

FCC OET BULLETIN 65 SUPPLEMENT C

IEEE STD 1528:2003

RSS-102 Issue 4, March 2010
RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011

SAR EVALUATION REPORT

For AR6103 802.11n 1x1 WLAN SiP

MODEL: AR6103

FCC ID: PPD-AR6103 IC: 4104A-AR6103

REPORT NUMBER: 11U13604-1A

ISSUE DATE: May 4, 2011

Prepared for

ATHEROS COMMUNICATIONS, INC. 1700 TECHNOLOGY DR SAN JOSE, CA 95110

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771 1000

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

DATE: May 4, 2011 IC: 4104A-ARS63S

Revision History

Rev.	Issue Date	Revisions	Revised By
	March 28, 2011	Initial Issue	
Α	May 4, 2011	Updated probe description from 'EX3DV3 SN 3531' to 'EX3DV4 SN 3749' in section 8.	Sunny Shih

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4	CALIBRATION AND UNCERTAINTY	
	4.1. MEASURING INSTRUMENT CALIBRATION	
	4.2. MEASUREMENT UNCERTAINTY	
5.	EQUIPMENT UNDER TEST	
6.	SYSTEM SPECIFICATIONS	
7 .	TISSUE DIELECTRIC PARAMETERS	
	SYSTEM VERIFICATION	
8	3.1. SYSTEM CHECK RESULTS	13
9.	SAR MEASUREMENT PROCEDURES	18
10.	OUTPUT POWER VERIFICATION	19
11.	SUMMARY OF SAR TEST RESULTS	20
1	11.1. PIFA ANTENNA	20
	11.1.1. Antenna Vertical Up	20
	11.1.2. Antenna Vertical Down	21
	11.1.3. Antenna Horizontal Up	22
	11.1.4. Antenna Horizontal Down	23
	11.1.5. Antenna Horizontal Front	24
	11.1.6. Antenna Horizontal Back (Worst-case)	25
	11.1.7. Enhanced Energy Coupling	26
1	11.2. PRINT ANTENNA	27
	11.2.1. Antenna Horizontal Up (Worst-case)	27
	11.2.2. Antenna Horizontal Down	28
	11.2.3. Antenna Left Edge	29
	11.2.4. Antenna Right Edge	30
	11.2.5. Antenna Tip	31
	11.2.6. Enhanced Energy Coupling	32
1	11.3. CHIP ANTENNA	33
	11.3.1. Antenna Horizontal Up (Worst-case)	33
	Page 3 of 48	

	11.3.2.	Antenna Horizontal Down	34
	11.3.3.	Antenna Left edge	35
	11.3.4.	Antenna Right edge	36
	11.3.5.	Antenna Tip	37
	11.3.6.	Enhanced Energy Coupling	38
12.	WORS	ST CASE SAR TEST PLOTS	39
13.	ATTA	CHMENTS	45
14	FXTFI	RNAL PHOTOS	46

January 1, 2011

1. ATTESTATION OF TEST RESULTS

Company name:	ATHEROS COMMUI	ATHEROS COMMUNICATIONS, INC.			
	1700 TECHNOLOGY DR				
	SAN JOSE, CA 9511	0			
EUT Description:	AR6103 802.11n 1x1	WLAN SiP			
Model number:	AR6103				
Device Category:	Portable				
Exposure category:	General Population/L	Incontrolled Exposure			
Date of tested:	February 11 - 25, 2011				
FCC / IC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR W/kg	Limit (W/kg)		
15.247 / RSS-102	2412 - 2462	0.389 W/g Antenna (PIFA) Horizontal Back 0.136 W/kg Antenna (Printed) Horizontal Bac 0.00914 W/kg Antenna (Chip) Horizontal Back	1.6		
The most conservative an separation distances used		0.6 cm			
	Test Results				
FCC OET Bulletin 65 Sup	plement C 01-01				
IEEE STD 1528: 2003,					

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

RSS-102 Issue 4, March 2010 and RSS-102 Supplementary Procedures (SPR)-001,

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:	Tested By:
7/	

Sunny Shih Devin Chang
Engineering Team Leader EMC Engineer

Compliance Certification Services (UL CCS) Compliance Certification Services (UL CCS)

REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528-2003, RSS-102 Issue 4, March 2010, RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011 and the following specific FCC Test Procedures.

