

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

802.11A/B/G/N PCIEXPRESS MINICARD

MODEL: AR5BXB72

FCC ID: PPD-AR5BXB72-L

REPORT NUMBER: 06U10667-1B

(Collocation with BT and WWANs)

ISSUE DATE: NOVEMBER 8, 2006

Prepared for

ATHEROS COMMUNICATIONS, INC. 5480 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

LAB CODE:200065-0

Revision History Revision History

Rev.	Issued date	Revisions	Revised By
	October 24, 2006	Initial issue. Base on CCS SAR Reports: 06U10634 (WLAN - AR5BXB72-L), 06U10630 (WWAN - MC8755), 06U10631 (WWAN - MC8765) and 06U10632 (WWAN - MC5720)	HS
В	November 8, 2006	Correct some typo	HS

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: October 12, 13, 16, 17 and 23, 2006

APPLICANT:	ATHEROS COMMUNICATIONS, INC
ADDRESS:	5480 GREAT AMERICA PARKWAY
	SANTA CLARA, CA 95054, USA
FCC ID:	PPD-AR5BXB72-L
MODEL:	AR5BXB72
DEVICE CATEGORY:	Portable Device
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure

802.11a/b/g/n PCIExpress Minicard is installed in Lenovo ThinkPad X60Tablet along with WWAN MC5720 FCC ID: N7N-MC5720, WWAN MC8755 FCC ID: N7NMC8755, and WWAN MC8765 FCC ID: N7NMC8765.

Test Sample is a:	Production unit									
Modulation type:		Direct Sequence Spread Spectrum (DSSS) for 802.11b Orthogonal Frequency Division Multiplexing (OFDM) for 802.11agn								
Rule Parts	Frequency Range [MHz]	Frequency Range [MHz] The Highest The Highest Collocation SAR Values [1g_mW/g] SAR Values [1g_mW/g]								
FCC 15.247	2412-2462	0.361	0.558							
	5745 - 5825	5745 - 5825 0.678 0.861								
FCC 15.401	5180 - 5320	0.233	0.609							

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

Hsin Fr Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services Winey Dorouch

Ninous Davoudi EMC Engineer Compliance Certification Services

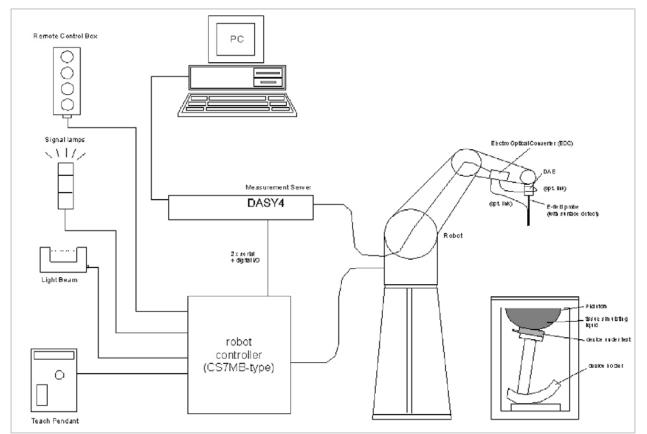
TABLE OF CONTENTS

1	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	8
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	
5	SYSTEM PERFORMANCE CHECK	
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	
6	SAR MEASURMENT PROCEDURE	-
	6.1 DASY4 SAR MEASURMENT PROCEDURE	
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
8	SAR MEASURMENT RESULTS	
	8.1 2.4GHZ BAND	
	8.1.1 LAP-HELD POSITION (MAIN ANTENNA)	
	8.1.2 LAP-HELD POSITION (AUX ANTENNA)	
	8.1.3 EDGE POSITION – SECONDARY LANDSCAPE	
	8.1.4 LCD EDGE POSITION – PRIMARY PORTRAIT	
	8.2 5.2GHZ BAND	
	8.2.1 LAP-HELD POSITION (MAIN ANTENNA)	
	8.2.2 LAP-HELD POSITION (AUX ANTENNA)	
	 8.2.3 EDGE POSITION – SECONDARY LANDSCAPE 8.2.4 EDGE POSITION – PRIMARY PORTRAIT 	
	8.3 5.8GHZ BAND	
	8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	. 35
	8.3.1 LAP-HELD POSITION (MAIN ANTENNA)8.3.2 LAP-HELD POSITION (AUX ANTENNA)	35 36
	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA) 8.3.2 LAP-HELD POSITION (AUX ANTENNA)	35 36 37
٩	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39 39 40
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 40 41 41
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39 40 41 41 42
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39 40 41 41 42 43
9	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39 40 41 41 41 43
9 10	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 40 41 41 42 43 43 44
	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 34 37 38 39 39 39 34 39 39 34 37 38 39
	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 40 41 41 41 42 43 43 44 45
	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 40 41 42 43 43 44 45 45 46
10	 8.3.1 LAP-HELD POSITION (MAIN ANTENNA)	35 36 37 38 39 39 39 39 39 39 40 41 41 41 43 43 44 45 45 46 47

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

802.11a/b/g/n PCIExpress Minicard is installed in Lenovo ThinkPad X60Tablet along with WWAN MC5720 FCC ID: N7N-MC5720, WWAN MC8755 FCC ID: N7NMC8755, and WWAN MC8765 FCC ID: N7NMC8765.							
Normal operation: Lap-held position, and underarm position							
Accessory:	N/A						
Earphone/Headset Jack:	rphone/Headset Jack: N/A						
Duty cycle:	100%						
Host Device(s):	Lenovo ThinkPad X60Tablet						
Antenna(s)	Antenna type: PIFA - Main - Wistron, PN 25.90354.001						
	- Auxiliary - Wistron, PN 25.90355.001						
Power supply:	Power supplied through the laptop computer (host device).						

