

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE CERTIFICATION TEST REPORT

FOR

802.11 b/g PCIExpress Minicard

(Tested inside of Notebook PC, Model NP-NC10)

MODEL NUMBER: AR5BXB63

FCC ID: PPD-AR5BXB63 IC: 4104A-AR5BXB63

REPORT NUMBER: 08I12084-3A

ISSUE DATE: OCTOBER 13, 2008

Prepared for

ATHEROS COMMUNICATIONS, INC. 5480 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

DATE: OCTOBER 13, 2008 IC: 4104A-AR5BXB63

Revision History

Rev.	Issue Date	Revisions	Revised By
	October 6, 2008	Initial Issue	S. Shih
A	10/13/08	Updated model number and EUT description	A. Zaffar

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	4
2.	TES1	Γ METHODOLOGY	5
3.	FACI	ILITIES AND ACCREDITATION	5
4.	CALI	BRATION AND UNCERTAINTY	5
4	1 .1.	MEASURING INSTRUMENT CALIBRATION	5
4	1.2.	MEASUREMENT UNCERTAINTY	5
5.	EQU	IPMENT UNDER TEST	6
į	5.1.	DESCRIPTION OF EUT	6
į	5.2.	DESCRIPTION OF CLASS II CHANGE	6
5	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5	5.4.	SOFTWARE AND FIRMWARE	6
5	5.5.	WORST-CASE CONFIGURATION AND MODE	6
£	5.6.	DESCRIPTION OF TEST SETUP	7
6.	TES1	Γ AND MEASUREMENT EQUIPMENT	9
7.	ANT	ENNA PORT TEST RESULTS1	0
	7.1.1		
	7.1.2 7.1.3	* *=	
8.		IATED TEST RESULTS1	
		LIMITS AND PROCEDURE	
		TRANSMITTER ABOVE 1 GHz	
(9. <i>∠.</i> 8.2.1		
	8.2.2	. 802.11g MODE2	1
8		RECEIVER ABOVE 1 GHz	
	8.3.1		
5	3.4.	WORST-CASE BELOW 1 GHz2	1
9.	AC P	POWER LINE CONDUCTED EMISSIONS3	1
10.	SE	ETUP PHOTOS3	5

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Atheros Communications, Inc.

5480 Great America Parkway

Santa Clara, CA 95054

EUT DESCRIPTION: 802.11 b/g PCIExpress Minicard

MODEL: AR5BXB63

SERIAL NUMBER: ES4793GQ900061Y

DATE TESTED: SEPTEMBER 20-27, 2008

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 7 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 2 Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By: Tested By:

SUNNY SHIH EMC SUPERVISOR

Sunay Shih

COMPLIANCE CERTIFICATION SERVICES

CAN MING CHUNG EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

MEASUREMENT UNCERTAINTY 4.2.

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Notebook PC, Model AR5BXB63 with 802.11b/g transceiver and BT module installed.

DATE: OCTOBER 13, 2008

IC: 4104A-AR5BXB63

The WLAN transceiver radio module is manufactured by Atheros.

5.2. DESCRIPTION OF CLASS II CHANGE

The changes filed under this application are:

Change #1 The module is being used in a different host (Portable category Configuration).

Change #2 Add two antennas. Please refer to antenna specs submitted.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

Manufactured	Type	Antenna ID	Model	Peak gain (dBi)
Foxconn	PCB	Main	WDAN-M1WC1002-DF	0.18
		Aux	WDAN-M1WC1001-DF	-0.28
Wistron NeWeb	PCB	Main	BA42-00217A	0.95
Corporation (WNC)			(81.EHD15.005)	
		Aux	BA4200216A	-1.51
			(81.EHD15.004)	

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed in the host support equipment during testing was art id=7131.