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- KDB 616217 Appendix Configuring Conservative SAR Test Conditions

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

N (F : /		T /54 1 1	0 : 11	Cal. Due date		
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003		N/A	
Dielectronic Probe kit	HP	85070C	N/A	N/A		N/A
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011
Thermometer	ERTCO	639-1S	1718	7	19	2011
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012
Power Meter	Giga-tronics	8651A	8651404	3	13	2012
Power Sensor	Giga-tronics	80701A	1834588	3	3 13 2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A
Simulating Liquid	SPEAG	M2450	N/A	Withir	Within 24 hrs of first tes	

Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

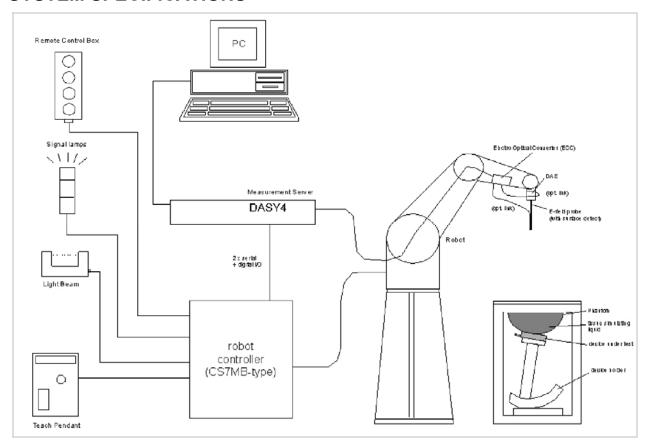
DATE: May 4, 2011

IC: 4104A-ARS63S

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 grain					
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time			1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance			1.732	1	0.23
	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	1.01	Normal	1	0.64	0.65
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement			1		
		Combined Standard	d Uncerta	inty $Uc(y) =$	9.53
Hemispherical Isotropy 2.30 Rectangular 1.732 0.7071 0.94					
RF Ambient Conditions - Noise 3.00 Rectangular 1.732 1 1.73 RF Ambient Conditions - Reflections 3.00 Rectangular 1.732 1 1.73 Probe Positioner Mechanical Tolerance 0.40 Rectangular 1.732 1 0.23 Probe Positioning with respect to Phantom 2.90 Rectangular 1.732 1 1.67 Extrapolation, Interpolation and Integration 1.00 Rectangular 1.732 1 0.58 Test Sample Related					


REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

DATE: May 4, 2011 IC: 4104A-ARS63S

5. EQUIPMENT UNDER TEST

AR6103 802.11n 1x1 WLAN SiP					
Antenna tested:	Manufactured Wistron Taiyo Yuden Atheros *: w/ 50 ohm co	Antenna type PIFA Chip Printed (Monopole) axial cable length: 300 r	Part number *81.EBJ15.005 AF 216M245001 2010-1-5 mm		
The most conservative antenna-to-user separation distances used during the test:	0.6 mm from an	tenna-to-user (refer to t	est setup photos)		
Antenna-to-antenna physical separation distances used during the test with Vertical placement:	Only one antenna provided.				
Antenna-to-antenna physical separation distances used during the test with Horizontal placement:	Only one anteni	na provided.			
The most conservative physical separation distance between Main/Aux antennas to avoid SAR distribution overlap:	Only one antenr	na provided.			

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Body (for 300 – 3000 MHz and 5800 MHz)
The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body (Supplement C 01-01)			
raiget Frequency (Miriz)	٤ _٢	σ (S/m)		
300	58.20	0.92		
450	56.70	0.94		
835	55.20	0.97		
900	55.00	1.05		
915	55.00	1.06		
1450	54.00	1.30		
1610	53.80	1.40		
1800 – 2000	53.30	1.52		
2450	52.70	1.95		
3000	52.00	2.73		
5800	48.20	6.00		

⁽ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

7.1. TISSUE PARAMETERS CHECK RESULTS

f (MH	lz)		Liquid	Parameters	Measured	Target	Delta (%)	Limit (%)
2450	1	e'	52.68	Relative Permittivity (ε_r):	52.684	52.7	-0.03	± 5
2430	J	e"	14.21	Conductivity (σ):		1.95	-0.71	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 35%

