenna	Antenna	Directional			
Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)			
2.00	2.00	2.00			

Page 229 of 448

RESULTS

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5500	24.27	17.6249	2.00
Mid	5580	28.33	17.6242	2.00
High 1	5700	20.75	17.5915	2.00
High 2	5720	21.58	17.6105	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5500	24.00	23.46	29.46	23.46	11.00	11.00	11.00
Mid	5580	24.00	23.46	29.46	23.46	11.00	11.00	11.00
High 1	5700	24.00	23.45	29.45	23.45	11.00	11.00	11.00
High 2	5720	24.00	23.46	29.46	23.46	11.00	12.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	14.055	15.608	17.911	23.46	-5.550
Mid	5580	13.693	15.436	17.662	23.46	-5.799
High 1	5700	11.664	13.355	15.602	23.45	-7.851
High 2	5720	13.990	15.443	17.787	23.46	-5.670

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas PPSD	Meas	Corr'd	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	2.66	4.23	6.53	11.00	-4.47
Mid	5580	2.25	4.22	6.36	11.00	-4.64
High 1	5700	0.16	1.88	4.11	11.00	-6.89
High 2	5720	2.68	4.11	6.46	11.00	-4.54

Page 230 of 448

OUTPUT POWER AND PPSD, Chain 0

Page 231 of 448

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 232 of 448

OUTPUT POWER AND PPSD, Chain 1

Page 233 of 448

Page 234 of 448

8.8.6. OUTPUT POWER AND PPSD (3G filter unit)

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is the same for each chain. The directional gain is equal to the antenna gain.

Chain 0	Chain 1	Uncorrelated Chains			
Antenna	Antenna	Directional			
Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)			
2.00	2.00	2.00			

Page 235 of 448

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
High 2	5720	21.58	17.6105	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
High 2	5720	24.00	23.46	29.46	23.46	11.00	12.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High 2	5720	13.362	12.001	15.745	23.46	-7.713

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High 2	5720	2.02	0.64	4.39	11.00	-6.61

Page 236 of 448

OUTPUT POWER AND PPSD, Chain 0

Page 237 of 448

OUTPUT POWER AND PPSD, Chain 1

🔆 Agile	nt 14:29:17	Jul 1, 2013			∆ Mkr	2 32.250	MHz	Freq/Chann Center Fr	iel iea
#Avg	im	Atten 20 d			Band Pwr	12.001 0	:Bm	5.72000000 0	GHz
Log 10 dB/ Offst			\$ 					Start Fr 5.69750000 (eq GHz
10.8 dB	2R					2	and the second s	Stop F 5.74250000 (req GHz
#PAvg								CF \$ 4.50000000 M <u>Auto</u>	Step ^{MHz} <u>Man</u>
Center 5. #Res BW	720 000 GHz 1 MHz		#VBW 3 N	IHz	Sweep 1	Span 4 ms (601	5 MHz pts)	Freq Offs	set
Marker	Trace	Туре	x	Axis		Amplitu	de	0.0000000	ΠZ
1 2R 2∆	(1) (1) (1)	Fieq Fieq Fieq	5.715 57 5.703 87 32.2	75 GHz 75 GHz 50 MHz		0.64 dB -35.14 dB 12.00 dB	m m m	Signal Tra ^{On}	ack <u>Cif</u>

Page 238 of 448

8.8.7. 802.11n HT20 CH 144 2TX MODE IN THE 5.8 GHz BAND DTS/UNII = 5720 MHz

OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For output power, the two chains are considered uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
2.00	2.00	2.00

For PSD, the two chains are considered correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Correlated Chains		
Antenna	Antenna	Directional		
Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)		
2.00	2.00	5.01		

Worst-case correlated antenna gain of 5.01 dBi was used in the output power and PSD table.

Page 239 of 448

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Correlated	Uncorrelated
		26 dB	99%	Gain	Gain
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
High	5720	15.79	13.8053	5.01	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
High	5720	22.98	22.40	28.40	22.40	11.00	11.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5720	10.667	12.051	14.424	28.40	-13.976

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5720	0.26	1.61	4.00	11.00	-7.00

Page 240 of 448

Limits (FCC), portion in 5.8 GHz DTS band

Channel	Frequency	Min	Min	Correlated	Uncorrelated
		26 dB	99%	Gain	Gain
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
High	5720	5.79	3.8053	5.01	2.00

Bandwidth and Antenna Gain

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
High	5720	18.63	16.80	22.80	16.80	11.00	11.00	11.00

Duty Cycle CF (dB) 0.00 Included in Calculations of PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5720	4.414	6.097	8.347	22.80	-14.457

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5720	1	1.640	3.87	11.00	-7.13

Page 241 of 448

PSD, Chain 0

Page 242 of 448

PSD, Chain 1

Page 243 of 448

8.8.8. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Refer to the results of 802.11n HT20 mode in the 5.2 GHz band.

Page 244 of 448

8.8.9. CONDUCTED BANDEDGE, HARMONICS & SPURIOUS (no filter unit)

Chain 0 RESTRICTED BANDEDGE

Page 245 of 448

ir ogi	ICH (00.14.41	101ay 10, 201	5	Mkr2	5.407 86 GHz	
tef10 o Avg [lBm	#Atten 0 d	B		-63.553 dBm	Center Freq 5.40500000 GHz
og 0 B/						Start Freq 5.3500000 GHz
1.4 B			2		1	Stop Freq 5.4600000 GHz
'Avg	9,00,00 - 03439 100 prize provinska					CF Step 11.0000000 MHz <u>Auto Ma</u>
itart 5.3 Res BV	350 00 GHz N 1 MHz		#VBW 3 MHz	Stop Sweep 1 r	5.460 00 GHz ns (1001 pts)	Freq Offset
Marker 1 2	Trace (1) (1)	Type Freq Freq	X Axis 5.453 00 GHz 5.407 86 GHz		Amplitude -60.10 dBm -63.55 dBm	Signal Track On <u>Of</u>

Page 246 of 448

HGH CHANI Agilent 08:22:3	NEL 5700, AVI 2 May 10, 2013	ERAGE	R	тΙ	Freq/Channel
Ref10dBm ≇∆va	#Atten 0 dB		Mkr1 5.725 1 -57.221 (GHz JBm	Center Freq 5.77500000 GHz
log dB/					Start Freq 5.72500000 GHz
9ffst 21.4 1B					Stop Freq 5.82500000 GHz
2Avg					CF Step 10.0000000 MHz <u>Auto Mar</u>
/1 S2 53 FS AA		Andrew State - Laborator			Freq Offset 0.00000000 Hz
ג(f): -Tun Swp					Signal Track On <u>Off</u>
Start 5.725 0 GHz Res BW 1 MHz	#VBW	3 MHz	Stop 5.825 0 Sweep 1 ms (1001	GHz pts)	

