

FCC OET BULLETIN 65 SUPPLEMENT C Class II Permissive Change IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

Low Power 1x1 802.11 b/g/n (SDIO) Card (Tested inside of TOSHIBA Folio 100, dynabook A300)

MODEL: ARS63-S

FCC ID: PPD-ARS63S IC: 4104A-ARS63S

REPORT NUMBER: 10U13414-1

ISSUE DATE: September 13, 2010

Prepared for

ATHEROS COMMUNICATIONS, INC. 1700 TECHNOLOGY DRIVE SAN JOSE, CA 95110, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 771-1000

Revision History

Rev.	Issue Date	Revisions	Revised By
	September 13, 2010	Initial Issue	

TABLE OF CONTENTS

1. ATTESTA	TION OF TEST RESULTS	4
2. TEST ME	THODOLOGY	5
3. FACILITIE	S AND ACCREDITATION	5
4. CALIBRA	TION AND UNCERTAINTY	6
4.1. MEA	SURING INSTRUMENT CALIBRATION	6
4.2. MEA	SUREMENT UNCERTAINTY	7
5. EQUIPME	NT UNDER TEST	8
6. SYSTEM	SPECIFICATIONS	9
7. COMPOS	ITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8. LIQUID P	ARAMETERS CHECK	11
8.1. LIQU	IID CHECK RESULTS FOR 2450 MHZ	12
9. SYSTEM	VERIFICATION	13
9.1. SYS	TEM CHECK RESULTS FOR D2450V2	13
10. RF OU	TPUT POWER VERIFICATION	16
11. SUMM	ARY OF SAR TEST RESULTS	17
12. SAR TI	EST PLOTS	18
13. ATTAC	HMENTS	23
14. ANTEN	INA LOCATIONS AND SEPARATION DISTANCES	24
15. TEST S	SETUP PHOTOS	25
16. HOST	DEVICE PHOTO	28

DATE: September 13, 2010 IC: 4104A-ARS63S

1. ATTESTATION OF TEST RESULTS

Applicant:	ATHEROS COMMUNICATION	ATHEROS COMMUNICATIONS, INC.				
	1700 TECHNOLOGY DRIVE	700 TECHNOLOGY DRIVE				
	SAN JOSE, CA 95110, U.S.	AN JOSE, CA 95110, U.S.A				
EUT description:	Low Power 1x1 802.11 b/g/	n (SDIO) Card				
	(Tested inside of TOSHIBA	Folio 100, dynabook A300)				
Model number:	ARS63-S	ARS63-S				
Device category:	Portable					
Exposure category:	General Population/Uncontro	General Population/Uncontrolled Exposure				
Date tested:	September 10, 2010					
FCC / IC Rule Parts	Frequency Range [MHz]	Highest 1-g SAR (mW/g)	Limit (mW/g)			
15.247 / RSS-102	2412 – 2462	0.987 (Tablet – Bottom face)	1.6			
Applicable Standards Te						
ECC OET Bullotin 65 Su	· · · · · · · · · · · · · · · · · · ·		Test Results			
- IC RSS 102 Issue 4	FCC OET Bulletin 65 Supplement C 01-01IC RSS 102 Issue 4					

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Sunay Shih

SUNNY SHIH ENGINEERING TEAM LEADER

COMPLIANCE CERTIFICATION SERVICES

Tested By:

DEVIN CHANG EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 D01 Mobile Portable RF Exposure v04, supplemental to KDB 616217 D03 and IC RSS 102 Issue 4.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

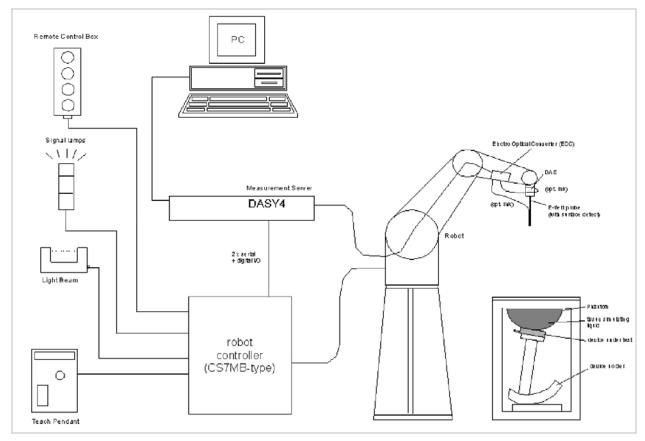
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Earlings of	NA Carl	T /N 4 d - l	OrdalNa	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		N/A	
Electronic Probe kit	HP	85070C	N/A	N/A		N/A	
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011	
System Validation Dipole	SPEAG	D2450V2*	706	4	19	2013	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
ESG Vector Signal Generator	Agilent	E4438C	US44271090	9	17	2010	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPAEG	M2450	N/A	Withir	1 24 h	rs of first test	