February 11, 2011 10:36 AM

Frequency	e'	e"
2400000000.	52.8526	13.9922
2405000000.	52.8359	14.0122
2410000000.	52.8186	14.0372
2415000000.	52.8034	14.0590
2420000000.	52.7911	14.0813
2425000000.	52.7716	14.1006
2430000000.	52.7546	14.1218
2435000000.	52.7392	14.1449
2440000000.	52.7231	14.1657
2445000000.	52.7034	14.1850
2450000000.	52.6842	14.2052
2455000000.	52.6644	14.2256
2460000000.	52.6479	14.2438
2465000000.	52.6297	14.2636
2470000000.	52.6088	14.2862
2475000000.	52.5903	14.3066
2480000000.	52.5707	14.3279
2485000000.	52.5526	14.3463
2490000000.	52.5328	14.3710
2495000000.	52.5148	14.3898
2500000000.	52.4977	14.4125

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
2/11/2011	Body 2450	e'	51.6966	Relative Permittivity (ε_r):	51.70	52.70	-1.90	5
2/11/2011	Бойу 2450	e"	14.4582	Conductivity (σ):	1.97	1.95	1.01	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

February 25, 2011 09:09 AM

Frequency	e'	e"
2410000000.	51.8208	14.2910
2415000000.	51.8058	14.3106
2420000000.	51.7914	14.3312
2425000000.	51.7782	14.3512
2430000000.	51.7606	14.3723
2435000000.	51.7470	14.3947
2440000000.	51.7297	14.4146
2445000000.	51.7128	14.4374
2450000000.	51.6966	14.4582
2455000000.	51.6817	14.4782
2460000000.	51.6639	14.5034
2465000000.	51.6459	14.5238
2470000000.	51.6272	14.5463
2475000000.	51.6118	14.5696
2480000000.	51.5918	14.5914
2485000000.	51.5697	14.6150

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

8. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV4-SN: 3749 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal cortificate #	Cal. certificate # Cal. date			1)
validation dipole	Cai. Certificate #	Cai. date	Tissue:	Head	Body
D2450\/2	D2450V2-706 Apr10	04/19/10	1g SAR:	51.6	52.4
D2450V2	D2450V2-700_Apr 10	04/19/10	10 SAR:	24.4	24.5

8.1. SYSTEM CHECK RESULTS

System	Date Tested	Measured (N	ormalized to 1 W)	Torgot	Delta (%)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Target	Della (%)	(%)
D2450V2	02/11/11	1g SAR:	51.9	52.4	-0.95	±10
D2450V2	02/11/11	10 SAR:	23.7	24.5	-3.27	ΞIU
D2450V2	02/25/11	1g SAR:	50.9	52.4	-2.86	±10
D2450V2	02/23/11	10g SAR:	23.4	24.5	-4.49	±10

DATE: May 4, 2011

IC: 4104A-ARS63S

Date/Time: 2/11/2011 10:47:36 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.94 mho/m; ϵ_r = 52.7; ρ = 1000 kg/m³

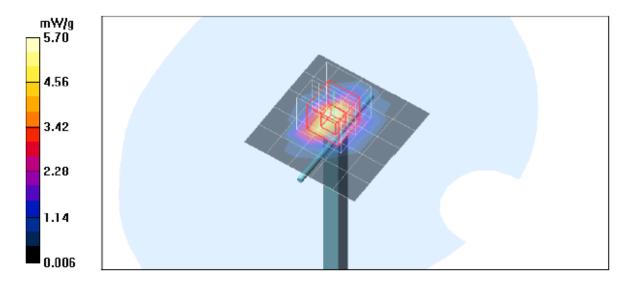
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 5.70 mW/g

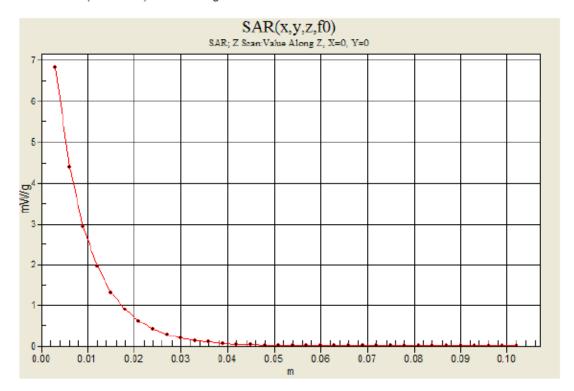
d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.0 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 10.9 W/kg