1 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

2 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

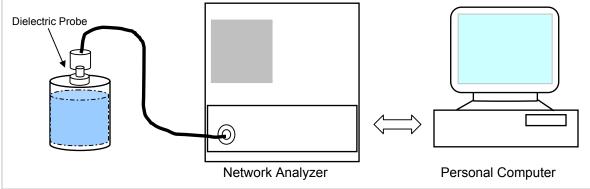
2.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequency (MHz)					
(% by weight)	4	450		835		15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

3 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	H	ead	Bo	ody
raiget requeitcy (initz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Head	Tissue	Body	Body Tissue			
(IVII 12)	rel. permitivity	conductivity	rel. permitivity	conductivity	Reference		
3000	38.5	2.40	52.0	2.73	Standard		
5800	35.3	5.27	48.2	6.00	Standard		
5000	36.2	1.45	49.3	5.07	Interpolated		
5100	36.1	4.55	49.1	5.18	Interpolated		
5200	36.0	4.66	49.0	5.30	Interpolated		
5300	35.9	4.76	48.9	5.42	Interpolated		
5400	35.8	4.86	48.7	5.53	Interpolated		
5500	35.6	4.96	48.6	5.65	Interpolated		
5600	35.5	5.07	48.5	5.77	Interpolated		
5700	35.4	5.17	48.3	5.88	Interpolated		

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

3.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Ivieasureu		Deviation (%)	LIIIII (%)
2450	22	15	e'	52.3704	Relative Permittivity (ε_r):	52.3704	52.7	-0.63	± 5
2400	22	10	e"	15.0099	Conductivity (σ):	2.04580	1.95	4.91	± 5
Liquid Ch									
	•		leg	ı. C; Liqu	id temperature: 22.0 (deg C			
October 7	12, 2006	07:31 PM							
Frequence	су У	e'			e"				
2400000	000.	52	.55	536	14.8109				
2405000	000.	52	.54	02	14.8226				
2410000	000.	52	.52	257	14.8512				
2415000	000.	52	.51	13	14.8645				
2420000	000.	52	.48	325	14.8962				
2425000	000.	52	.46	650	14.9214				
2430000	000.	52	.45	536	14.9391				
2435000	000.	52	.44	89	14.9676				
2440000	000.	52	.43	333	14.9604				
2445000	000.	52	.38	344	14.9807				
2450000	000.	52	.37	' 04	15.0099				
2455000	000.	52	.36	637	15.0416				
2460000	000.	52	.34	95	15.0641				
2465000	000.	52	.31	68	15.0721				
2470000	000.	52	.28	382	15.0828				
2475000	000.	52	.27	793	15.1143				
2480000	000.	52	.26	637	15.1316				
2485000	000.	52	.24	59	15.1557				
2490000	000.	52	.23	313	15.1760				
2495000	000.	52	.21	87	15.2093				
2500000	000.	52	.19	966	15.2204				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fɛ₀e"							
where f									
ε _θ	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Sunny Shih

f (MHz)	imulating Lic Temp. (°C)				Parameters	Measured	Target	Deviation (%)	Limit (%)
	22	15	e'	51.6202	Relative Permittivity (c _r):	51.6202	52.7	-2.05	± 5
2450	22	15	e"	15.0102	Conductivity (o):	2.04584	1.95	4.91	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23 de	g. (C; Liquid	temperature: 22 deg	С			
October 2	23, 2006	02:32 PM							
Frequence	су	e'			e"				
2400000	000.	51	.81	23	14.8300				
2410000	000.	51	.77	25	14.8431				
2420000	000.	51	.72	203	14.8723				
2430000	000.	51	.68	840	14.9162				
2440000	000.	51	.65	527	14.9659				
2450000	000.	51	.62	202	15.0102				
2460000	000.	51	.57	789	15.0552				
2470000	000.	51	.55	586	15.1007				
2480000	000.	51	.51	17	15.1507				
2490000	000.	51	.48	300	15.2083				
2500000	000.	51	.43	339	15.2210				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"							
where f									
EO	= 8.854 *	· 10 ⁻¹²							

Simulating Liquid Parameter Check Result @ Muscle 5200 & 5800 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Ninous Davoudi

S	imulating Lie	quid				Maria	Target		
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Measured		Deviation (%)	Limit (%)
5200	23	15	e'	50.8077	Relative Permittivity (ε_r):	50.8077	49.0	3.69	± 10
5200	20	10	e"	18.8712	Conductivity (o):	5.45911	5.30	3.00	± 5
Liquid Ch	neck								
		ure: 24.0 d	lea	. C: Liau	id temperature: 23.0 d	dea C			
		03:21 PM	9	,					
Frequence	,	e'			e"				
4600000		52	.02	93	17.8917				
4650000	000.	51	.90	39	17.9832				
4700000	000.	51	.84	16	18.0827				
4750000	000.	51	.69	94	18.1638				
4800000	000.	51	.63	27	18.2585				
4850000	000.	51	.50	42	18.3140				
4900000			.42		18.4145				
4950000	000.	51	.32	60	18.5109				
5000000	000.	51	.18	85	18.5630				
5050000	000.	51	.09	87	18.6673				
5100000	000.	50	.97	52	18.7086				
5150000	000.	50	.89	02	18.8238				
5200000	000.	50	.80	77	18.8712				
5250000	000.	50	.67	81	18.9647				
5300000	000.	50	.59	77	19.0161				
5350000	000.	50	.50	19	19.0948				
5400000	000.	50	.40	60	19.1606				
5450000	000.	50	.29	93	19.2522				
5500000	000.	50	.18	99	19.3034				
5550000	000.	50	.12	17	19.3968				
5600000	000.	50	.00	55	19.4251				
5650000	000.	49	.91	11	19.5407				
5700000	000.	49	.85	90	19.5559				
5750000	000.	49	.71	71	19.6536				
5800000	000.	49	.66	01	19.7069				
5850000			.49		19.7610				
5900000		49	.43	88	19.8677				
5950000			.33		19.8895				
6000000	000.	49	.23	13	19.9939				
The cond	luctivity (σ) can be 🤅	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Parameter Check Result @ Muscle 5200 & 5800 MHz