Note: Per KDB 450824 D02 requirements for dipole calibration, CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in CCS)

4.2. MEASUREMENT UNCERTAINTY


Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

	•			1	
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50		1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy		Rectangular	1.732	0.7071	0.94
Boundary Effect		Rectangular	1.732	1	0.52
Probe Linearity		Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	3.24	Normal	1	0.64	2.07
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	2.25	Normal	1	0.6	1.35
		Combined Standard		inty Uc(y) =	9.76
Expanded Uncertainty U, Cover				19.52	%
Expanded Uncertainty U, Cover	age Facto	or = 2, > 95 % Confi	dence =	1.55	dB

5. EQUIPMENT UNDER TEST

Low Power 1x1 802.11 b/g/n (SDIO) Card (Tested inside of TOSHIBA Folio 100, dynabook A300)						
Normal operation:	Tablet - Bottom face, and Tablet Edges - Multiple display orientations supporting both portrait and landscape configurations. Note: Multiple display orientations are not supporting secondary landscape.					
Antenna tested:	Antenna Part number WiFi Main C1335-520022-A					
Antenna-to-antenna & user separation distances:	See Section 14 Antenna locations and separation distances					
Require SAR evaluation for Simultaneous transmission?	WWAN co-located RF exposure assessment will be addressed in a separate FCC application filed under WWAN application.					

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	45	50	83	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 300 – 3000 MHz and 5800 MHz)

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body				
raiget Frequency (Miriz)	ϵ_{r}	σ (S/m)			
300	58.20	0.92			
450	56.70	0.94			
835	55.20	0.97			
900	55.00	1.05			
915	55.00	1.06			
1450	54.00	1.30			
1610	53.80	1.40			
1800 – 2000	53.30	1.52			
2450	52.70	1.95			
3000	52.00	2.73			
5800	48.20	6.00			

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2450 MHz

f (MHz)	(MHz) Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
2450	e'	53.88	Relative Permittivity (ε_r):	53.884	52.7	2.25	? 5
2450	e"	14.77	Conductivity (σ):	2.013	1.95	3.24	? 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40%

September 10, 2010 8:45 AM

Frequency	e'	e"
2400000000.	53.9768	14.5725
2405000000.	53.9679	14.6213
2410000000.	53.9562	14.6779
2415000000.	53.9495	14.6760
2420000000.	53.9494	14.7228
2425000000.	53.9369	14.7251
2430000000.	53.9353	14.7244
2435000000.	53.9339	14.7351
2440000000.	53.9257	14.7522
2445000000.	53.8962	14.7654
2450000000.	53.8836	14.7710
2455000000.	53.8276	14.7827
2460000000.	53.7986	14.7723
2465000000.	53.7349	14.7577
2470000000.	53.7075	14.7270
2475000000.	53.6748	14.7287
2480000000.	53.6722	14.7301
2485000000.	53.6695	14.7382
2490000000.	53.6750	14.7858
2495000000.	53.6603	14.8393
2500000000.	53.6437	14.9170

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Measured by: Devin Chang

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System validation dipole	Cal. certificate #	Cal.	SAR Avg (mW/g)				
		due date	Tissue:	Head	Body		
D2450V2	D2450V2-706_Apr10	04/19/13	SAR _{1g} :	51.6	52.4		
D2450V2			SAR _{10g} :	24.4	24.5		

9.1. SYSTEM CHECK RESULTS FOR D2450V2

Ambient Temperature = 24°C: Relative humidity = 38% Measured by: Devin Chang

Ambient remperat	uic – 2 + 0, iv	ciative number	y - 30 70	Micasurco	Dy. Deville	niarig	
System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance	
validation dipole	Date Tested	Tissue:	Body	Target	Della (%)	(%)	
D2450V2	09/10/10	SAR _{1g} :	54.6	52.4	4.20	±10	
D2 4 50 V2	09/10/10	SAR _{10q} :	25.3	24.5	3.27	±10	

REPORT NO: 10U13414-1 FCC ID: PPD-ARS63S

SYSTEM CHECK PLOT

Date/Time: 9/10/2010 9:01:30 AM

DATE: September 13, 2010

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

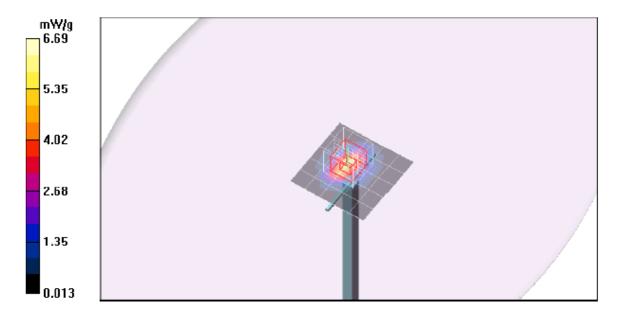
Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.69 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