Page 247 of 448

Chain 1 RESTRICTED BANDEDGE

-		Mbr4 5 450 67 CH	
Ref 11.41 dBm	#Atten 0 dB	 43.41 dBi	n Center Freq 5.40500000 GHz
og 0 IB/			Start Freq 5.3500000 GHz
1.4 B			Stop Freq 5.46000000 GHz
PAvg		- A Manusimulations	CF Step 11.0000000 MHz Auto <u>Ma</u>
11 S2 3 FC AA			Freq Offset 0.00000000 Hz
Tun wp			Signal Track On <u>Of</u>
art 5.350 00 GHz		Stop 5.460 00 GH	z

Page 248 of 448

Page 249 of 448

Agilent 08:21	:32 May 10, 2013	AVERAG	E	RТ	Freq/Channel
Ref 10 dBm #Ava	#Atten 0 dB		Mkr1 5	5.725 0 GHz 8.897 dBm	Center Freq 5.77500000 GHz
Log					Start Freq 5.72500000 GHz
IB					Stop Freq 5.82500000 GHz
PAvg					CF Step 10.0000000 MHz <u>Auto Mar</u>
N1 S2			Λ		Freq Offset 0.00000000 Hz
a(f): FTun Swp					Signal Track On <u>Off</u>
Start 5.725 0 GHz Res BW 1 MHz	#	VBW 3 MHz	Stop 5 Sweep <u>1</u> ms	5.825 0 GHz (1001 pts)	

Page 250 of 448

HARMONICS AND SPURIOUS

Chain 0

Page 251 of 448

🔆 Aglien	107:43:25	Apr 29, 201	3				Freq/Channel
Ref 20 dBi Peak	m	Atten 10 d	B		Mkr3 17.10 _44.87) GHz dBm	Center Freq 20.0150000 GHz
.og 0 B/							Start Freq 30.0000000 MHz
II.4		2	3 Array Contraction	and the second second	مسيمسم	~~~	Stop Freq 40.0000000 GHz
*PAvg —							CF Step 3.99700000 GHz <u>Auto Ma</u>
Start 30 M	Hz				Stop 40.00	GHz	Freg Offset
Marker 1 2 3	Trace (1) (1) (1) (1)	Type Freq Freq Freq	#VBW 3 MHZ X Axis 5.71 GHz 11.40 GHz 17.10 GHz	Sweep 1	99.9 ms (1001) Amplitur 9.22 dBr -46.76 dBr -44.87 dBr	p ts) n n	0.00000000 Hz Signal Track On <u>Of</u> f

Page 252 of 448

Chain 1

Page 253 of 448

🔍 Agilen	it U7:46:05	Apr 29, 2013	5			RI	Freq/Channel
Ref20dBı ≠Peak	m 🔗	Atten 10 d	B		Mkr3 - _45	17.10 GHz 5.59 dBm	Center Freq 20.0150000 GHz
₋og l0 — lB/ —							Start Freq 30.0000000 MHz
21.4 1B	~ /	22	3 A. on Her Carlo and a way	and at the los			Stop Freq 40.0000000 GHz
¢PAvg —							CF Step 3.99700000 GHz <u>Auto Ma</u>
Start 30 M	Hz (MH ~		#\/DW/2 MU-	Suraan	Stop 4	10.00 GHz	Freq Offset
Marker 1 2 3	Trace (1) (1) (1) (1)	Type Freq Freq Freq	X Axis 5.71 G 11.40 G 17.10 G	Hz Hz Hz	Arr 11.8 -48.2 -45.5	plitude 5 dBm 2 dBm 9 dBm	0.00000000 Hz Signal Track On <u>Of</u>

Page 254 of 448

BANDEDGE DATA

Date:		5/9/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm							
Project Nur	nber:	13U14995							
Configuration: Tx		Тх							
Mode of op	eration:	5.5GHz HT20		<u>Note:</u> if th	e PK margi	n is greater th	nan 20 dB, the	re is no nee	d to get AVG rea
Channel	Frequency (MHz)	PXA PK Reading Chain 0 (dBm)	PXA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
100 (5500)	5455	-48.36	-43.41	2	-37.19	-21.2	-15.99	18.00	13.4 / 16
100 (5500)	5469	-38.23	-35.33	2	-28.52	-27	-1.52	18.00	13.4 / 16
140 (5700)	5725	-40.21	-34.42	2	-28.39	-27	-1.39	16.00	10.5 / 13.3
Channel	Frequency (MHz)	PXA AVG Reading Chain 0 (dBm)	PXA AVG Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	AVG E-field Limit (dBm)	AVG E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
100 (5500)	5453	-60.1	-57.59	2	-50.65	-41.2	-9.45	18.00	12.9 / 14.45
100 (5500)	5407.86	-63.55	-51.21	2	-45.95	-41.2	-4.75	18.00	12.9 / 14.45
	5725	-57 221	-48,897	2	-43.29	-41.2	-2.09	16.00	10.3 / 12.5

Page 255 of 448

SPURIOUS DATA

span of	a in this 1MHz.		Jin testing	aone	at the I	narmonic	cs snown	in the	piots with t
2TX Conduc	ted Spurious	for FCC DTS (in t	he restricted ba	nds)					
Date:		4/29/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm Athe	ros						
Project Nun	oject Number: 13U14995								
Configuratio	on:	5.5GHz 11n HT20							
Mode of op	eration:	Tx		Note: if th	e PK margi	n is greater th	nan 20 dB, the	re is no nee	d to get AVG read
Channel	Frequency (GHz)	PSA PK Reading Chain 0 (dBm)	PSA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
100 (5500)	11	-55.15	-55.78	2	-47.43	-21.2	-26.23	18.00	13.34 / 15.9
100 (5500)	16.5	-52.39	-52.86	2	-44.60	-21.2	-23.40	18.00	13.4 / 16
116 (5580)	11.16	-54.86	-54.98	2	-46.90	-21.2	-25.70	18.00	11.75 / 15
116 (5580)	16.74	-53.61	-53.32	2	-45.44	-21.2	-24.24	18.00	12 / 15.05
140 (5700)	11.4	-55.11	-55.02	2	-47.04	-21.2	-25.84	18.00	12.6 / 15
140 (5700)	17.1	-52.89	-52.95	2	-44.90	-21.2	-23.70	18.00	12.7 / 15
Channel	Frequency (MHz)	PSA AVG Reading Chain 0 (dBm)	PSA AVG Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	AVG E-field Limit (dBm)	AVG E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)

Page 256 of 448
8.8.10. CONDUCTED BANDEDGE, HARMONICS & SPURIOUS (3G filter unit)