The test utility software used during testing was Atheros ART 5.3. Build #30

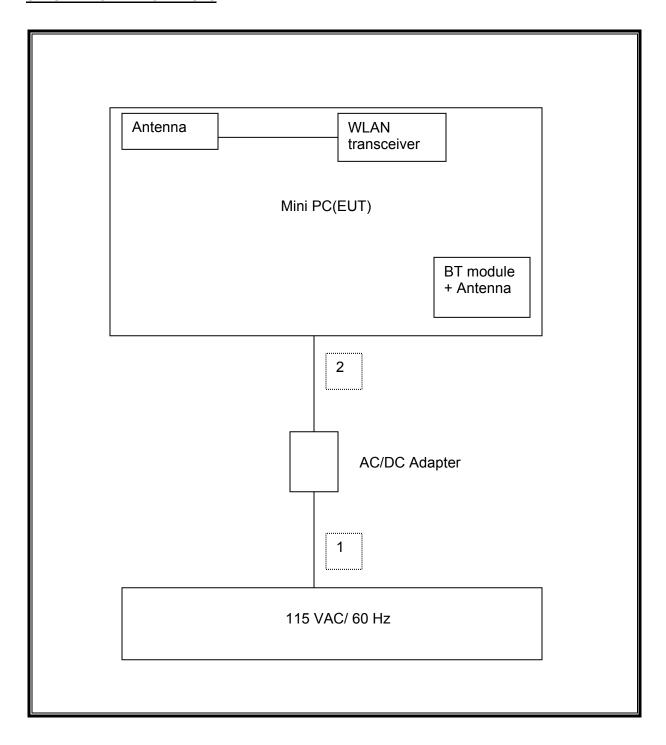
5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description	Description Manufacturer Model Serial Number FCC ID						
AC Adapter	AC Adapter Delta ADP-40MHAB 327W88E004B DOC						


I/O CABLES

	I/O CABLE LIST						
Cable No.	Port	# of Identica Ports	Connector Type	- 3.13.13	Cable Length	Remarks	
1	AC	1	AC	Unshielded	1m	N/A	
2	DC	1	DC	Unshielded	1.8m	Ferrite on Notebook End	

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Asset	Cal Date	Cal Due		
EMI Receiver, 2.9 GHz	Agilent / HP	8542E	C00957	02/06/08	06/12/09		
RF Filter Section, 2.9 GHz	Agilent / HP	85420E	C00958	02/06/08	06/12/09		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	05/09/08	05/09/09		
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/25/07	10/25/08		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	10/25/07	10/25/08		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	10/16/07	01/27/09		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	12/03/07	03/03/09		
Antenna, Horn, 18 GHz	ETS	3117	C01006	04/15/08	04/15/09		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/03/08	08/03/09		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	10/13/07	10/13/08		
Peak Power Meter	Agilent / HP	E4416A	C00963	02/14/07	12/02/08		
Peak / Average Power Sensor	Agilent	E9327A	C00964	02/14/07	12/02/08		
4.0 GHz High Pass Filter	Micro Tronics	HPM13351	N/A	N/A	N/A		

7. ANTENNA PORT TEST RESULTS

7.1.1. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b

Channel	Frequency (MHz)	Average Power (dBm)
Low (1)	2412	20.6
Middle (6)	2437	20.6
High (11)	2462	19.0

802.11g

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low (1)	2412	17.5
Middle (6)	2437	20.7
High (11)	2462	15.5

DATE: OCTOBER 13, 2008 IC: 4104A-AR5BXB63

7.1.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

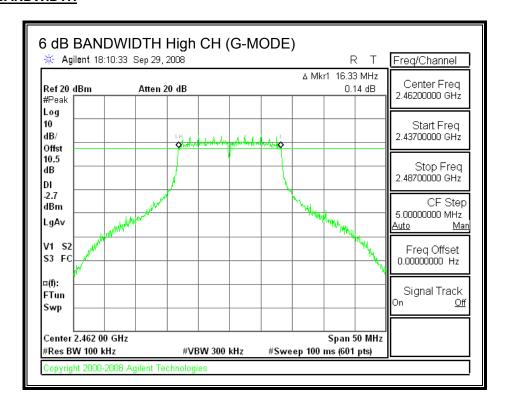
The minimum 6 dB bandwidth shall be at least 500 kHz.

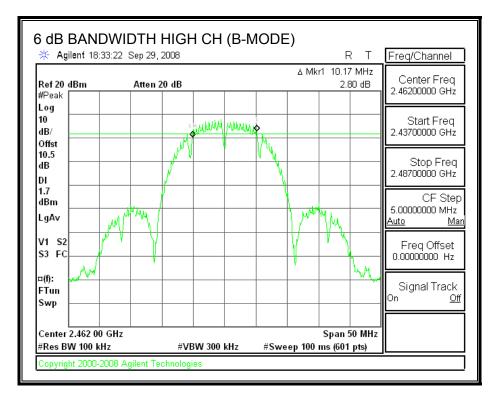
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