Room Ambient Temperature = 24°C; Relative humidity = 42%

Measured by: Sunny Shih

S	imulating Lic	quid					Target		
f (MHz)	Temp. (°C)				Parameters	Measured	-	Deviation (%)	Limit (%)
5200	23	15	e'	49.7798	Relative Permittivity (ε_r):	49.7798	49.0	1.59	± 10
	-		e"	18.6660	Conductivity (o):	5.39975	5.30	1.88	± 5
5800	23	15	e' 48.7195		Relative Permittivity (ε_r):	48.7195	48.2	1.08	± 10
			e"	19.4350	Conductivity (σ):	6.27092	6.00	4.52	± 5
Liquid Ch									
			g. (C; Liquid	temperature: 23 deg	С			
		06:01 AM							
Frequence		e'	~ ~		e"				
4600000				985	17.7329				
4650000				14	17.8455				
4700000				867	17.8837				
4750000				252	17.9998				
4800000				167 125	18.0696				
4850000 4900000				35 341	18.1610 18.2250				
4900000				582	18.2759				
5000000				874	18.3932				
5050000				44	18.4260				
5100000				989	18.5609				
5150000				270	18.5697				
5200000				798	18.6660				
5250000				293	18.7008				
5300000				380	18.7862				
5350000				37	18.8432				
5400000	000.	49	.40)64	18.8885				
5450000	000.	49	.31	22	18.9825				
5500000	000.	49	.23	303	19.0065				
5550000	000.	49	.13	826	19.1258				
5600000	000.	49	.06	693	19.1516				
5650000				87	19.2374				
5700000				933	19.2782				
5750000				583	19.3394				
5800000				95	19.4350				
5850000				649	19.4409				
5900000				262	19.5678				
5950000				339	19.5718				
6000000				229	19.7154				
The cond	luctivity (σ) can be g	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	f ε₀ e "							
where f									
EO	= 8.854 *	* 10-12							

Simulating Liquid Parameter Check Result @ Muscle 5800 MHz

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

Simul	lating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz) Ten	np. (°C)	Depth (cm)				Measureu		Deviation (70)	Linit (70)
5800	23	15	e'	50.5382	Relative Permittivity (ε_r):	50.5382	48.2	4.85	± 10
		-	e"	19.3106	Conductivity (σ):	6.23079	6.00	3.85	± 5
Liquid Chec	k								
Ambient terr	nperat	ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 (deg C			
October 17,	2006	07:03 AM							
Frequency		e'			e"				
4600000000).	52	.53	50	17.6608				
4650000000).	52	.62	:57	17.6950				
4700000000).	52	.40	32	17.8001				
4750000000).	52	.49	72	17.8547				
480000000		52	.28	59	17.9205				
4850000000		52	.29	66	18.0831				
490000000).	52	.16	49	18.1340				
4950000000).	52	.03	06	18.1913				
500000000).	52	.05	80	18.2926				
505000000).	51	.89	93	18.3552				
5100000000).	51	.90	79	18.4650				
5150000000).	51	.72	82	18.5431				
520000000).	51	.58	67	18.6047				
5250000000).	51	.56	39	18.6160				
530000000).	51	.38	46	18.6867				
5350000000).	51	.38	40	18.7353				
540000000).	51	.24	-58	18.8378				
545000000).	51	.17	'16	18.8712				
5500000000).	51	.07	97	18.9752				
5550000000).	50	.93	56	18.8651				
560000000).	50	.93	59	19.0708				
5650000000).	50	.83	92	18.9565				
5700000000).	50	.64	71	19.2558				
5750000000).	50	.73	04	19.1652				
580000000).	50	.53	82	19.3106				
5850000000).	50	.69	01	19.3923				
5900000000			.52		19.4344				
5950000000			.43		19.6425				
600000000).	50	.39	43	19.6043				
The conduct	tivity (d	כ) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta} e'' =$	=2πj	[∙] ε₀ e″							
where $f = t$									
$\boldsymbol{\varepsilon}_{\boldsymbol{\theta}} = \boldsymbol{\delta}$	8.854 *	· 10 ⁻¹²							

4 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm). For 5 GHz band - Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head Tissue		Body Tissue				
1 (IVI112)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	71.8	20.1	284.7		
5800	78.0	21.9	74.1	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

4.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 706

Date: October 12, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	to 1 W	Target	(%)	(%)
2450	22	15	1 g	13.20	52.8	51.2	3.12	± 10
2430	~ ~ ~	15	10g	6.03	24.12	23.7	1.77	± 10

Date: October 23, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	to 1 W	Taryet	(%)	(%)
2450	22	15	1 g	13.10	52.4	51.2	2.34	± 10
2430	22	15	10g	6	24	23.7	1.27	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: October 13, 2006