Chain 0 RESTRICTED BANDEDGE

Page 257 of 448

Page 258 of 448

Page 259 of 448

Chain 1

RESTRICTED BANDEDGE

Page 260 of 448

Page 261 of 448

Page 262 of 448

BANDEDGE DATA

2TX Conduc	ted Spurious	s BE for UNII							
Date:		6/26/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm							
Project Nur	nber:	13U14995							
Configurati	on:	Тх							
Mode of op	eration:	5.5GHz 11n HT20		Note: if th	ie PK marg	in is greater th	nan 20 dB, the	re is no nee	d to get AVG rea
Channel	Frequency (MHz)	PXA PK Reading Chain 0 (dBm)	PXA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
100 (5500)	5445.37	-48.340	-44.800	2	-38.20	-21.2	-17.00	18.00	13.52/14.6
100 (5500)	5469.12	-40.440	-37.030	2	-30.39	-27	-3.39	18.00	13.52/14.6
140 (5700)	5725	-40.070	-33.687	2	-27.78	-27	-0.78	16.00	10.9/12.91
Channel	Frequency (MHz)	PXA AVG Reading Chain 0 (dBm)	PXA AVG Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	AVG E-field Limit (dBm)	AVG E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
100 (5500)	5356.05	-63.086	-49.856	2	-44.64	-41.2	-3.44	18.00	13.52/14.6
400 (5500)	5440.09	-59.098	-53.860	2	-47.71	-41.2	-6.51	18.00	13.52/14.6
100 (5500)	5705	F4 024	-18 276	2	-42.42	-41.2	-1.22	15.50	10 30/12 52

Page 263 of 448

8.9. 802.11n HT40 MODE IN THE 5.6 GHz BAND

8.9.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	45.0	45.0
Mid	5550	51.6	77.9
High 1	5670	46.6	59.1
High 2	5710	57.7	72.8

Page 264 of 448

26 dB BANDWIDTH, Chain 0

Page 265 of 448

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 266 of 448

26 dB BANDWIDTH, Chain 1

Page 267 of 448

Page 268 of 448

8.9.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5510	36.1	36.0
Mid	5550	36.2	36.5
High 1	5670	36.0	36.1
High 2	5710	36.2	36.3

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 269 of 448

99% BANDWIDTH, Chain 0

Page 270 of 448

99% BANDWIDTH,	Chain 0 HIG	H 1 CH	RT	Freq/Channel
Ch Freq 5.67 Occupied Bandwidth	GHz	Averages: 100	Trig Free	Center Freq 5.67000000 GHz
	L			Start Freq 5.62000000 GHz
Ref 20 dBm Atten 1 #Samp Log 10 dB/ Offst 21.4 when when a state of the state of t			M Phin In	Stop Freq 5.7200000 GHz CF Step 10.000000 MHz <u>Auto Man</u>
GB Center 5.670 00 GHz #Res BW 1 MHz	#VBW 3 MHz	#Sweep 100	Span 100 MHz ms (601 pts)	Freq Offset 0.00000000 Hz
Occupied Bandwid 35.98	lth 54 MHz	Occ BW % Pwr x dB	99.00 % -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error x dB Bandwidth 4	150.371 kHz 1.936 MHz*			
Copyright 2000-2011 Agilent Teo	chnologies			

Page 271 of 448

99% BANDWIDTH, Chain 1

Page 272 of 448

99% BANDWIDTH, Chail Agilent 14:46:32 May 6, 2013	n 1 HIGH 1 CH	RT	Freq/Channel
Ch Freq 5.67 GHz Occupied Bandwidth	Averages: 100	Trig Free	Center Freq 5.67000000 GHz
	<u> </u>		Start Freq 5.6200000 GHz
Ref 20 dBm Atten 10 dB #Samp Log 10 dB/ Offst 21.4 dB			Stop Freq 5.7200000 GHz CF Step 10.000000 MHz <u>Auto Man</u> Freq Offset 0.0000000 Hz
#Res BW 1 MHz #VE	3W3MHz #Sweep	Span 100 MHz 100 ms (601 pts)	
Occupied Bandwidth 36.0895 MI	Occ BW % Hz ×	^o wr 99.00 % dB -26.00 dB	Signal Track On <u>Off</u>
Transmit Freq Error-164.573 Hx dB Bandwidth48.732 MH	kHz Hz*		
Copyright 2000-2011 Agilent Technologie	98		

Page 273 of 448

8.9.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 25.41 dB (including two 10 dB pads, 2.01 dB cables, and 3.4 dB power splitter) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 0 Chain 1 To	
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5510	8.50	7.00	10.82
Mid	5550	13.30	14.80	17.12
High 1	5670	12.10	13.25	15.72
High 2	5710	12.85	14.30	16.65

Page 274 of 448

8.9.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is the same for each chain. The directional gain is equal to the antenna gain.

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
2.00	2.00	2.00

Page 275 of 448

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional
		26 dB	99%	Gain
		BW	BW	
	(MHz)	(MHz)	(MHz)	(dBi)
Low	5510	45.0	36.0	2.00
Mid	5550	51.6	36.2	2.00
High 1	5670	46.6	36.0	2.00
High 2	5710	57.7	36.2	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5510	24.00	24.00	30.00	24.00	11.00	11.00	11.00
Mid	5550	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High 1	5670	24.00	24.00	30.00	24.00	11.00	11.00	11.00
High 2	5710	24.00	24.00	30.00	24.00	11.00	12.00	11.00

Duty Cycle CF (dB)	1.07	Included in Calculations of Corr'd Power & PPSD
--------------------	------	---

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margi
						n
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	6.70	8.17	11.58	24.00	-12.42
Mid	5550	12.77	13.83	17.41	24.00	-6.59
High 1	5670	11.29	12.50	16.02	24.00	-7.98
High 2	5710	12.92	14.08	17.62	24.00	-6.38

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margi
		DDOD	DDCD	DDCD		n
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	-0.56	-2.31	2.73	11.00	-8.27
Mid	5550	-1.4	08	3.39	11.00	-7.61
High 1	5670	-2.69	-1.51	2.02	11.00	-8.98
High 2	5710	95	0.13	3.70	11.00	-7.30

Page 276 of 448

OUTPUT POWER AND PPSD, Chain 0

Page 277 of 448

Page 278 of 448

OUTPUT POWER AND PPSD, Chain 1

Page 279 of 448

Page 280 of 448

8.9.5. 802.11n HT40 CH 142 2TX MODE IN THE 5.8 GHz BAND DTS/UNII = 5710 MHz

OUTPUT POWER AND PSD

<u>LIMITS</u>

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DIRECTIONAL ANTENNA GAIN

For output power, the two chains are considered uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Uncorrelated Chains		
Antenna	Antenna	Directional		
Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)		
2.00	2.00	2.00		

For PSD, the two chains are considered correlated and the antenna gain is unequal among the chains. The directional gain is:

Chain 0	Chain 1	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
2.00	2.00	5.01

Worst-case correlated antenna gain of 5.01 dBi was used in the output power and PSD table.

Page 281 of 448

RESULTS

Limits (FCC), portion in UNII 2 ext band

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Correlated	Uncorrelated
		26 dB	99%	Gain	Gain
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
High	5710	43.83	33.0856	5.01	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
High	5710	24.00	24.00	30.00	24.00	11.00	11.00	11.00

Duty Cycle CF (dB) 1.07 Included in Calculations of PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5710	12.203	13.212	16.817	30.00	-13.183

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5710	-1.38	-0.69	3.06	11.00	-7.94

Page 282 of 448

Limits (FCC), portion in 5.8 GHz DTS band

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Correlated	Uncorrelated
		26 dB	99%	Gain	Gain
		BW	BW		
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
High	5710	13.83	3.0856	5.01	2.00

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
High	5710	22.41	15.89	21.89	15.89	11.00	11.00	11.00

Duty Cycle CF (dB) 1.07 Included in Calculations of PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5710	1.432	1.210	5.403	21.89	-16.491

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High	5710	-2.580	-3.300	1.16	11.00	-9.84

Page 283 of 448

PSD, Chain 0

Page 284 of 448

PSD, Chain 1

Page 285 of 448

8.9.6. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Refer to the results of 802.11n HT20 mode in the 5.2 GHz band.