B-Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
High	2462	16.33	0.5


G-Mode

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
High	2462	10.17	0.5

REPORT NO: 08I12084-3A

FCC ID: PPD-AR5BXB63

DATE: OCTOBER 13, 2008 IC: 4104A-AR5BXB63

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

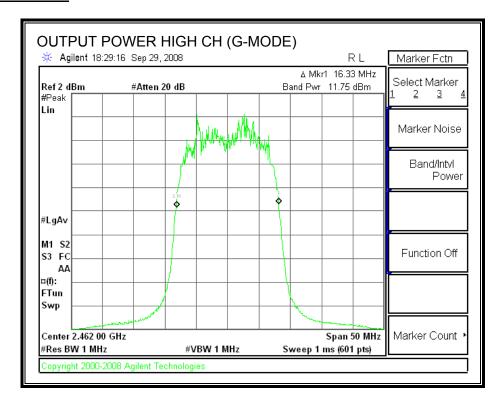
IC RSS-210 A8.4

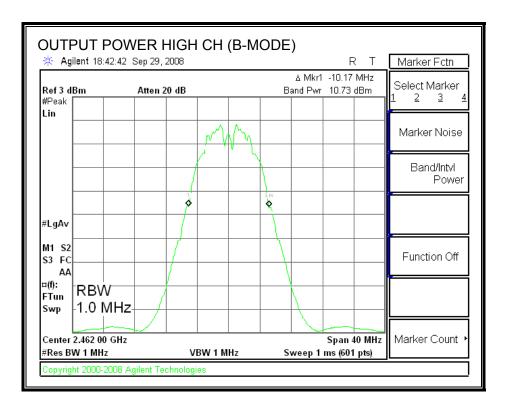
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

Peak power is measured using the Channel bandwidth Alternative peak output power procedure specified in "TCB Training for Devices covered under Scopes A1 - A4" by Joe Dichoso, May 2003.

RESULTS


G-MODE


Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
High	2462	11.75	10.5	22.25	30	-7.75

B-MODE

Channel	Frequency	Spectrum	Attenuator and	Output	Limit	Margin
		Analyzer Reading	Cable Offset	Power		
	(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dB)
High	2462	10.73	10.5	21.23	30	-8.77

OUTPUT POWER

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

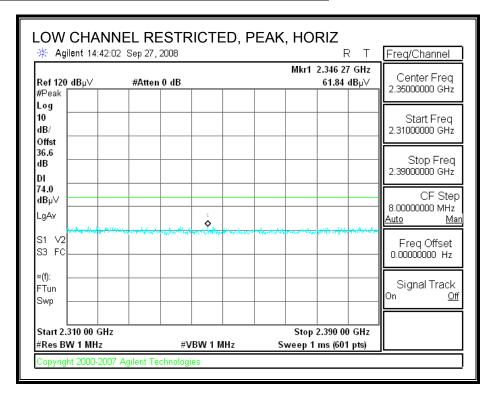
TEST PROCEDURE

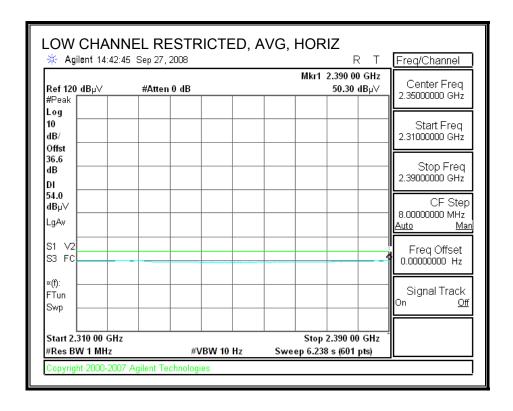
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

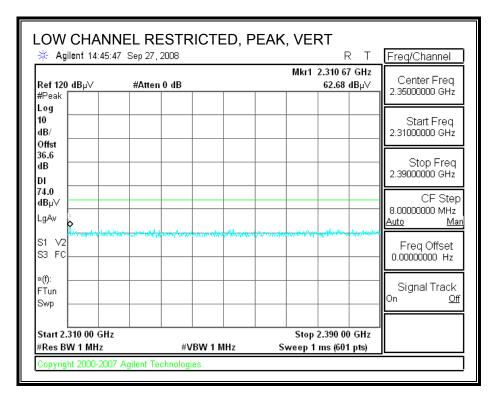
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

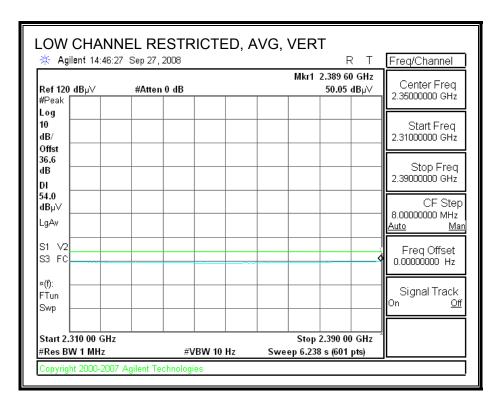
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