SAR(1 g) = 5.19 mW/g; SAR(10 g) = 2.37 mW/g Maximum value of SAR (measured) = 6.87 mW/g

Date/Time: 2/11/2011 11:01:56 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.83 mW/g

Date/Time: 2/25/2011 9:44:41 AM

Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_{c} = 51.7$; $\rho = 1000 \text{ kg/m}^3$

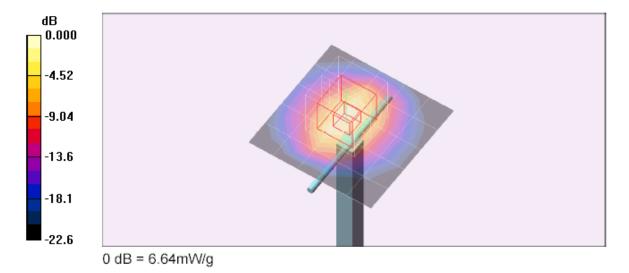
Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 5.52 mW/g

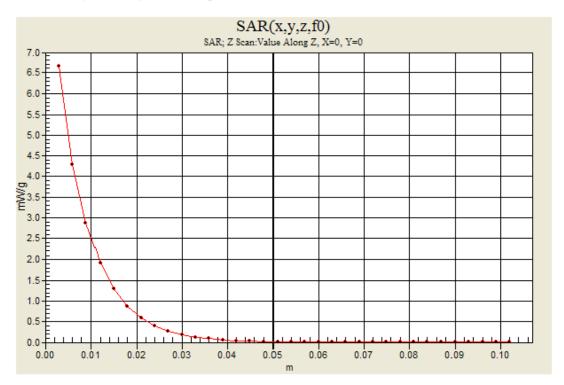
d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.2 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 10.6 W/kg

SAR(1 g) = 5.09 mW/g; SAR(10 g) = 2.34 mW/g Maximum value of SAR (measured) = 6.64 mW/g

Date/Time: 2/25/2011 9:59:29 AM


Test Laboratory: Compliance Certification Services (UL CCS)

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.65 mW/g

REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

9. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

DATE: May 4, 2011

IC: 4104A-ARS63S

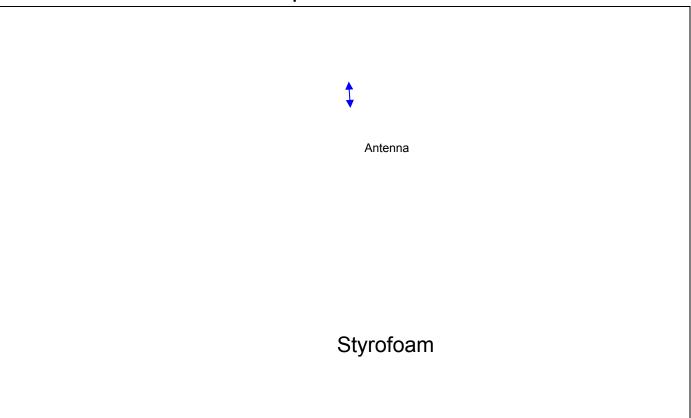
REPORT NO: 11U13604-1A FCC ID: PPD-ARS63S

10. OUTPUT POWER VERIFICATION

Results

802.11b	802.11b									
Channal #	Eroa (MUz)	Conducted Avg Power								
Channel #	Freq. (MHz)	(dBm)	(mW)							
1	2412	14.1	25.7							
6	2437	15.0	31.6							
11	2462	14.9	30.9							
802.11g	802.11g									
1	2412	13.0	20.0							
6	2437	14.8	30.2							
11	2462	12.3	17.0							
802.11n HT20)									
1	2412	12.5	17.8							
6	2437	14.9	30.9							
11	2462	11.3	13.5							

Note(s):