Page 286 of 448

8.9.7. CONDUCTED BANDEDGE, HARMONICS, & SPURIOUS (no filter unit)

RESTRICTED BANDEDGE

Chain 0

Page 287 of 448

🌾 Agilent 08:56:	41 May 10, 2013			RT	Freq/Channel
tef 10 dBm Avg	#Atten 0 dB		Mkr1	5.459 23 GHz -56.005 dBm	Center Freq 5.40500000 GHz
.og 0 IB/					Start Freq 5.35000000 GHz
лаят 2.5 IB					- Stop Freq 5.46000000 GHz
PAvg					CF Step 11.0000000 MHz <u>Auto Ma</u>
28 /1 S2 53 FS AA			aphallan that privated at	and the second second	Freq Offset 0.00000000 Hz
(f): Tun Swp					Signal Track On <u>Off</u>
itart 5.350 00 GHz	z #	VBW 3 MHz	Stop) 5.460 00 GHz	

Page 288 of 448

HIGH CHAN	NEL 5670, AVEF 15 May 10, 2013	RAGE	RТ	Freg/Channel
Ref 10 dBm #Avg	#Atten 0 dB	Mkr1 5.72 -55.7(74GHz 67dBm	Center Freq 5.77500000 GHz
Log 10 dB/				Start Freq 5.72500000 GHz
Dffst 12.5 IB				Stop Freq 5.82500000 GHz
PAvg				CF Step 10.000000 MHz <u>Auto Man</u>
28 /1 S2 3 FS	May 1 are 1944 mentioned and the second			Freq Offset 0.00000000 Hz
(f): Tun Swp				Signal Track On <u>Off</u>
itart 5.725 0 GHz Res BW 1 MHz	#VBW 3 M	Stop 5.82 Hz Sweep 1 ms (10	50 GHz 01 pts)	
Copyright 2000-2011	Agilent Technologies			

Page 289 of 448

RESTRICTED BANDEDGE

Chain 1

Page 290 of 448

Page 291 of 448

Page 292 of 448
HARMONICS & SPURIOUS

Chain 0

Page 293 of 448

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 294 of 448

HARMONICS & SPURIOUS

Chain 1

Page 295 of 448

Page 296 of 448

BANDEDGE DATA

Date:		5/9/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm							
Project Nur	nber:	13U14995							
Configurati	on:	Тх							
Mode of op	eration:	5.5GHz HT40		Note: if th	e PK marg	n is greater th	nan 20 dB, the	re is no nee	d to get AVG rea
Channel	Frequency (MHz)	PXA PK Reading Chain 0 (dBm)	PXA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
102 (5510)	5460	-34.96	-28.25	2	-22.40	-21.2	-1.20	16.50	11.8 / 13.5
102 (5510)	5469.71	-41.52	-33.92	2	-28.21	-27	-1.21	10.50	6.1/7.65
142 (5670)	5727	-40.01	-32.93	2	-27.14	-27	-0.14	17.00	12.1/13.5
									1
Channel	Frequency (MHz)	PXA AVG Reading Chain 0 (dBm)	PXA AVG Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	AVG E-field Limit (dBm)	AVG E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
	5460	-56.005	-47.608	2	-42.01	-41.2	-0.81	13.00	8.35 / 10.4
102 (5510)			10 601	n	12 GE	-11 2	-2 /15	17.00	121/1225

Page 297 of 448

SPURIOUS DATA

The dat span of	a in this 1MHz.	table is fro	om testing	done a	at the I	narmonic	s shown	in the	plots with the
2TX Conduc	ted Spurious	for FCC DTS (in t	he restricted ba	nds)					
Date:		5/6/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm Athe	ros						
Project Nun	nber:	13U14995							
Configuratio	on:	5.5GHz 11n HT40							
Mode of op	eration:	Тх		Note: if th	e PK margi	n is greater th	an 20 dB, the	re is no nee	d to get AVG reading.
Channel	Frequency (GHz)	PSA PK Reading Chain 0 (dBm)	PSA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
102 (5510)	11.02	-55.61	-55.17	2	-47.36	-21.2	-26.16	18.00	13.10/15.8
102 (5510)	16.53	-52.44	-52.15	2	-44.27	-21.2	-23.07	18.00	13.25 / 15.7
110 (5550)	11.1	-55.64	-55.36	2	-47.48	-21.2	-26.28	18.00	13.15 / 14.6
110 (5550)	16.65	-52.97	-53.03	2	-44.98	-21.2	-23.78	18.00	13.30 / 14.8
134 (5670)	11.34	-55.61	-55.59	2	-47.58	-21.2	-26.38	18.00	11.5 / 14
134 (5670)	17.01	-53.38	-53.87	2	-45.60	-21.2	-24.40	18.00	11.98 / 14.20
142 (5710)	11.42	-55.07	-54.52	2	-46.77	-21.2	-25.57	18.00	12.1 / 14.5
142 (5710)	17.13	-52.45	-53.23	2	-44.80	-21.2	-23.60	18.00	12.6 / 14.5
							AVG E-field		
Channel	Frequency (MHz)	Reading Chain 0 (dBm)	Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	Limit (dBm)	Margin (dB)	Software Setting	Meter Reading (dBm)

Page 298 of 448

8.9.8. CONDUCTED BANDEDGE, HARMONICS, & SPURIOUS (3G filter unit)

Chain 0 RESTRICTED BANDEDGE

Page 299 of 448

-	-			PND: Fast - # GainsLow	Trig Fre Atten 1	e Run dB	Marg Type AvgiHold:	: RM5 128/128	EVANT STATE A VIA	The Frequency
(SSI)	div R	of Offset 11.	87 dB					DOB 1	2 5.459 67 GI -59 209 dB	Auto Tune
										Center Freq 5.405000000 GHz
					-					Start Free 5.35000000 GHz
4.0	_0_			-	-	-	-			Stop Freq 5.48000000 GHz
tart	5.3500 BW 1.0	GHz MHz	-	#VB	W 3.0 MHz		-	Sweep	Stop 5.46000 G	Hz CF Step
1 h 3 4 5 5 7 8 9 0 1			5,356 5,451	5 06 GHz 3 67 GHz	-63,124 d -59,268 d	Bm Bm	ылан ник		HINETERNASLUE	Auto Man Freq Offset 0 Hz