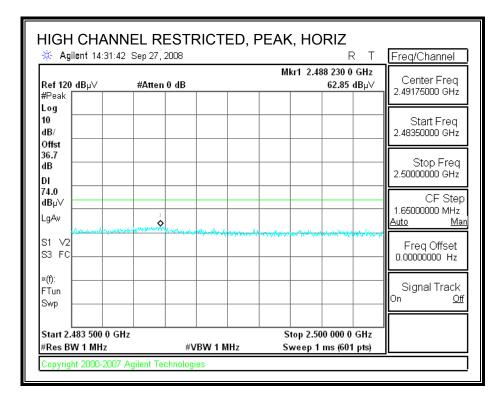

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

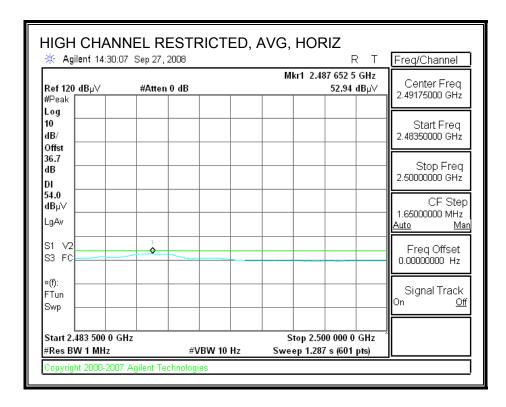

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

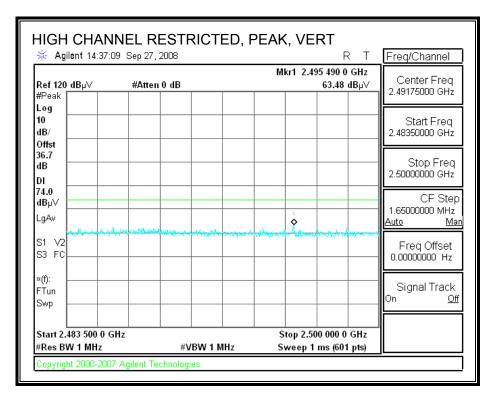
8.2. TRANSMITTER ABOVE 1 GHz

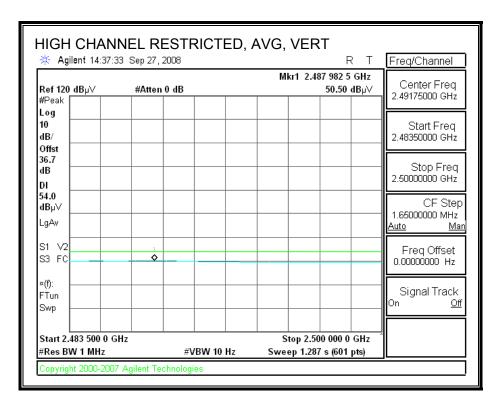

8.2.1. 802.11b MODE

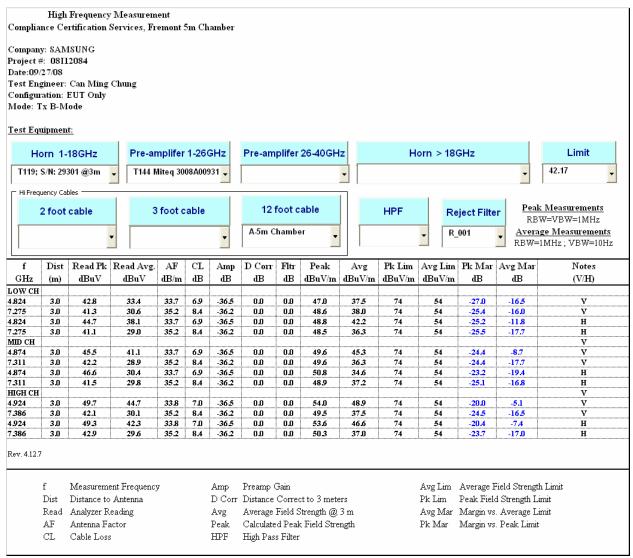

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