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	JAN	(111 VV / g)	to 1 W	Target	(%)	(%)
5200	23	15	1 g	18.00	72	71.8	0.28	± 10
5200	20	15	10g	5.07	20.28	20.1	0.90	± 10

Date: October 16, 2006

Room Ambient Temperature = 24°C; Relative humidity = 42%

Measured by: Sunny Shih

Bod	y Simulating	J Liquid	SVD	(m)M/(a)	Normalize d	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAR (mW/g)		to 1 W	rarget	(%)	(%)
5200	5200 23	15	1 g	17.80	71.2	71.8	-0.84	± 10
5200		15	10g	5.01	20.04	20.1	-0.30	± 10
Body Simulating Liquid					Normolizo			
воа	y Simulating	LIQUID		(m) M(m)	Normalize	Taraat	Deviation	L im it
	y Simulating Temp. (°C)	, I	SAR	(m W /g)	d to 1 W	Target	Deviation (%)	Limit (%)
		, I	SAR 1g	(m W /g)	d	Target 74.1		-

Date: October 17, 2006

Room Ambient Temperature = 24°C; Relative humidity = 40%

Measured by: Sunny Shih

Bod	Body Simulating Liquid		SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	to 1 W	Target	(%)	(%)
5800	22	15	1 g	17.60	70.4	74.1	-4.99	± 10
5500	22	15	10g	4.9	19.6	20.5	-4.39	± 10

5 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

5.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

6 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, Art, which enable a user to control the frequency and output power of the module.

The cable assembly insertion loss of 10.5 dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Mode	Frequency	Average Power	Average Power	Average Power
Channel		Chain 0	Chain 2	Total
	(MHz)	(dBm)	(dBm)	(dBm)

802.11b Mode

Low	2412	17.1	16.9	20.0
Middle	2437	20.4	20.9	23.7
High	2462	17.4	17.6	20.5

802.11g Mode

Low	2412	15.2	15.1	18.1
Middle	2437	20.3	20.7	23.5
High	2462	13.8	14.2	17.0

802.11n HT20 Mode

Low	2412	15.1	15.1	18.1
Middle	2437	20.4	20.6	23.5
High	2462	12.5	12.8	15.7

802.11n HT40 Mode

Low	2422	12.0	12.2	15.1
Middle	2437	18.6	18.6	21.6
High	2452	10.3	10.3	13.3

The cable assembly insertion loss of 11. dB (including 10 dB pad and 1.0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Mode	Frequency	Average Power	Average Power	Average Power
Channel		Chain 0	Chain 2	Total
	(MHz)	(dBm)	(dBm)	(dBm)

802.11a Mode

Low	5180	8.68	8.5	11.6
Middle	5260	14.21	14.8	17.5
High	5320	14.01	15.0	17.6

802.11n HT20 Mode

Low	5180	10.0	11.0	13.5
Middle	5260	15.9	18.1	20.1
High	5320	16.9	17.0	19.9

802.11n HT40 Mode

Low	5190	12.3	13.7	16.1
Middle	5260	16.4	18.5	20.6
High	5310	14.2	14.6	17.4

The cable assembly insertion loss of 11 dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Mode	Frequency	Average Power	Average Power	Average Power
Channel		Chain 0	Chain 2	Total
	(MHz)	(dBm)	(dBm)	(dBm)

802.11a Mode

Low	5745	16.90	16.65	19.8
Middle	5785	16.85	16.74	19.8
High	5825	17.01	16.90	20.0

802.11n HT20 Mode

Low	5745	16.79	16.40	19.6
Middle	5785	16.75	16.30	19.5
High	5825	16.86	16.25	19.6

802.11n HT40 Mode

Low	5755	16.35	16.95	19.7
Middle	5785	16.26	16.89	19.6
High	5815	16.25	16.85	19.6

7 SAR MEASURMENT RESULTS

Following positions are skipped.

SECONDARY PORTRAIT

This position is skipped since the WLAN Main Antenna is disabled at this configuration.

PRIMARY LANDSCAPE

This position is skipped since SAR values are too low.

7.1 2.4GHZ BAND

7.1.1 LAP-HELD POSITION (MAIN ANTENNA)

WLAN - A		/AN – Main ant WL	AN – Main ant	
802.11b (1Mb	ps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.115	0.000	0.115
802.11g (6Mb	ps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.098	-0.074	0.100
802.11n HT20	(6.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.098	0.000	0.098
802.11n HT40) (13.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2422 2437 2452	0.073	-0.061	0.074

 The exact method of extrapolation is Measured SAR x 10⁽⁻drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

7.1.2 LAP-HELD POSITION (AUX ANTENNA)

		WLAN – AUX ant		WWAN – Main ant
802.11b (1Mb	ps)		-	
		Measured SAR	Power Drift	Extrapolated1) SAR
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g) 0.122	(dB) 0.000	1g (mW/g) 0.122
802.11g (6Mb				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.109	0.000	0.109
802.11n HT20	(6.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.111	0.000	0.111
802.11n HT40) (13.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6	2422 2437	0.075	0.000	0.075

 The exact method of extrapolation is Measured SAR x 10⁽⁻drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

7.1.3 EDGE POSITION – SECONDARY LANDSCAPE

				WLAN Main Antenna
802.11b (1Mb	ps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.024	0.000	0.024
802.11g (6Mb	ps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.020	-0.132	0.021
802.11n HT20	(6.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6 11	2412 2437 2462	0.020	-0.176	0.021
802.11n HT40	(13.5Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1	2422 2437	0.011	0.000	0.011

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

4) WLAN AUX Antenna is disabled at this position.