Page 300 of 448

Page 301 of 448

Chain 1

Page 302 of 448

Page 303 of 448

Page 304 of 448

BANDEDGE DATA

2TX Conduc	ted Spurious	s BE for UNII							
Date:		6/26/2013							
Test Engine	er:	Tony Wagoner							
Client:		Qualcomm							
Project Nur	nber:	13U14995							
Configurati	on:	Tx							
Mode of op	eration:	5.5GHz 11n HT40		Note: if th	e PK marg	in is greater th	nan 20 dB, the	re is no nee	d to get AVG rea
Channel	Frequency (MHz)	PXA PK Reading Chain 0 (dBm)	PXA PK Reading Chain 1 (dBm)	AG/Chain (dBi)	PK EIRP (dBm)	PK E-field Limit (dBm)	PK E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
102 (5510)	5459.45	-44.030	-40.220	2	-33.70	-21.2	-12.50	13.00	6.82/8.38
102 (5510)	5469.4	-39.860	-32.830	2	-27.03	-27	-0.03	11.00	4.83/6.52
136 (5670)	5727.3	-40.612	-34.337	2	-28.41	-27	-1.41	17.00	10.01/12.14
Channel	Frequency (MHz)	PXA AVG Reading Chain 0 (dBm)	PXA AVG Reading Chain 1 (dBm)	AG/Chain (dBi)	AVG EIRP (dBm)	AVG E-field Limit (dBm)	AVG E-field Margin (dB)	Software Setting	AVG Power Meter Reading (dBm)
102 (5510)	5356.05	-63.124	-47.403	2	-42.28	-41.2	-1.08	11.00	5.02/6.57
	5459.67	-59.268	-54.647	2	-48.35	-41.2	-7.15	11.00	5.02/6.57
102 (5510)				n	-12 11	-11 2	-1.24	17.00	10 01/12 14

Page 305 of 448

8.10. WORST-CASE BELOW 1 GHz

CONDUCTED SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 306 of 448

							Mk	ar2 474.	6 MHz	
Ref 10 dBi	n	Atten 10)dB					-63.02	dBm	Center Freq
#Реак Год										
10										Start Fred
dB/										30.0000000 MHz
Offst										
14.9										Stop Fred
										1.00000000 GHz
				2						
-	american and the second	manue	www.	-mr.	www.	munin	man	Marth Sugar	- talget as to	CF Ste
#PAva										97.0000000 MHz
Start 30.0	MHz						Stop	1.000 () GHz	Frea Offset
#Res BW 1	100 kHz		#VB	W 300	kHz	Sweep	o 92.72	ms (601	pts)	0.00000000 Hz
Marker 1	(1)	l ype Freg		807	. Axis 7.6 MHz			Amplitu -65.04 dB	m	
2	(1)	Freq		474	4.6 MHz			-63.02 dB	m	Signal Track
										0 n <u> </u>
									I	

Page 307 of 448

Date:		6/18/2013					
Test Engineer:		Tony Wagoner					
Client:		Qualcomm					
Project Number:		13u14995					
Configuration:		30-1000MHz					
Mode of operation	:	Worst Case					
Frequency (MHz)	Meter PK	Meter PK	AG	AG	PK EIRP	QP E-field	QP E-field
	Reading	Reading	Chain 0	Chain 1	(dBm)	Limit	Margin
	Chain 0 (dBm)	Chain 1 (dBm)	(dBi)	(dBi)		(dBm)	(dB)
474.6	-63.06	-63.02	2	2	-50.32	-49.18	-1.14
807.6	-60.18	-65.04	2	2	-49.24	-49.18	-0.06
Note: if the QP ma	rgin is passing th	ere is no need to	o get QP n	neasurem	ent.		
QP Limit	Stop Freg (MHz)	Limit (dBm)					
Start Freq (MHz)							
30	88	-55.20					
88	216	-51.68					
216	960	-49.18					
000	1000	-41.22					

Page 308 of 448

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 309 of 448

9.2. TX ABOVE 1 GHz 802.11a MODE, 5.2 GHz BAND, with 50 ohm load

11a Mode, 5180 MHz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 310 of 448

Page 311 of 448

5.2 Band, 1	1a Mode, Lo	w Channel										
Job: 13U14	995											
Tested by:	Chris Xiong											
Marker No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	Preamp/ Cable 5GHz LPF dB	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (dB)	Height [cm]	Polarity
1000 - 5000	MHz											
1	1598.667	49.14	PK	29.5	-34.5	44.14	53.97	-9.83	74	-29.86	200	Horz
2	1882.667	42.9	РК	31.3	-33.9	40.3	53.97	-13.67	74	-33.7	300	Horz
3	2133.333	54.47	РК	32.3	-34.3	52.47	53.97	-1.5	74	-21.53	200	Horz
4	1597.333	49.63	PK	29.5	-34.5	44.63	53.97	-9.34	74	-29.37	400	Vert
5	1883.333	52.39	PK	31.4	-33.9	49.89	53.97	-4.08	74	-24.11	200	Vert
6	2127.333	51.35	PK	32.3	-34.4	49.25	53.97	-4.72	74	-24.75	200	Vert
5015 - 1800	OMHz											
7	*10371.184	42.82	РК	38.3	-25.5	55.62	53.97	1.65	74	-18.38	199	Horz
8	*10356.204	45.29	PK	38.3	-25.4	58.19	53.97	4.22	74	-15.81	400	Vert
	*=Not in the	e restricted I	band									
Marker No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	6GHz HPF Preamp/ Cable dB	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (dB)	Height [cm]	Polarit
Range:710	000 - 18000M	1Hz										
9	10645.28	18.57	РК	38.5	-25.8	31.27	53.97	-22.7	74	-42.73	400	Horz
Range:810	000 - 18000M	1Hz										
10	10601.283	18.58	РК	38.4	-25.9	31.08	53.97	-22.89	74	-42.92	200	Vert
Average:												
Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	Preamp/ Cable 5GHz LPF dB	dB(uVolt s/meter)	E-Fields [dBuV/m] · Avg	Margin (dB)	E-Fields [dBuV/m] · Peak	Margin (dB)	Azimuth [Degs]	Height [cm]	Polarity
Horizontal	1000 - 5000N	1Hz										
2125.343	33.43	VB1	32.3	-34.4	31.33	53.97	-22.64	74	-42.67	188	171	Horz
Horizontal	6015 - 18000	MHz										
10364.201	33.59	VB1	38.3	-25.4	46.49	53.97	-7.48	74	-27.51	114	197	Horz
Vertical 60	15 - 18000MH	Iz										
10350.484	36.84	VB1	38.3	-25.4	49.74	53.97	-4.23	74	-24.26	95	143	Vert
10483.454	38.44	VB1	38.4	-25.6	51.24	53.97	-2.73	74	-22.76	273	287	Vert
16540.673 Test	24.74 Meter	VB1 Detector	41.3 T346 Ant Factor	-22.6 6GHz HPF Preamp/	43.44 dB(uVolt	53.97 E-Fields [dBuV/m] ·	-10.53 Margin	74 E-Fields [dBuV/m] ·	-30.56 Margin	182 Azimuth	175 Height	Vert Polarit
Range:710	000 - 18000M	1Hz	[dB/m]	Cable dB	symetery	Avg	(ub)	Peak	(UB)	[Degs]	land	
10401 457	32.45	- VB1	38.4	-24.9	45.95	53,97	-8.02	74	-28.05	176	387	Hor7
PK - Peak d	etector									_, 0		
	Peak detect	or										
QP - Quasi-		etector										
QP - Quasi- nAv - Line	ar Average d											
QP - Quasi- nAv - Line gAy - Log	ar Average d Average dete	ector										