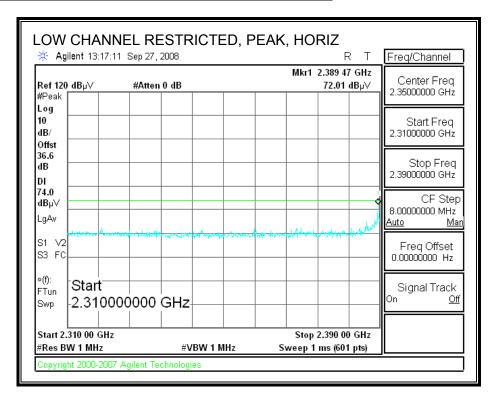

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

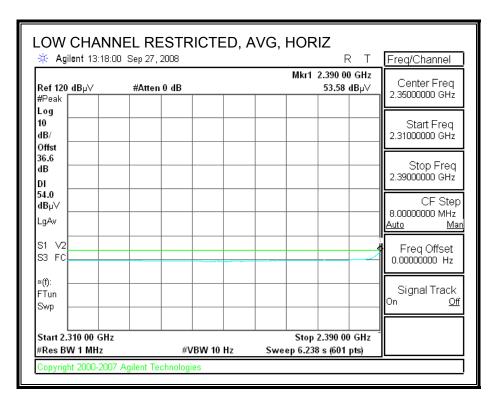


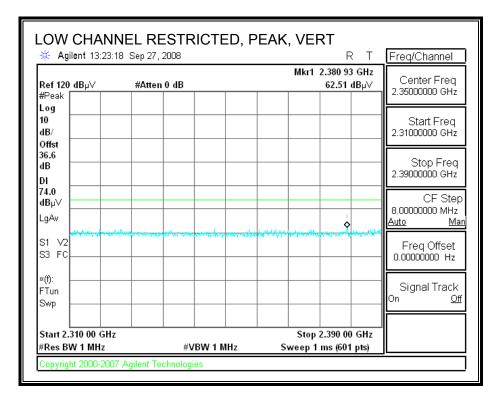

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

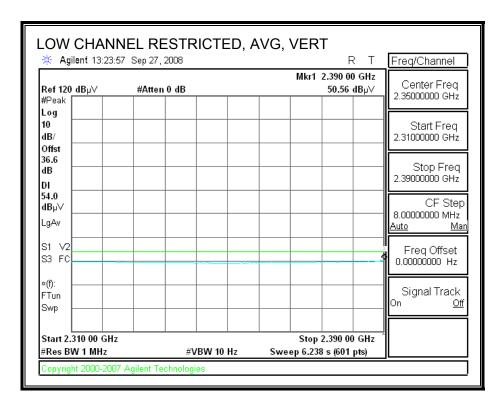


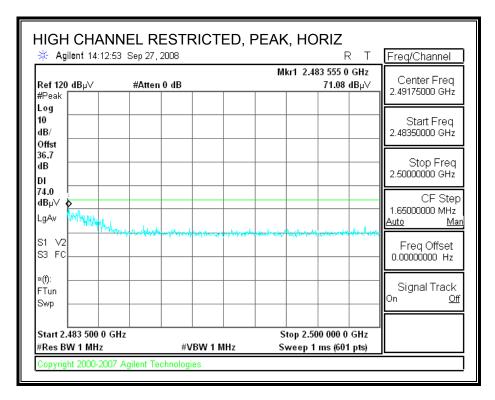
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