7.1.4 LCD EDGE POSITION - PRIMARY PORTRAIT

			WLAN - AUX an	5
802.11b (1Mb)) 	Measured SAR	Power Drift	Extrapolated1) SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
1 6 11	2412 2437 2462	0.355	-0.071	0.361
6 ⁴	2437	0.327	-0.146	0.338
802.11g (6Mb)	os)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
1 6	2412 2437 2462	0.293	-0.137	0.302
11				
11 802.11n HT20				
		Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
802.11n HT20 Channel 1 6 11	(6.5Mbps) f (MHz) 2412 2437 2462			
802.11n HT20 Channel 1 6	(6.5Mbps) f (MHz) 2412 2437 2462	1g (mW/g) 0.327	(dB) -0.124	1g (mW/g) 0.336
802.11n HT20 Channel 1 6 11	(6.5Mbps) f (MHz) 2412 2437 2462	1g (mW/g)	(dB)	1g (mW/g)

The exact method of extrapolation is Measured SAR x 10⁽-drift/10). The SAR reported at the end of the measurement 1. process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2. mW/g), thus testing at low & high channel is optional.

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 3.

Collocation with Bluetooth module only. 4.

7.2 5.2GHZ BAND

7.2.1 LAP-HELD POSITION (MAIN ANTENNA)

WLAN - A	UX ant WW	/AN – Main ant WL	AN – Main ant	
802.11a				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
36 52 64	5180 5260 5320	0.064	-0.119	0.066
802.11n HT20				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
36 52 64	5180 5260 5320	0.264	0.000	0.264
802.11n HT40				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
38	5190		0.000	0.155

7.2.2 LAP-HELD POSITION (AUX ANTENNA)

		WLAN – AUX ant		WWAN – Main ant
802.11a				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
36 52 64	5180 5260 5320	0.022	0.000	0.022
802.11n HT20)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
36	5180 5260 5320	0.061	-0.119	0.063
52 64	-			•
	<u> </u>		Power Drift	Extrapolated1) SAR
64	f (MHz) 5190	Measured SAR 1g (mW/g)	(dB)	1g (mW/g)

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

7.2.3 EDGE POSITION – SECONDARY LANDSCAPE

	AUX Antenn			WLAN Main Antenna
802.11a				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
36 52 64	5180 5260 5320	0.016	0.000	0.016
802.11n HT20				
802.11n HT20 Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
802.11n HT20 Channel 36 52 64	5180 5260 5320			
802.11n HT20 Channel 36 52	5180 5260 5320	1g (mW/g) 0.027	(dB) 0.000	1g (mW/g) 0.027
802.11n HT20 Channel 36 52 64	5180 5260 5320	1g (mW/g)	(dB)	1g (mW/g)

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
4) WLAN AUX Antenna is disabled at this position.

7.2.4 EDGE POSITION – PRIMARY PORTRAIT

	802.11a			WLAN – AUX ar	5	
	Channel	f (МН-)	Measured SAR 1g (mW/g)	Power Drift	Extrapolated1) SAR 1g (mW/g)	
	36 52 64	f (MHz) 5180 5260 5320	0.148	(dB) 0.000	0.148	
	802.11n HT20					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)	
	36 52 64	5180 5260 5320	0.677	-0.008	0.678	
	802.11n HT40					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)	
	38 52 62	5190 5260 5310	0.615	0.000	0.615	
pro me 2) Th m\	e exact method of o ocess by the DASY easurement process e SAR measured a W/g), thus testing a	extrapolation is 4 system can b s. t the middle ch t low & high cha	e scaled up by the Por annel for this configura annel is optional.	wer drift to determination is at least 3 dl	R reported at the end of the m ne the SAR at the beginning o B lower (0.8 mW/g) than SAR g the maximum SAR location o	of the limit (1.6

7.3 5.8GHZ BAND

7.3.1 LAP-HELD POSITION (MAIN ANTENNA)

WLAN - A	UX ant WW	/AN – Main ant WL	AN – Main ant	
802.11a				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
149 157 165	5745 5785 5825	0.091	0.000	0.091
802.11n HT20				
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
149 157 165	5745 5785 5825	0.084	0.000	0.084
802.11n HT40				
		Measured SAR	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
Channel 151	f (MHz) 5755	1g (mW/g) 0.168	-0.133	0.173

7.3.2 LAP-HELD POSITION (AUX ANTENNA)

the states				
Line				
A CONTRACT OF				
		WLAN – AUX ant		
1	and the second	WLAN - AUX ant		WWAN – Main ant
-				
802 112				
802.11a			Dowor Drift	Extrapolated(1) SAP
	f (MHz)	Measured SAR	Power Drift (dB)	Extrapolated1) SAR
802.11a Channel 149	f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)
Channel 149 157	5745 5785			
Channel 149 157 165	5745 5785 5825	1g (mW/g)	(dB)	1g (mW/g)
Channel 149 157	5745 5785 5825	1g (mW/g) 0.038	(dB) 0.000	1g (mW/g) 0.038
Channel 149 157 165 802.11n HT20	5745 5785 5825	1g (mW/g) 0.038 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.038 Extrapolated1) SAR
Channel 149 157 165 802.11n HT20 Channel	5745 5785 5825 f (MHz)	1g (mW/g) 0.038	(dB) 0.000	1g (mW/g) 0.038
Channel 149 157 165 802.11n HT20 Channel 149	5745 5785 5825 f (MHz) 5745	1g (mW/g) 0.038 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g)
Channel 149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 f (MHz) 5745 5785	1g (mW/g) 0.038 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.038 Extrapolated1) SAR
Channel 149 157 165 802.11n HT20 Channel 149 157 165	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.038 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g)
Channel 149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.038 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB) 0.000	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g) 0.037
Channel 149 157 165 802.11n HT20 Channel 149 157 165	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.038 Measured SAR 1g (mW/g) 0.037 Measured SAR	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g) 0.037 Extrapolated1) SAR
Channel 149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.038 Measured SAR 1g (mW/g) 0.037	(dB) 0.000 Power Drift (dB) 0.000 Power Drift	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g) 0.037
Channel 149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40 Channel	5745 5785 5825 f (MHz) 5745 5785 5825 f (MHz)	1g (mW/g) 0.038 Measured SAR 1g (mW/g) 0.037 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB) 0.000 Power Drift (dB)	1g (mW/g) 0.038 Extrapolated1) SAR 1g (mW/g) 0.037 Extrapolated1) SAR 1g (mW/g)