Page 312 of 448

<u>11a Mode, 5200 MHz</u>

Page 313 of 448

Page 314 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

Manufac	cturer: Qualo	omm Ath	eros								
Model: (QCA6234										
5.2 Band	, 11a Mode,	Mid Chan	nel								
Job: 13U	14995										
Tested b	y: Chris Xior	ng									
Marker No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	Preamp/ Cable 5GHz LPF dB	dB(uVolts /meter)	E-Fields [dBuV/m] - Avg	Margin (dB)	E-Fields [dBuV/m] - Peak	Margin (dB)	Height [cm]
Horizont	tal 1000 - 500	0MHz									
1	1597.333	49.71	PK	29.5	-34.5	44.71	53.97	-9.26	74	-29.29	399
2	2124.667	50.21	PK	32.2	-34.4	48.01	53.97	-5.96	74	-25.99	300
Vertical	1000 - 5000N	ЛНz									
3	2130	53.71	PK	32.3	-34.4	51.61	53.97	-2.36	74	-22.39	200
4	2661.333	45.46	PK	33	-33.6	44.86	53.97	-9.11	74	-29.14	200
				T346 Ant	Preamp/ Cable		E-Fields		E-Fields		
Marker	Test	Meter		Factor	5GHz LPF	dB(uVolts	[dBuV/m] -	Margin	[dBuV/m] -	Margin	Height
No.	Frequency	Reading	Detector	[dB/m]	dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]
Horizont	tal 6015 - 180	00MHz									
5	*10397.15	43.14	PK	38.4	-25	56.54			68.2	-11.66	400
Vertical	6015 - 18000	MHz									
6	*10403.142	44.53	PK	38.4	-24.9	58.03			68.2	-10.17	400
	*=Not in th	e restricte	ed band								
Marker	Test	Meter		T346 Ant Factor	6GHz HPF Preamp/	dB(uVolts	E-Fields [dBuV/m] -	Margin	E-Fields [dBuV/m] -	Margin	Height
No.	Frequency	Reading	Detector	[dB/m]	Cable dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]
Range:7	10000 - 1800	0MHz									
7	13630.364	20.33	PK	39.2	-26.3	33.23	53.97	-20.74	74	-40.77	300
Range:8	10000 - 1800	OMHz									
8	14093.659	20.09	PK	39.6	-26.2	33.49	53.97	-20.48	74	-40.51	200
PK - Pea	k detector										
QP - Qua	asi-Peak det	ector									
LnAv - Li	near Averag	e detecto	r								
LgAv - Lo	og Average d	etector									

Page 315 of 448

<u>11a Mode, 5240 MHz</u>

Page 316 of 448

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 317 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

Manufac	turor: Qualo	omm Athe	ros									
Model: C	CA6234	omm Acre	103									
5 2 Band	11a Mode	High Chan	nel									
Job: 13U	14995	ingn chun										
Tested by	v: Chris Xion	σ										
resteub	y. China Xion	5										
Marker No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	Preamp/ Cable 5GHz LPF dB	dB(uVolts /meter)	E-Fields [dBuV/m] Avg	Margin (dB)	E-Fields [dBuV/m] · Peak	Margin (dB)	Height [cm]	Polarity
Horizont	al 1000 - 500	0MHz		[,,		()		()	1	
1	2131.333	49.77	РК	32.3	-34.3	47.77	53.97	-6.2	74	-26.23	300	Horz
2	2664	45.29	PK	33	-33.5	44.79	53.97	-9.18	74	-29.21	200	Horz
Vertical 1	1000 - 5000M	IHz										
3	2131.333	53.67	PK	32.3	-34.3	51.67	53.97	-2.3	74	-22.33	200	Horz
Marker	Test	Meter		T346 Ant Factor	Preamp/ Cable 5GHz LPF	dB(uVolts	E-Fields [dBuV/m]	Margin	E-Fields [dBuV/m] ·	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Horizont	al 6015 - 180	00MHz										
4	*10476.044	42	PK	38.4	-25.5	54.9			68.2	-13.3	299	Horz
Vertical 6	5015 - 18000	MHz										
5	*10482.036	42.34	PK	38.4	-25.6	55.14			68.2	-13.06	400	Horz
	*=Not in th	e restricte	d band									
Marker	Test	Meter		T346 Ant Factor	6GHz HPF Preamp/	dB(uVolts	E-Fields [dBuV/m]	Margin	E-Fields [dBuV/m] ·	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	Cable dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Range:71	10000 - 1800	OMHz										
6	17387.384	20.6	PK	41.6	-21.1	41.1	53.97	-12.87	74	-32.9	100	Horz
Range:81	10000 - 1800	OMHz										
7	17717.357	19.86	PK	42.1	-21	40.96	53.97	-13.01	74	-33.04	200	Vert
PK - Peak	detector											
QP - Qua	si-Peak dete	ector										
LnAv - Lir	near Average	e detector										
LgAv - Lo	g Average d	etector										
Av - Ave	rage detecto	or										

Page 318 of 448

9.3. TX ABOVE 1 GHz 802.11n HT20 MODE, 5.2 GHz BAND, with 50 ohm load

11n HT20 Mode, 5180 MHz

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 320 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