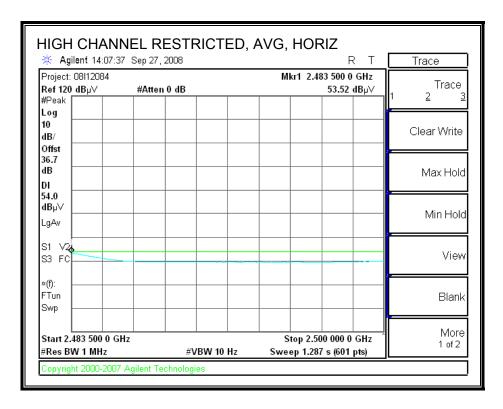


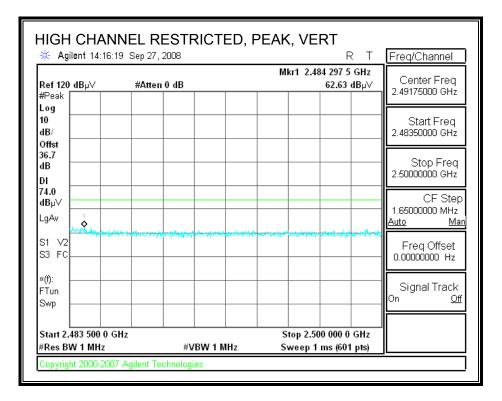

HARMONICS AND SPURIOUS EMISSIONS

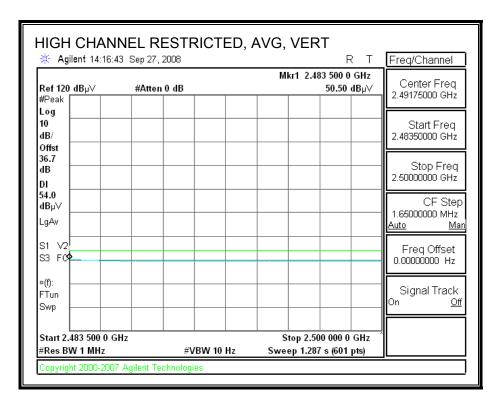

8.2.2. 802.11g MODE

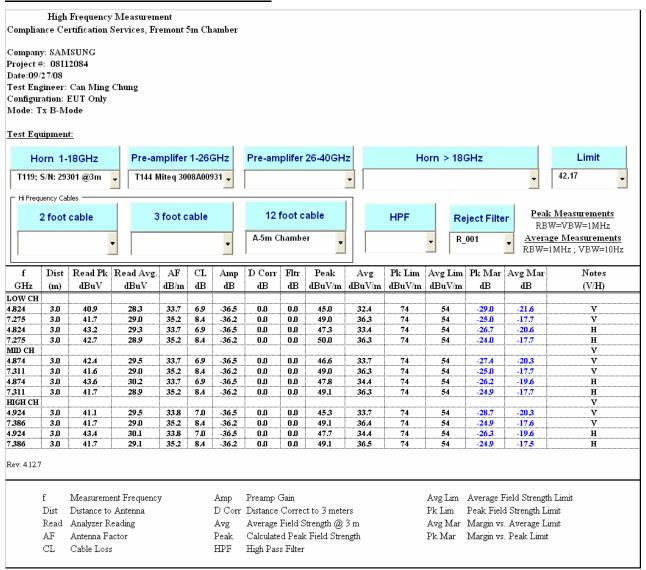

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



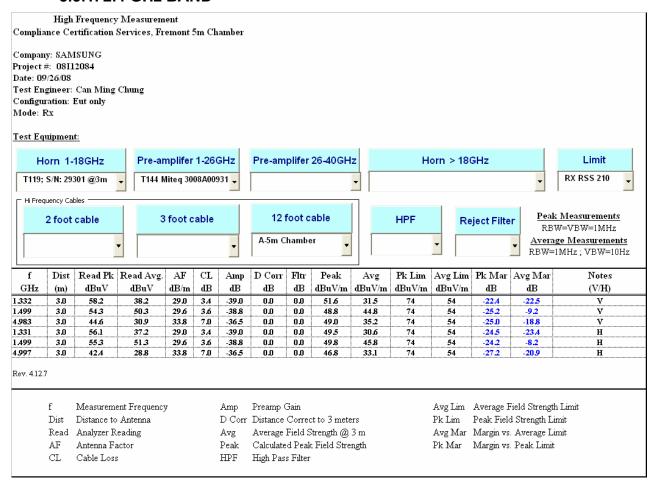

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



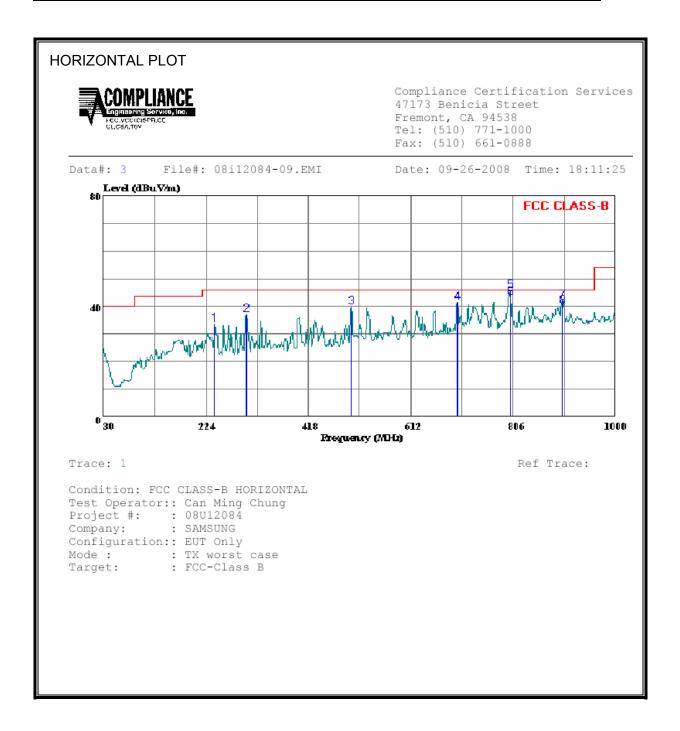

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



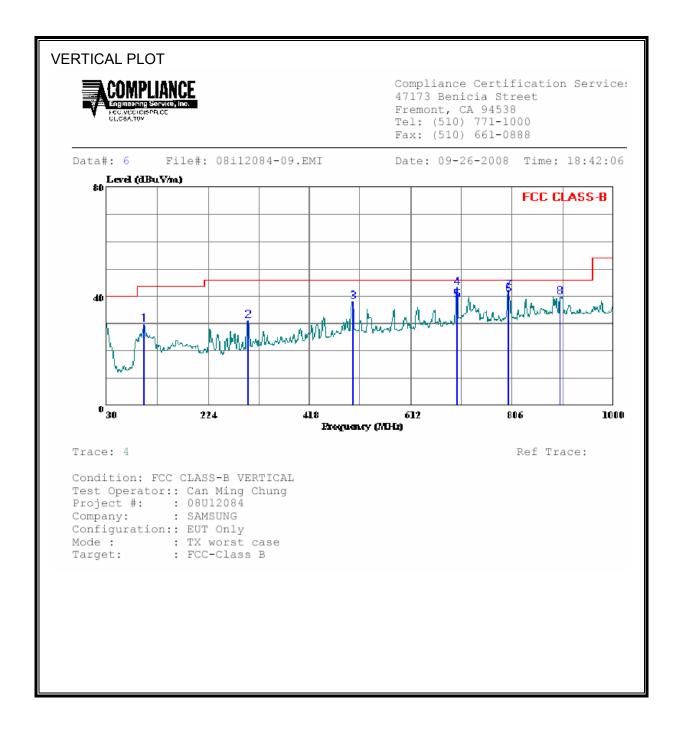
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS


8.3. RECEIVER ABOVE 1 GHz

8.3.1. 2.4 GHz BAND


8.4. **WORST-CASE BELOW 1 GHz**

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

HORIZONTAL DATA Read Limit Over								
	Freq			Level			Remark	
	MHz	dBuV	dB	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB		
1 2 3 4 5 6 7 8	240.490 300.630 499.480 701.240 800.180 800.180 899.120 899.120	47.98 44.69 42.17 44.83 41.91 39.21	-11.01 -4.79 -0.44 0.87 1.43 2.87	33.63 36.97 39.90 41.73 45.70 43.34 42.09 40.20	46.00 46.00 46.00 46.00 46.00	-9.03 -6.10 -4.27 -0.30 -2.66 -3.91	Peak Peak Peak Peak QP Peak	

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

VERTICAL DATA

	Read			Limit	Over	
	Level	Factor	Level	Line	Limit	Remark
300.630	42.16	-11.01	31.15	46.00	-14.85	Peak
701.240	43.72	-0.44	43.28	46.00	-2.72	Peak