- 1. SAR tested on the highest output power channel.
- 2. According to KDB 248227, SAR is not required for 802.11g/HT20 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

DATE: May 4, 2011 IC: 4104A-ARS63S

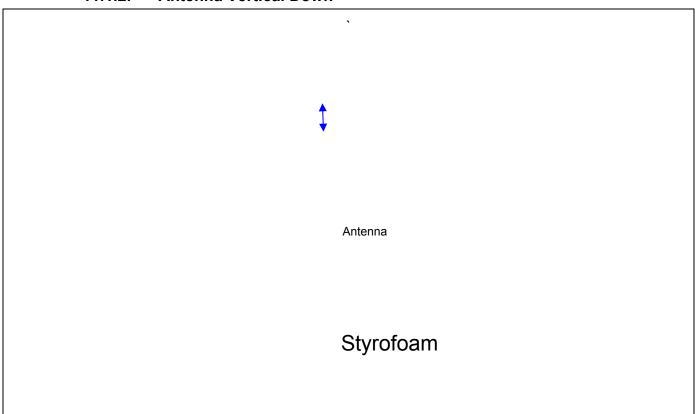
11. SUMMARY OF SAR TEST RESULTS

11.1. PIFA ANTENNA

11.1.1. Antenna Vertical Up

Test result

Configuration	Modo	Channal	f (MHz)	Avg Pwr	Results	(mW/g)
Configuration	onfiguration Mode	Channel		(dBm)	1g-SAR	10g-SAR
Antenna 802.1 Vertical Up (1x1	000 11h	1	2412	14.1		
		6	2437	15.0	0.027	0.015
	(1/1)	11	2462	14.9		


Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

DATE: May 4, 2011

IC: 4104A-ARS63S

11.1.2. Antenna Vertical Down

Test result

	Configuration Mode	Modo	Channal	f (MHz)	Avg Pwr	Results	(mW/g)
		Channel	i (ivi⊓∠)	(dBm)	1g-SAR	10g-SAR	
	Antenna Vertical Down	000 11h	1	2412	14.1		
		802.11b (1x1)	6	2437	15.0	0.048	0.023
		(1/1)	11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.1.3. Antenna Horizontal Up

Test result

Configuration Mode	Modo	Channal	f (MHz)	Avg Pwr	Results	(mW/g)
	Mode	Channel	i (ivi⊓z)	(dBm)	1g-SAR	10g-SAR
Antenna Horizontal Up	000 11h	1	2412	14.1		
	802.11b (1x1)	6	2437	15.0	0.273	0.121
	(1/1)	11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.1.4. Antenna Horizontal Down

Test result

Configuration N	Mode	Channel	f (MHz)	Avg Pwr	Results	(mW/g)
	Mode	Charine	i (ivinz)	(dBm)	1g-SAR	10g-SAR
Antenna Horizontal Down	000 11h	1	2412	14.1		
	802.11b (1x1)	6	2437	15.0	0.029	0.016
	(1/1)	11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.1.5. Antenna Horizontal Front

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results	(mW/g)				
Cornigulation	Mode	Chame	i (ivi⊓∠)	(dBm)	1g-SAR	10g-SAR				
Antenna Horizontal Front	000 11h	1	2412	14.1						
	802.11b (1x1)	6	2437	15.0	0.313	0.136				
	(1/1)	11	2462	14.9						

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.1.6. Antenna Horizontal Back (Worst-case)

Test result

Configuration Mod	Modo	Channel	f (MHz)	Avg Pwr	Results	(mW/g)
	Mode	Chambi	i (ivinz)	(dBm)	1g-SAR	10g-SAR
Antenna Horizontal Back	000 446	1	2412	14.1		
	802.11b (1x1)	6	2437	15.0	0.389	0.172
	(1/1)	11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.1.7. Enhanced Energy Coupling

According to KDB 616217 in referencing to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