Manufactu	irer: Oualco	mm Ather	05									
Model: 00	A6234											
5.15-5.25 F	Band HT20. 1	1n 5180										
Job: 13U14	1995											
Tested by:	John Nguye	en										
					Preamp/							
				T346 Ant	Cable		E-Fields		E-Fields			
Marker	Test	Meter		Factor	5GHz LPF	dB(uVolts	[dBuV/m]	Margin	[dBuV/m]	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Horizontal	1000 - 5000	MHz										
1	1499.333	45.85	PK	28.8	-35.3	39.35	53.97	-14.62	74	-34.65	300	Horz
2	1598.667	46.36	PK	29.5	-34.5	41.36	53.97	-12.61	74	-32.64	400	Horz
3	2128	50.35	PK	32.3	-34.4	48.25	53.97	-5.72	74	-25.75	300	Horz
Vertical 10	00 - 5000MI	Iz										
4	1494.667	45.08	PK	28.8	-35.3	38.58	53.97	-15.39	74	-35.42	100	Vert
5	1597.333	47.51	PK	29.5	-34.5	42.51	53.97	-11.46	74	-31.49	300	Vert
6	2131.333	50.99	PK	32.3	-34.3	48.99	53.97	-4.98	74	-25.01	400	Vert
					Preamp/							
				T346 Ant	cable/6G		E-Fields		E-Fields			
Marker	Test	Meter		Factor	Hz HPF	dB(uVolts	[dBuV/m]	Margin	[dBuV/m]	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Horizontal	6015 - 1800	0MHz										
7	6322.589	39.08	PK	35.9	-29.2	45.78	53.97	-8.19	74	-28.22	100	Horz
8	8095.223	40.13	PK	36.2	-28.7	47.63	53.97	-6.34	74	-26.37	100	Horz
9	9928.775	36.74	РК	38	-25.8	48.94	53.97	-5.03	74	-25.06	400	Horz
Vertical 60	15 - 18000N	Hz									400	
10	6309.607	40.25	РК	35.9	-29.3	46.85	53.97	-7.12	/4	-27.15	100	Vert
11	8131.175	39.31	PK	36.2	-28.5	47.01	53.97	-6.96	74	-26.99	100	Vert
12	9933.768	35.79	РК	38	-25.8	47.99	53.97	-5.98	/4	-26.01	200	vert
				T3/6 Ant	6GH7 HDF		F-Fields		E-Fields			
Markor	Tost	Motor		Factor	Droamn/	dB(uVolts	[dBuV/m]	Margin	[dBuV/m]	Margin	Height	
No	Frequency	Reading	Detector	[dB/m]	Cable dB	(meter)	Δνσ	(dB)	Doak	(dB)	[cm]	Polarity
Pango:710	18000		Detector	[ub/iii]	cubic ub	metery	~~ <u>6</u>	(ub)	I Cuik	(ub)	fend	rolarity
15	*10363 97	40.66	DK	28.2	-25.4	53 56			68.2	-14 64	299	Horz
	10303.57	40.00	T K	50.5	20.4	55.50			00.2	14.04	255	11012
				T346 Ant	6GHz HPF		E-Fields		E-Fields			
Marker	Test	Meter		Factor	Preamp/	dB(uVolts	[dBuV/m]	Margin	[dBuV/m]	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	Cable dB	/meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Range:810	0000 - 18000	MHz					_			-		
16	*10361.303	44.04	РК	38.3	-25.3	57.04			68.2	-11.16	400	Vert
* = Not	t In restricte	d band										
PK - Peak d	detector											
QP - Quasi	-Peak deteo	tor										
LnAv - Line	ear Average	detector										
LgAv - Log	Average de	tector										
Av - Avera	age detector	r										

Page 321 of 448

<u>11n HT20 Mode, 5200 MHz</u>

Page 322 of 448

Page 323 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

5.15-5.25 B Job: 13U14 Tested by:	and H120, 1 995 John Nguye	1n 5200 en									
Marker	Test	Meter	T346 Ant Factor	Preamp/C able 5GHz	dB(uVolts/	E-Fields [dBuV/m] ·	Margin	E-Fields [dBuV/m] ·	Margin	Height	

No.	Frequency	Reading	Detector	[dB/m]	LPF dB	meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Horizontal	1000 - 5000	MHz										
1	1499.333	45.85	PK	28.8	-35.3	39.35	53.97	-14.62	74	-34.65	300	Horz
2	1598.667	46.36	PK	29.5	-34.5	41.36	53.97	-12.61	74	-32.64	400	Horz
3	2128	50.35	PK	32.3	-34.4	48.25	53.97	-5.72	74	-25.75	300	Horz
Vertical 10	00 - 5000MH	lz										
4	1494.667	45.08	PK	28.8	-35.3	38.58	53.97	-15.39	74	-35.42	100	Vert
5	1597.333	47.51	PK	29.5	-34.5	42.51	53.97	-11.46	74	-31.49	300	Vert
6	2131.333	50.99	PK	32.3	-34.3	48.99	53.97	-4.98	74	-25.01	400	Vert
				T346 Ant	Preamp/ca		E-Fields		E-Fields			
Marker	Test	Meter		Factor	ble/6GHz	dB(uVolts/	[dBuV/m]	Margin	[dBuV/m]	Margin	Height	
No.	Frequency	Reading	Detector	[dB/m]	HPF dB	meter)	Avg	(dB)	Peak	(dB)	[cm]	Polarity
Horizontal	6015 - 1800	OMHz										
7	6322.589	39.08	PK	35.9	-29.2	45.78	53.97	-8.19	74	-28.22	100	Horz
8	8095.223	40.13	PK	36.2	-28.7	47.63	53.97	-6.34	74	-26.37	100	Horz
9	9928.775	36.74	PK	38	-25.8	48.94	53.97	-5.03	74	-25.06	400	Horz
13	10364.194	46.24	PK	38.3	-25.4	59.14	53.97	5.17	74	-14.86	300	Horz
Vertical 60	15 - 18000M	Hz										
10	6309.607	40.25	PK	35.9	-29.3	46.85	53.97	-7.12	74	-27.15	100	Vert
11	8131.175	39.31	PK	36.2	-28.5	47.01	53.97	-6.96	74	-26.99	100	Vert
12	9933.768	35.79	PK	38	-25.8	47.99	53.97	-5.98	74	-26.01	200	Vert
14	10362.196	51.03	PK	38.3	-25.4	63.93	53.97	9.96	74	-10.07	300	Vert
				Preamp/								
			T346 Ant	cable/6G		E-Fields		E-Fields				
Test	Meter		Factor	Hz HPF	dB(uVolts/	[dBuV/m] -	Margin	[dBuV/m]	Margin	Azimuth	Height	
Frequency	Reading	Detector	[dB/m]	dB	meter)	Avg	(dB)	Peak	(dB)	[Degs]	[cm]	Polarity
Horizontal	6015 - 1800	OMHz										
10402.032	35.14	VB1	38.4	-24.9	48.64	53.97	-5.33	74	-25.36	22	263	Horz
Vertical 60	15 - 18000M	Hz										
10402.249	32.52	VB1	38.4	-24.9	46.02	53.97	-7.95	74	-27.98	261	366	Vert
PK - Peak detector												
QP - Quasi-Peak detector												
LnAv - Linear Average detector												
LgAv - Log Average detector												
Av - Avera	ge detector											

Page 324 of 448

<u>11n HT20 Mode, 5240 MHz</u>

Page 325 of 448

Page 326 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

Vert

Manufacturer: Qualcomm Atheros Model: QCA6234 5,15-5,25 Band HT20, 11n 5240 Job: 13U14995 Tested by: John Nguyen