798.240	39.24	1.45	40.69	46.00	-5.31	QP
897.180	37.10	2.85	39.95	46.00	-6.05	Peak
	MHz 101.780 300.630 501.420 701.240 701.240 798.240 798.240	Freq Level MHz dBuV 101.780 46.11 300.630 42.16 501.420 42.76 701.240 43.72 701.240 38.70 798.240 39.24 798.240 41.38	Freq Level Factor MHz dBuV dB 101.780 46.11 -16.41 300.630 42.16 -11.01 501.420 42.76 -4.74 701.240 43.72 -0.44 701.240 38.70 -0.06 798.240 39.24 1.45 798.240 41.38 0.85	Freq Level Factor Level MHz dBuV dB dBuV/m 101.780 46.11 -16.41 29.70 300.630 42.16 -11.01 31.15 501.420 42.76 -4.74 38.02 701.240 43.72 -0.44 43.28 701.240 38.70 -0.06 38.64 798.240 39.24 1.45 40.69 798.240 41.38 0.85 42.23	Freq Level Factor Level Line MHz dBuV dB dBuV/m dBuV/m 101.780 46.11 -16.41 29.70 43.50 300.630 42.16 -11.01 31.15 46.00 501.420 42.76 -4.74 38.02 46.00 701.240 43.72 -0.44 43.28 46.00 701.240 38.70 -0.06 38.64 46.00 798.240 39.24 1.45 40.69 46.00 798.240 41.38 0.85 42.23 46.00	Read Level Factor Level Limit Over Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 101.780 46.11 -16.41 29.70 43.50 -13.80 300.630 42.16 -11.01 31.15 46.00 -14.85 501.420 42.76 -4.74 38.02 46.00 -7.98 701.240 38.70 -0.06 38.64 46.00 -2.72 701.240 38.70 -0.06 38.64 46.00 -7.36 798.240 39.24 1.45 40.69 46.00 -5.31 798.240 41.38 0.85 42.23 46.00 -33.77 897.180 37.10 2.85 39.95 46.00 -6.05