measurement process.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2) mW/g), thus testing at low & high channel is optional. Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

3)

7.3.3 EDGE POSITION – SECONDARY LANDSCAPE (Position 4)

	AUX Antenn			WLAN Main Antenna
802.11a				
Channel	f (M⊔→)	Measured SAR	Power Drift	Extrapolated1) SAR
Channel 149	f (MHz) 5745	1g (mW/g)	(dB)	1g (mW/g)
149 157	f (MHz) 5745 5785			
149 157 165	5745 5785 5825	1g (mW/g) 0.068	(dB) -0.150	1g (mW/g) 0.070
149 157	5745 5785 5825	1g (mW/g) 0.068 0.068 0.030	(dB) -0.150 0.000 0.000	1g (mW/g) 0.070 0.068 0.030
149 157 165 802.11n HT20	5745 5785 5825	1g (mW/g) 0.068 0.068 0.030 Measured SAR	(dB) -0.150 0.000 0.000 Power Drift	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR
149 157 165 802.11n HT20 Channel	5745 5785 5825 f (MHz)	1g (mW/g) 0.068 0.068 0.030	(dB) -0.150 0.000 0.000	1g (mW/g) 0.070 0.068 0.030
149 157 165 802.11n HT20 Channel 149	5745 5785 5825 f (MHz) 5745	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g)	(dB) -0.150 0.000 0.000 Power Drift (dB)	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g)
149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 f (MHz) 5745 5785	1g (mW/g) 0.068 0.068 0.030 Measured SAR	(dB) -0.150 0.000 0.000 Power Drift	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR
149 157 165 802.11n HT20 Channel 149 157 165	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g)	(dB) -0.150 0.000 0.000 Power Drift (dB)	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g)
149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g) 0.042	(dB) -0.150 0.000 0.000 Power Drift (dB) -0.149	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g) 0.043
149 157 165 802.11n HT20 Channel 149 157 165	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g) 0.042 Measured SAR	(dB) -0.150 0.000 0.000 Power Drift (dB)	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g)
149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40	5745 5785 5825 f (MHz) 5745 5785 5825	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g) 0.042	(dB) -0.150 0.000 0.000 Power Drift (dB) -0.149 Power Drift	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g) 0.043 Extrapolated1) SAR
149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40 Channel	5745 5785 5825 f (MHz) 5745 5785 5825 f (MHz)	1g (mW/g) 0.068 0.068 0.030 Measured SAR 1g (mW/g) 0.042 Measured SAR	(dB) -0.150 0.000 0.000 Power Drift (dB) -0.149 Power Drift	1g (mW/g) 0.070 0.068 0.030 Extrapolated1) SAR 1g (mW/g) 0.043 Extrapolated1) SAR

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

3) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
4) WLAN AUX Antenna is disabled at this position.

7.3.4 EDGE POSITION – PRIMARY PORTRAIT

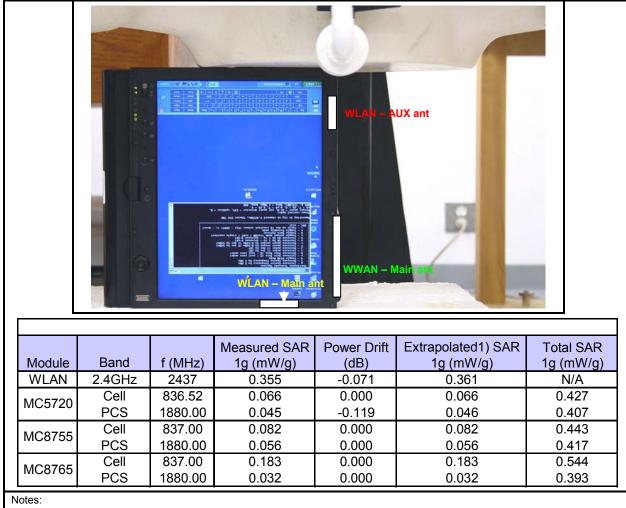
80	2.11a			WLAN – AUX an	B	
			Measured SAR	Power Drift	Extrapolated1) SAR	
	Channel 149 157 165	f (MHz) 5745 5785 5825	1g (mW/g) 0.178	(dB) 0.000	1g (mW/g) 0.178	
80	2.11n HT20					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)	
	149 157 165	5745 5785 5825	0.153	0.000	0.153	
80	2.11n HT40					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated1) SAR 1g (mW/g)	
	151 157 163	5755 5785 5815	0.160 0.189 0.233	-0.155 0.000 0.000	0.166 0.189 0.233	
proces measu 2) The SA mW/g)	s by the DASY rement process AR measured a , thus testing at	4 system can b s. t the middle cha t low & high cha	e scaled up by the Pov annel for this configura annel is optional.	wer drift to determin ation is at least 3 df	R reported at the end of the mone the SAR at the beginning o B lower (0.8 mW/g) than SAR	of the limit (1.6

8 COLLOCATION EVALUATION RESULTS

Each antenna is test independently, one at a time; and total SAR is evaluated with sum of the SAR values from each antenna and frequency.