Worst-case test configuration	Band		nna-to-person tance (cm)	Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
Antenna		Initial	0.6	0.027	4.13	
Vertical Up	2.4 GHz	1	1	0.02	3.49	71.1%
vertical op		2	1.5	0.01	2.77	45.0%
Antenna		Initial	0.6	0.048	5.45	
Vertical Down	2.4 GHz	1	1	0.02	3.87	50.3%
Vertical Down		2	1.5	0.01	3.04	31.2%
Antenna	2.4 GHz	Initial	0.6	0.273	12.61	
Horizontal Up	2.4 GHZ	1	1	0.12	8.47	45.1%
Antenna		Initial	0.6	0.029	4.18	
Horizontal Down	2.4 GHz	1	1	0.02	3.33	63.3%
Horizontal Down		2	1.5	0.01	2.66	40.5%
Antenna		Initial	0.6	0.313	12.20	
Horizontal Front	2.4 GHz	1	1	0.16	8.75	51.5%
110112011tai 1 1011t		2	1.5	0.08	6.17	25.6%
Antenna		Initial	0.6	0.389	15.49	
Horizontal Back	2.4 GHz	1	1	0.17	10.26	43.9%
HOHZOHIAI BACK		2	1.5	0.08	7.08	20.9%

Due to the highest measured SAR value is 0.389 W/kg, thus only the most conservative configuration with highest measured SAR was tested.

Note: See Antenna Horizontal 4 (Back) worst-case test setup photo for most conservative SAR.

11.2. PRINT ANTENNA

11.2.1. Antenna Horizontal Up (Worst-case)

Test result

Configuration Mode	Mode	Channel f (MHz)	f /N/ILI->\	Avg Pwr	Results (mW/g)	
	Charine	i (ivilaz)	(dBm)	1g-SAR	10g-SAR	
Antenna 802.11k Horizontal Up (1x1)	000 11h	1	2412	14.1		
		6	2437	15.0	0.136	0.059
	(171)	11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2.2. Antenna Horizontal Down

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)				
				(dBm)	1g-SAR	10g-SAR			
Antenna Horizontal Down	802.11b (1x1)	1	2412	14.1					
		6	2437	15.0	0.118	0.049			
		11	2462	14.9					

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2.3. Antenna Left Edge

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)				
	Configuration M	Mode	Chamb	1 (1VII 1Z)	(dBm)	1g-SAR	10g-SAR		
	Antenna Left Edge	802.11b (1x1)	1	2412	14.1				
			6	2437	15.0	0.063	0.028		
			11	2462	14.9				

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2.4. Antenna Right Edge

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
				(dBm)	1g-SAR	10g-SAR
Antenna Right Edge	802.11b (1x1)	1	2412	14.1		
		6	2437	15.0	0.110	0.048
		11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2.5. Antenna Tip

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
				(dBm)	1g-SAR	10g-SAR
Antenna Tip	802.11b (1x1)	1	2412	14.1		
		6	2437	15.0	0.020	0.0084
		11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.2.6. Enhanced Energy Coupling

According to KDB 616217 in referencing to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

Worst-case test configuration	Band	Antenna-to-person distance (cm)		Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
Antenna	2.4 GHz	Initial	0.6	0.136	7.66	
Horizontal Up	2.4 GHZ	1	1	0.06	4.92	41.3%
Antenna	2.4 GHz	Initial	0.6	0.118	8.26	
Horizontal Down		1	1	0.05	5.34	41.7%
Antenna left edge	2.4 GHz	Initial	0.6	0.063	6.16	
Antenna leit euge		1	1	0.03	3.91	40.3%
		Initial	0.6	0.110	6.89	
Antenna right edge	2.4 GHz	1	1	0.06	5.03	53.3%
		2	1.5	0.02	3.25	22.3%
Antenna Tip	2.4 GHz	Initial	0.6	0.021	2.99	
Antenna rip	2.4 GHZ	1	1	0.01	2.10	49.2%

Due to the highest measured SAR value is 0.136 W/kg, thus only the most conservative configuration with highest measured SAR was tested.

Note: See Antenna Front side worst-case test setup photo for most conservative SAR.