Markes No.	Test Frequency	Meter	Detector	T346 Ant Factor [dB/m]	Preamp/C able 5GHz LPF dB	d8(uVolts /meter)	E-Fields [dBuV/m] Avg	Margin (d6)	E-Fields [dBavV/m] Peak	Margin (d8)	Height [cm]	Polarity	
Horizontal	1000 - 5000	MHz											1
1	1504,667	46.39	PK	28.8	-35.3	39.89	53.97	-14.08	.74	-54.11	400	Horz	
2	1594.667	52.31	PE	29.4	-34.6	47.11	53.97	-6.86	74	-26.89	400	Hari	
3	*2128	50,45	PK	32,3	-34.6	48,35	53,97	-5.62	74	-25,65	200	Hors	
Vertical 10	00 - 5000MH	it.		-								1000	
4	1469.333	50.13	PK	28.8	-35.2	43.73	53.97	-10.22	74	-30.25	300	Vert	1
5	1594.667	55.6	PK	29.4	-34.6	50.4	53.97	-1.57	74	-23.6	300	Vert	
6	*2126	51.94	PE	37.3	-34.4	49.84	\$3.97	4.13	74	24,15	300	Vert	
_	"=Not in th	e restricte	d band										5
Marher No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [d8/m]	Preamp/c able/6GHz HPF dB	dB(uVolts /meter)	E-Fields [dBuV/m] Avg	Margin (dB)	E-Fields (dBuV/m) Peak	Margin (dB)	Height [cm]	Polarity	
Horizontal	6015 - 1800	0MHz							_				1.1
7	10487.03	43.21	PK -	38.4	-75,7	55.91	\$3,97	1,94	74	-18,09	400	Horz	
Vertical 60	15 - 18000M	HZ	_					C					
8	10484.034	49.32	PK	38.4	-29.6	62.17	53.97	8.15	.74	-11.88	200	Vert	
	_			-		-				-			
Marker No.	Test Frequency	Meter Reading	Detector	T346 Ant Factor [dB/m]	6GHz HPF Preamp/C able dB	d8(uVolts /meter)	E-Fields [d8uV/m] Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (d8)	Height [cm]	Polarity	
Range:710	00081-000	MHZ.		_				_	_				
9	10489.961	35.11	ЪК	38.4	-29.4	48.11	53.97	-5.80	74	-25.89	399	Holt	
Range:810	000-18000	MHZ				- C - C - C - C - C - C - C - C - C - C			-	1		-	1.1
10	10486.526	41.73	DE	38.4	-25.7	54.43	53.97	0.46	74	-19.57	200	Vert	
Test	Meter	Detector	T346 Ant Factor [d8/m]	Preamp/ cable/6G Hz HPF dB	dB(uValts /meter)	E-Fields (dBuV/m] Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (d8)	Azimuth [Degs]	Height (cm)	Polarity	
Horizontal	6015 - 1800	OMHZ							-				
10485.84	36.37	VBI	38.4	-25.7	49.07	53.97	-4.9	74	24:93	175	330	Hota	
Vertical 60	15 - 1800dM	Hz										-	
10483.454	38.44	VB1	38,4	-25.6	51.24	53.97	-2.73	74	-22.76	273	287	Vert	
_	1	_			_						-		
Test Frequency	Meter Reading	Detector	1346 Ant Factor [dB/m]	6GHz HPF Preamp/ Cable dB	dB(uVolts /meter)	E-Fields (d8uV/m) Avg	Margin (dB)	E-Fields [dBuV/m] Peak	Margin (d8)	Azimuth [Degs]	Height (cm)	Polarity	
Range:710	000 - 18000	MHZ	1 44 2		12.222				1	1			
10401.457	32,45	VB1	38.4	-24.9	45.95	53.97	-8.02	74	-28.05	176	387	HOPI	
10401.457	32.11	PK	38.4	-24.9	45.ftT	53.97	-8.36	74	-28.39	176	387	Hora	1.1
Vertical 10	00 - 7600MH	12	1.000			Parties and	1 100 100 1	1.000	1.00	Labora	10. 1	Lane of t	
Test	Meter	in the second	1345 Ant	T145	Cahle	1162 BRF	dB(uVolts	E-Fields	Margin	E-Fields	Margin	Azimuth	He
Frequency	Reading	Detector	Factor	Preamp	Factor	[db]	/meter)	[d9uV/m]	(dB)	[dBuV/m	(dB)	[Degs]	Ic
		and the second sec	and the second se	A CONTRACTOR OF			A DESCRIPTION OF A DESC	the second se	and the second se		and the second se	A COLUMN AND A COLUMNA AND A COLUMN AND A COLUMNA AND A COLUMNA AND A COLUMNA AND A COLUMN AND A COLUMNA AND A	

LgAv - Log Average detector

Av - Average detector

Page 327 of 448

9.4. TX ABOVE 1 GHz 802.11n HT40 MODE, 5.2 GHz BAND, with 50 ohm load

<u>11n HT40 Mode, 5190 MHz</u>

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 328 of 448

Page 329 of 448

REPORT NO: 13U14995-2A FCC ID: PPD-QCA6234

Manufact	urerQualcom	nm Athero	S									
ModelQCA6234												
5.2 Band, 11n HT40 mode, 5190												
Job:13U14995												
Tested by:Rolly Alegre												
Horizontal 1000 - 5000MHz												
Marker	Test	Meter		T346 Ant	Preamp/	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Height	
No.	Frequency	Reading	Detector	Factor	Cable	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[cm]	Polarity
1	1597.333	45.2	РК	29.5	-34.5	40.2	53.97	-13.77	74	-33.8	399	Horz
2	2125.333	47.63	РК	32.3	-34.4	45.53	53.97	-8.44	74	-28.47	399	Horz
Vertical 10	000 - 5000MH	lz										
Marker	Test	Meter		T346 Ant	Preamp/	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Height	
No.	Frequency	Reading	Detector	Factor	Cable	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[cm]	Polarity
3	1593.333	44.32	PK	29.4	-34.6	39.12	53.97	-14.85	74	-34.88	300	Vert
4	2132 667	48.21	PK	32.3	-34.3	46 21	53.97	-7.76	74	-27.79	300	Vert
Horizontal 6015 - 18000MHz			T K	52.5	04.0	-0.21	55.57	7.70	74	21113	500	Vert
Marker Test Meter			Eactor	cable/6G	dB(u)/olt	[dBu\//m	Margin	[dBu\//m	Margin	Hoight		
No	Froguency	Reading	Detector			ub(uvoit		(dp)	1 Dook		feml	Delarity
NO.	frequency	Reading	Detector		05.1	symetery	J- Avg	(UB)	J-Peak	(UB)	[CIII]	Polarity
5 10389.10 44.99		РК	38.4	-25.1	58.29	53.97	4.32	/4	-15.71	400	Horz	
vertical of	J15 - 18000W	HZ		70.05.0.1	p /		E E		E E			
Marker	lest	Meter		1346 Ant	Preamp/	aB(uvoit	E-Fields	Margin	E-Fields	Margin	Height	
No.	Frequency	Reading	Detector	Factor	cable/6G	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[cm]	Polarity
6	10376.178	46.42	РК	38.4	-25.4	59.42	53.97	5.45	74	-14.58	300	Vert
Horizonta	6015 - 1800	OMHz										
Test	Meter		T346 Ant	Preamp/	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Azimuth	Height	
Frequenc	Reading	Detector	Factor	cable/6G	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[Degs]	[cm]	Polarity
10382.72	39.3	VB1	38.4	-25.3	52.4	53.97	-1.57	74	-21.6	274	373	Horz
Vertical 6015 - 18000MHz												
Test	Meter		T346 Ant	Preamp/	dB(uVolt	E-Fields	Margin	E-Fields	Margin	Azimuth	Height	
Frequenc	Reading	Detector	Factor	cable/6G	s/meter)	[dBuV/m	(dB)	[dBuV/m	(dB)	[Degs]	[cm]	Polarity
10381.25	36.36	VB1	38.4	-25.4	49.36	53.97	-4.61	74	-24.64	125	304	Vert
PK - Peak detector												
QP - Quasi-Peak detector												
LnAv - Linear Average detector												
LgAv - Log Average detector												
Av - Average detector												

Page 330 of 448