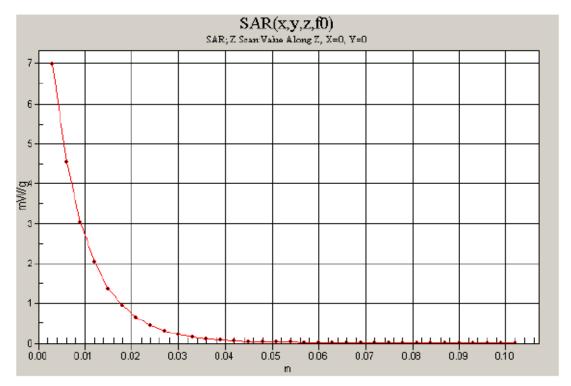
Reference Value = 59.0 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 11.4 W/kg

SAR(1 g) = 5.46 mW/g; SAR(10 g) = 2.53 mW/g Maximum value of SAR (measured) = 7.14 mW/g

SYSTEM CHECK – Z Plot

Date/Time: 9/10/2010 9:18:27 AM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.98 mW/g

10. RF OUTPUT POWER VERIFICATION

Results

802.11b						
Channel #	Freq. (MHz)	Conducted Avg Power				
		(dBm)	(mW)			
1	2412	16.74	47.2			
6	2437	16.83	48.2			
11	2462	17.06	50.8			
802.11g						
1	2412	13.93	24.7			
6	2437	16.92	49.2			
11	2462	15.10	32.4			
802.11n HT20						
1	2412	13.13	20.6			
6	2437	16.90	49.0			
11	2462	14.40	27.5			

Note: According to KDB 248227, SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11. SUMMARY OF SAR TEST RESULTS

According to KDB 447498 4) b) ii) (2). SAR is required only for the edge with the most conservative exposure conditions.

Tablet – Lap Held (Bottom face)

10 mm separation distance from main antenna-to-user

Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
			(dBm)	1g-SAR	10g-SAR
802.11b	1	2412	16.74	0.507	0.239
	6	2437	16.83	0.987	0.446
	11	2462	17.06	0.768	0.348

2. Table – Edges with the following configurations

2.1 Edge - Primary Landscape (No SAR)

164.88 mm separation distance from WiFi main antenna-to-user.

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

2.2 Edge - Secondary Landscape (No SAR)

5.89 mm separation distance from WiFi main antenna-to-user.

Note: Multiple display orientations are not supporting secondary landscape.

2.3 Edge - Primary Portrait

70.89 mm separation distance from WiFi main antenna-to-user

Modo	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
Mode			(dBm)	1g-SAR	10g-SAR
	1	2412	16.74		
802.11b	6	2437	16.83	0.016	0.00448
	11	2462	17.06		

Note: According to KDB 248227, SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

2.4 Edge - Secondary Portrait (No SAR)

190.89 mm separation distance from Main antenna-to-user;

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

12. SAR TEST PLOTS

Tablet - Lap Held SAR Plot - 2.4GHz

Date/Time: 9/10/2010 2:21:56 PM

Test Laboratory: Compliance Certification Services

Tablet - Lap Held

DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.97 \text{ mho/m}$; $\epsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

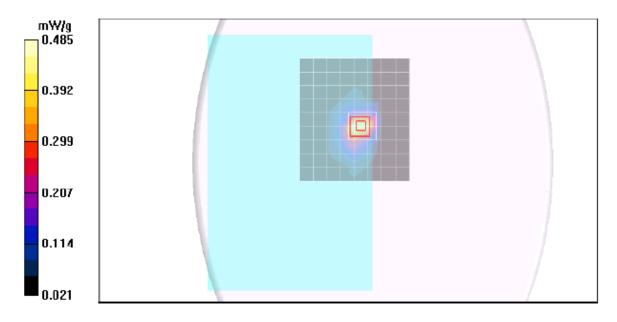
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b L-ch Mian Ant/Area Scan (9x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.485 mW/g

802.11b L-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 15.8 V/m; Power Drift = -0.227 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.507 mW/g; SAR(10 g) = 0.239 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.664 mW/g