11.3. CHIP ANTENNA

11.3.1. Antenna Horizontal Up (Worst-case)

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
	Mode	Gridinici		(dBm)	1g-SAR	10g-SAR
Antenna Horizontal Up	802.11b (1x1)	1	2412	14.1		
		6	2437	15.0	0.00914	0.00183
		11	2462	14.9		

Notes:

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 33 of 48

11.3.2. Antenna Horizontal Down

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
			1 (IVII 12)	(dBm)	1g-SAR	10g-SAR
Antenna Horizontal Down	802.11b (1x1)	1	2412	14.1		
		6	2437	15.0	0.00264	0.00108
		11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.3.3. Antenna Left edge

Test result

	Configuration M	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)			
		Mode	Chamb		(dBm)	1g-SAR	10g-SAR		
	Antenna Left edge	802.11b (1x1)	1	2412	14.1				
			6	2437	15.0	0.00249	0.000897		
Left edge	(1/1)	11	2462	14.9					

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.3.4. Antenna Right edge

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)	
				(dBm)	1g-SAR	10g-SAR
Antenna Right edge	802.11b (1x1)	1	2412	14.1		
		6	2437	15.0	0.00121	0.000253
		11	2462	14.9		

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.3.5. Antenna Tip

Test result

Configuration	Mode	Channel	f (MHz)	Avg Pwr	Results (mW/g)			
				(dBm)	1g-SAR	10g-SAR		
Antenna Tip	802.11b (1x1)	1	2412	14.1				
		6	2437	15.0	0.000174	N/A		
		11	2462	14.9				

- 1. SAR tested on the highest output power channel.
- 2. This module is not capable of single antnena transmitting mode in either b/g/H20/H40
- 3. According to KDB 248227. SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11.3.6. Enhanced Energy Coupling

According to KDB 616217 in referencing to KDB 447498, the test configuration with the highest 1-g SAR must be used to determine if additional SAR evaluation is required due to enhanced energy coupling at increased separation distances.

From the test results below, additional 1-g SAR evaluation is not required.

Worst-case test configuration	Band	Antenna-to-person distance (cm)		Peak SAR (mW/g)	E-field (V/m)	Lower than Initial (%)
Antenna Front side	2.4 GHz	Initial	0.6	0.00914	1.76	
Antenna Front Side	2.4 GHZ	1	1	0.00068	0.48	7.4%
Antenna Back side	2.4 GHz	Initial	0.6	0.00264	1.60	
		1	1	0.00	0.97	36.7%
Antenna ledt edge	2.4 GHz	Initial	0.6	0.00249	1.59	
Antenna leut euge	2.4 GHZ	1	1	0.00	0.79	24.8%
Antenna right edge	2.4 GHz	Initial	0.6	0.00121	0.94	
Antenna right edge	2.4 GHZ	1	1	0.00	0.57	36.6%
Antonna Ton odgo	2.4 GHz	Initial	0.6	0.000174	0.53	
Antenna Top edge	2.4 GHZ	1	1	0.00	0.21	15.8%

Due to the highest measured SAR value is 0.00914 W/kg, thus only the most conservative configuration with highest measured SAR was tested.

Note: See Antenna Front side worst-case test setup photo for most conservative SAR.

12. WORST CASE SAR TEST PLOTS

PIFA ANTENNA

Date/Time: 2/11/2011 4:28:36 PM

DATE: May 4, 2011

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services (UL CCS)

Antenna Horizontal Back

DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.92 \text{ mho/m}$; $\epsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

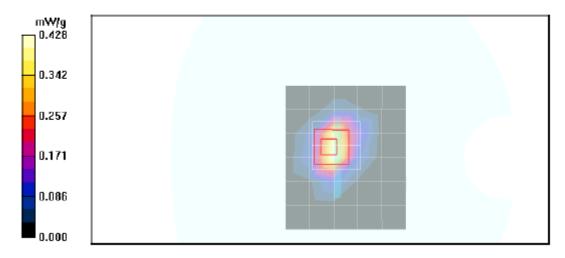
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: SAM 2 (Twin); Type: SAM 2; Serial: 1050
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.428 mW/g

.....