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

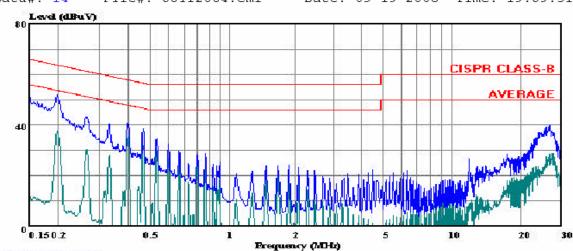
TEST PROCEDURE

ANSI C63.4

RESULTS

6 WORST EMISSIONS

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq. Reading				Closs	Limit	FCC_B	Marg	Remark	
(MHz)	PK (dBuV)	(dBuV) QP (dBuV) AV (dBuV)		(dB)	B) QP AV QP (dB)		AV(dB)	L1/L2	
0.20	51.83		37.39	0.00	63.69	53.69	-11.86	-16.30	L1
0.46	38.59		29.86	0.00	56.62	46.62	-18.03	-16.76	L1
26.84	39.78		28.77	0.00	60.00	50.00	-20.22	-21.23	L1
0.20	52.15		37.74	0.00	63.69	53.69	-11.54	-15.95	L2
0.47	37.64		30.91	0.00	56.58	46.58	-18.94	-15.67	L2
26.42	39.44		26.57	0.00	60.00	50.00	-20.56	-23.43	L2
6 Worst Data									


LINE 1 RESULTS

Compliance Certification Services

47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888

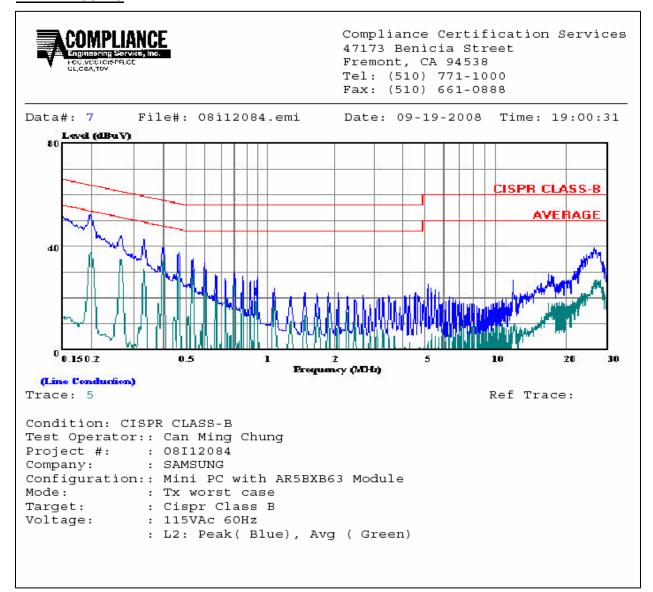
Data#: 14 File#: 08i12084.emi Date: 09-19-2008 Time: 19:09:51

(Line Conduction)

Trace: 12 Ref Trace:

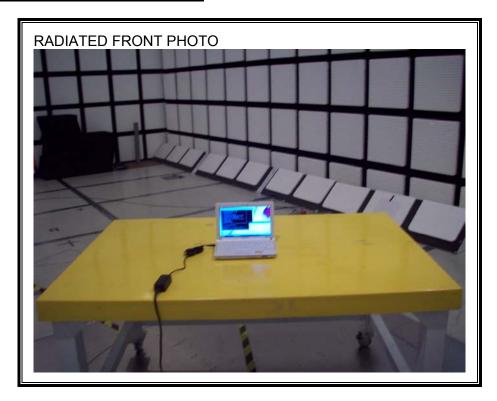
Condition: CISPR CLASS-B

Test Operator:: Can Ming Chung


Project #: : 08I12084 Company: : SAMSUNG

Configuration:: Mini PC with AR5BXB63 Module

Mode: : Tx worst case Target: : Cispr Class B Voltage: : 115VAc 60Hz


: L1: Peak(Blue), Avg (Green)

LINE 2 RESULTS

10. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP

Page 35 of 36

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

END OF REPORT

Page 36 of 36