8.1 2.4GHZ BAND

8.1.1 LAP-HELD POSITION (AUX ANTENNA)


The highest reported SAR value at this configuration is: 0.122 W/kg (802.11b mode, channel 6, 2437 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.

			WLAN - AUX a			
	-				WWAN – Main ant	
Module	Band	f (MHz)	Measured SAR	Power Drift (dB)	Extrapolated1) SAR	Total SAR
Module WLAN	Band 2.4GHz	f (MHz) 2437	Measured SAR 1g (mW/g) 0.122	Power Drift (dB) 0.000	Extrapolated1) SAR 1g (mW/g) 0.122	Total SAR 1g (mW/g) N/A
	2.4GHz		1g (mW/g)	(dB)	1g (mW/g)	1g (mW/g)
WLAN MC5720	2.4GHz Cell PCS	2437 848.31	1g (mW/g) 0.122 0.081	(dB) 0.000 0.000	1g (mW/g) 0.122 0.081	<u>1g (mW/g)</u> N/A 0.203
WLAN MC5720	2.4GHz Cell PCS	2437 848.31 1851.25	1g (mW/g) 0.122 0.081 0.427	(dB) 0.000 0.000 -0.087 -0.089	1g (mW/g) 0.122 0.081 0.436	1g (mW/g) N/A 0.203 0.558
WLAN	2.4GHz Cell PCS Cell PCS	2437 848.31 1851.25 837.00	1g (mW/g) 0.122 0.081 0.427 0.139	(dB) 0.000 0.000 - 0.087	1g (mW/g) 0.122 0.081 0.436 0.142	1g (mW/g) N/A 0.203 0.558 0.264

mW/g), thus testing at low & high channel is optional.Total SAR is evaluated with sum of the SAR values from each band frequency.

8.1.2 LCD EDGE POSITION – PRIMARY PORTRAIT

The highest reported SAR value at this configuration is: 0.361 W/kg (802.11b mode, channel 6, 2437 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

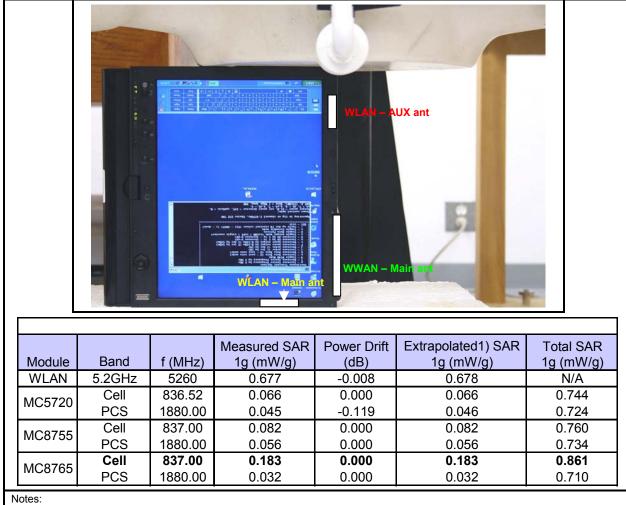
2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2 5.2GHZ BAND

8.2.1 LAP-HELD POSITION (MAIN ANTENNA)

The highest reported SAR value at this configuration is: 0.264W/kg (802.11n HT20 mode, channel 52, 5260 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.

			Measureu SAR	Power Dilit	Exilapolateur) SAR	TOLATSAR
Module	Band	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)	1g (mW/g)
WLAN	5.2GHz	5260	0.264	0.000	0.264	N/A
MC5720	Cell	848.31	0.081	0.000	0.081	0.345
10105720	PCS	1851.25	0.427	-0.087	0.436	0.700
MC8755	Cell	837.00	0.139	-0.089	0.142	0.406
10100700	PCS	1850.20	0.182	-0.287	0.194	0.458
MC8765	Cell	837.00	0.118	-0.131	0.122	0.386
1000700	PCS	1852.40	0.345	-0.157	0.358	0.622

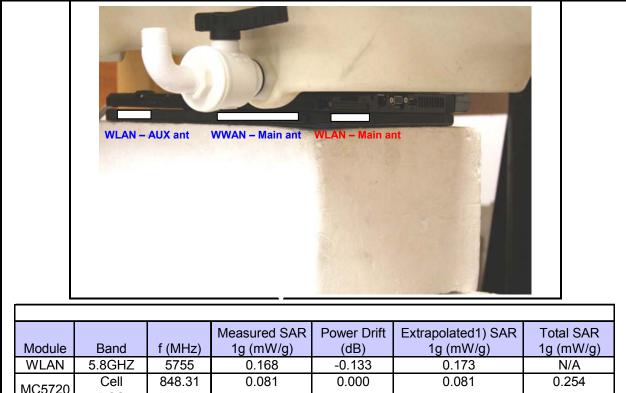

Notes:

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

LCD EDGE POSITION - PRIMARY PORTRAIT 8.2.2

The highest reported SAR value at this configuration is: 0.678 W/kg (802.11n HT20 mode, channel 52, 5260 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.