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 15.0 V/m; Power Drift = 0.171 dB

Peak SAR (extrapolated) = 0.906 W/kg

SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.172 mW/g

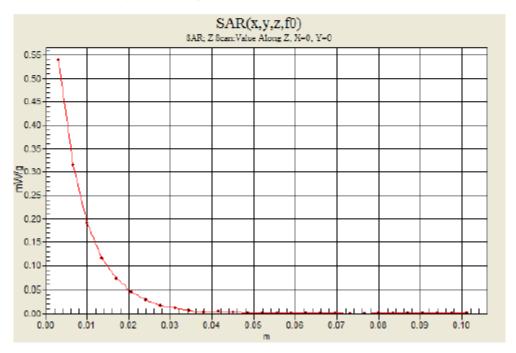
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.540 mW/g

Date/Time: 2/11/2011 4:46:40 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Antenna Horizontal Back


DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.540 mW/g

PRINT ANTENNA

Date/Time: 2/25/2011 1:55:29 PM

DATE: May 4, 2011

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services (UL CCS)

Print Antenna_Front side

DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.95 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

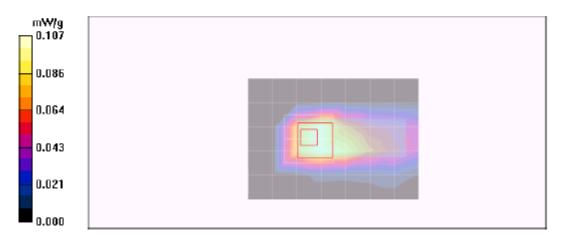
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (8x6x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.107 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 7.43 V/m; Power Drift = 0.163 dB

Peak SAR (extrapolated) = 0.346 W/kg

SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.059 mW/g

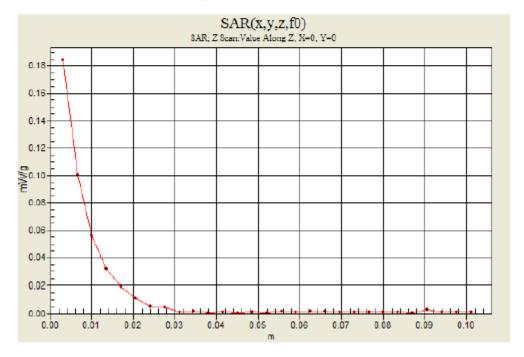
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.186 mW/g

Date/Time: 2/25/2011 2:14:54 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Print Antenna_Front side


DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.184 mW/g

CHIP ANTENNA

Date/Time: 2/25/2011 2:54:11 PM

DATE: May 4, 2011

IC: 4104A-ARS63S

Test Laboratory: Compliance Certification Services (UL CCS)

Chip Antenna_Front side

DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.95 mho/m; ε, = 51.7; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

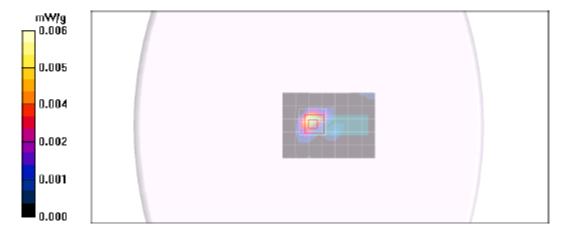
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (8x6x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.006 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 1.74 V/m; Power Drift = 0.076 dB

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.00914 mW/g; SAR(10 g) = 0.00183 mW/g

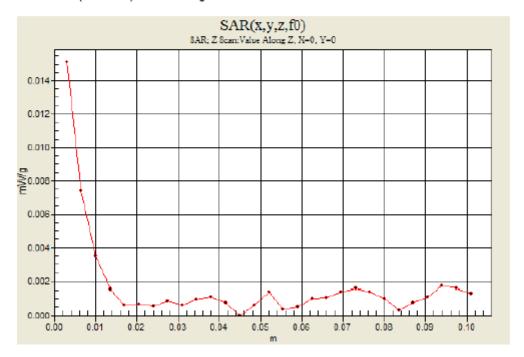
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.016 mW/g

Date/Time: 2/25/2011 3:13:45 PM

Test Laboratory: Compliance Certification Services (UL CCS)

Chip Antenna_Front side


DUT: Atheros; Type: NA; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.015 mW/g

13. ATTACHMENTS

<u>No.</u>	<u>Contents</u>	No. of page (s)
1-1	SAR Test Plots for PIFA Antenna	7
1-2	SAR Test Plots for Print Antenna	6
1-3	SAR Test Plots for Chip Antenna	6
2	Certificate of E-Field Probe - EX3DV3 SN 3531	11
3	Certificate of System Validation Dipole - D2450 SN:706	9