REPORT NO: 10U13414-1 FCC ID: PPD-ARS63S

Tablet - Lap Held SAR Plot - 2.4GHz

Date/Time: 9/10/2010 1:56:07 PM

DATE: September 13, 2010

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services

Tablet - Lap Held

DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

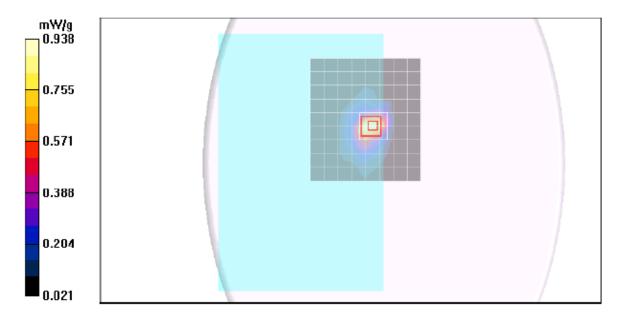
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (9x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.938 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 21.7 V/m; Power Drift = -0.216 dB

Peak SAR (extrapolated) = 2.23 W/kg

SAR(1 g) = 0.987 mW/g; SAR(10 g) = 0.446 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

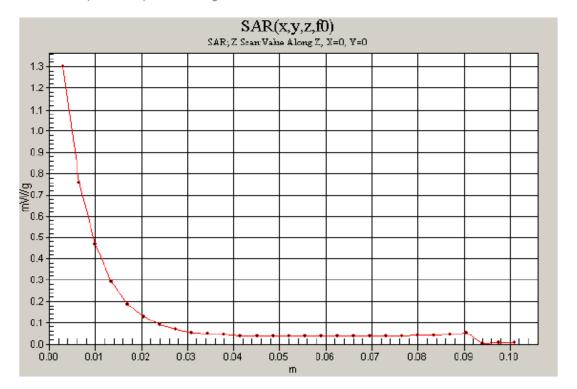
Maximum value of SAR (measured) = 1.31 mW/g

Tablet – Lap Held SAR Plot - 2.4GHz – Z plot

Date/Time: 9/10/2010 2:20:30 PM

Test Laboratory: Compliance Certification Services

Tablet - Lap Held


DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.30 mW/g

REPORT NO: 10U13414-1 FCC ID: PPD-ARS63S

Tablet - Lap Held SAR Plot - 2.4GHz

Date/Time: 9/10/2010 3:03:52 PM

DATE: September 13, 2010

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services

Tablet - Lap Held

DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 2.02 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

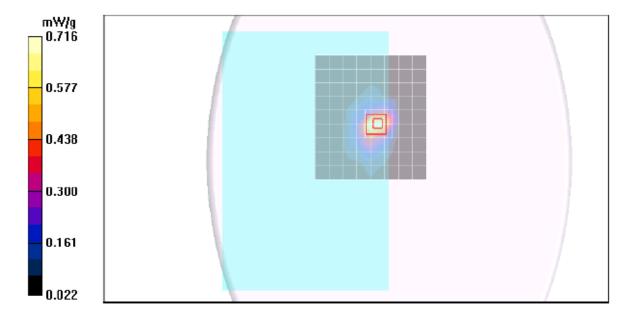
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b H-ch Mian Ant/Area Scan (9x10x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.716 mW/g

802.11b H-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 18.5 V/m; Power Drift = 0.094 dB

Peak SAR (extrapolated) = 1.76 W/kg

SAR(1 g) = 0.768 mW/g; SAR(10 g) = 0.348 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 mW/g

REPORT NO: 10U13414-1 FCC ID: PPD-ARS63S

Tablet - Primary Portrait SAR Plot - 2.4GHz

Date/Time: 9/10/2010 3:56:54 PM

DATE: September 13, 2010

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services

Primary Portrait

DUT: Toshiba; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

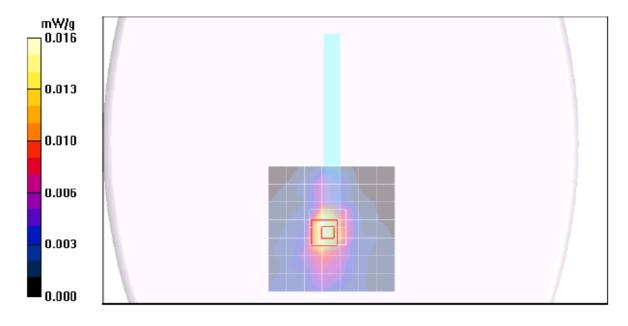
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.016 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 2.76 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00448 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.019 mW/g

REPORT NO: 10U13414-1 DATE: September 13, 2010 IC: 4104A-ARS63S FCC ID: PPD-ARS63S

13. **ATTACHMENTS**

<u>No.</u>	<u>Contents</u>	No. of page (s)
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9