The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement 1) process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

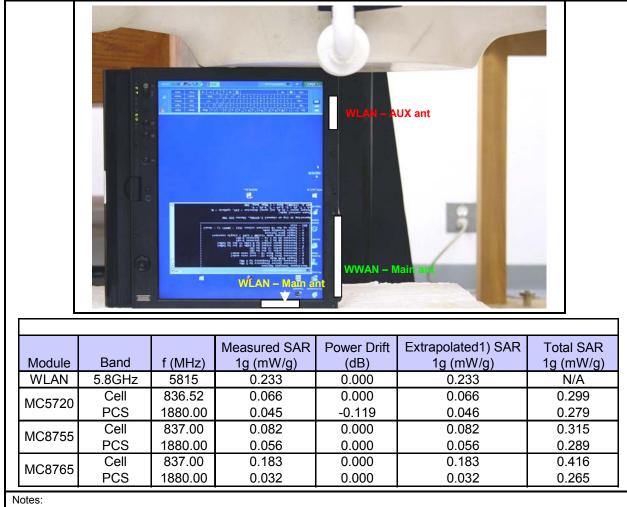
The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2) mW/g), thus testing at low & high channel is optional.

8.3 5.8GHZ BAND

8.3.1 LAP-HELD POSITION (MAIN ANTENNA)

The highest reported SAR value at this configuration is: 0.173 W/kg (802.11n HT40 mode, channel 151, 5755 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.

Cell	848.31	0.081	0.000	0.081	0.254
PCS	1851.25	0.427	-0.087	0.436	0.609
Cell	837.00	0.139	-0.089	0.142	0.315
PCS	1850.20	0.182	-0.287	0.194	0.368
Cell	837.00	0.118	-0.131	0.122	0.295
PCS	1852.40	0.345	-0.157	0.358	0.531
	PCS Cell PCS Cell	PCS 1851.25 Cell 837.00 PCS 1850.20 Cell 837.00	PCS1851.250.427Cell837.000.139PCS1850.200.182Cell837.000.118	PCS1851.250.427-0.087Cell837.000.139-0.089PCS1850.200.182-0.287Cell837.000.118-0.131	PCS1851.250.427-0.0870.436Cell837.000.139-0.0890.142PCS1850.200.182-0.2870.194Cell837.000.118-0.1310.122


Notes:

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.3.2 LCD EDGE POSITION – PRIMARY PORTRAIT

The highest reported SAR value at this configuration is: 0.233 W/kg (802.11n HT40 mode, channel 163, 5815 MHz), please see CCS SAR Report 06U10634-4B for WLAN and 06U10630-3B (MC8755), 06U10631-3B (MC8765), and 06U106632-4B (MC5720) for WWANs.

 The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncortainty component	Tol. (±%)	Probe Dist.	Div	C : (1 m)	C: (40m)	Std. Unc.(±%)	
Uncertainty component			Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS		•	11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table							•
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							
4. Div Divisor used to obtain standard uncertainty							

5. Ci - is te sensitivity coefficient

9.2 MEASURMENT UNCERTAINTY 3 GHz – 6 GHz

Lineartainty component		Probe	Div.	Ci (1g)	Ci (10c)	Std. Unc.(±%)	
Uncertainty component	Tol. (±%)	Dist.			Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notesfor table 1. Tol tolerance in influence quaitity 2. N. Normal	•						•

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

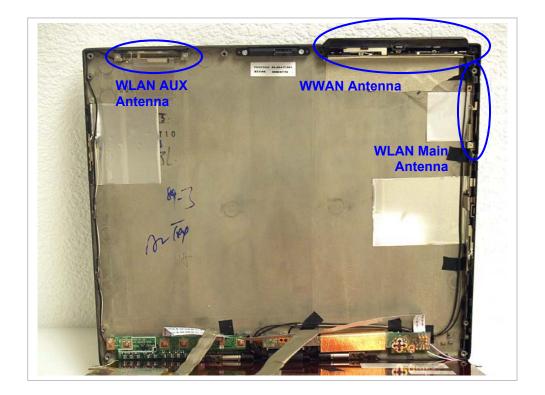
10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3552	5/30/07
Thermometer	ERTCO	639-1S	1718	1/11/07
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D2450V2	706	4/27/08
System Validation Dipole	SPEAG	D5GHzV2	1003	11/22/07
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	3/21/07
Simulating Liquid	CCS	M2450	N/A	Within 24 hrs of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Within 24 hrs of first test

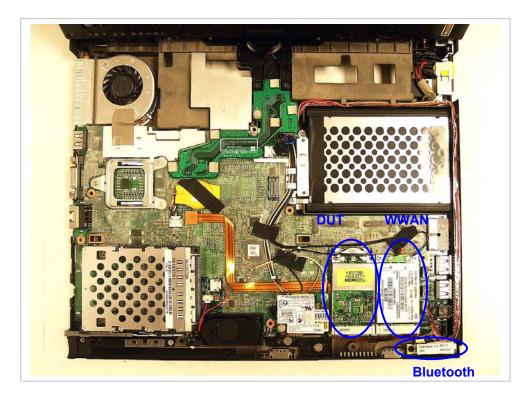
11 PHOTOS

DUT

Host laptop - Normal Mode



Host laptop - Tablet Mode



Antenna Location

DUT Location

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	12
2-1	SAR Test Plots – 2.4GHz	18
2-2	SAR Test Plots – 5.2GHz	13
2-3	SAR Test Plots – 5.8GHz	21
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	10
6	Material Specification Data Sheet of Body Simulating Liquid (5GHz)	3

END OF REPORT