

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS 210 Issue 7 CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n PCI Module

MODEL: AR5BMB82

FCC ID: PPD-AR5BMB82

IC: 4104A-AR5BMB82

REPORT NUMBER: 07U11326-1, Revision C

ISSUE DATE: DECEMBER 3, 2007

Prepared for

ATHEROS COMMUNICATIONS, INC. 5480 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/29/07	Initial Issue	F. Ibrahim
Α	11/12/07	Added DFS Test Results	M. Heckrotte
В	11/21/07	Revised 40 MHz BW DFS Test Results: replaced (measurements on center of control channel plus measurements on center of extended channel) with (measurements on center of entire channel)	M. Heckrotte
С	12/3/07	Clarified multiple transmitting chains and spatial separation of antennas in MPE section	F. Ibrahim

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	6
2. TE	EST METHODOLOGY	7
3. FA	ACILITIES AND ACCREDITATION	7
4. C	ALIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. E0	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4.	SOFTWARE AND FIRMWARE	8
5.5.	WORST-CASE CONFIGURATION AND MODE	9
5.6.	DESCRIPTION OF TEST SETUP	10
6. TE	EST AND MEASUREMENT EQUIPMENT	12
7. AI	NTENNA PORT TEST RESULTS	13
7.1.	802.11a THREE CHAINS LEGACY MODE IN THE 5.2 GHz BAND	13
	1.1. 26 dB and 99% BANDWIDTH	
	1.2. OUTPUT POWER 1.3. AVERAGE POWER FOR LEGACY MODES (5.2GHz)	15 10
	1.4. PEAK POWER SPECTRAL DENSITY	
	1.5. PEAK EXCURSION	
7.	1.6. CONDUCTED SPURIOUS EMISSIONS	
7.2.		32
	2.1. 26 dB and 99% BANDWIDTH 2.2. OUTPUT POWER	
	2.3. AVERAGE POWER FOR HT20 MODES (5.2GHz)	38
	2.4. PEAK POWER SPECTRAL DENSITY	39
	2.5. PEAK EXCURSION	
7.3.		
	3.1. 26 dB and 99% BANDWIDTH	
	3.2. OUTPUT POWER	53
	3.3. AVERAGE POWER FOR HT40 MODES (5.2GHz)	
	3.4. PEAK POWER SPECTRAL DENSITY	
	3.6. CONDUCTED SPURIOUS EMISSIONS	
7.4.	802.11a THREE CHAINS LEGACY MODE IN THE 5.5 GHz BAND	70
	Page 3 of 3	

7.4.1. 26 dB and	I 99% BANDWIDTH	70
	POWER	
	E POWER FOR LEGACY MODES (5.6GHz)	
	WER SPECTRAL DENSITYCURSION	
7.4.6. CONDUC	TED SPURIOUS EMISSIONS	85
	EE CHAINS HT20 MODE IN THE 5.6 GHz BAND	
	1 99% BANDWIDTH	
	POWER	
	E POWER FOR HT20 MODES (5.6GHz)	
	WER SPECTRAL DENSITY	
	CURSION	
7.5.6. CONDUC	TED SPURIOUS EMISSIONS	103
7.6. 802.11n THRE	EE CHAINS HT40 MODE IN THE 5.6 GHz BAND	107
	I 99% BANDWIDTH	
7.6.2. OUTPUT	POWER	109
	E POWER FOR HT40 MODES (5.6GHz)	
	WER SPECTRAL DENSITY	
	CURSION	
7.6.6. CONDUC	TED SPURIOUS EMISSIONS	121
8. RADIATED TEST	RESULTS	125
8.1. LIMITS AND F	PROCEDURE	125
	R ABOVE 1 GHz	
	E 1 GHz, 802.11a THREE CHAINS LEGACY MODE, 5.2 GHz	
	E 1 GHz, 802.11n HT20 MODE, 5.2 GHz	
	E 1 GHz, 802.11n HT40 MODE, 5.2 GHz	
	E 1 GHz, 802.11a THREE CHAINS LEGACY MODE, 5.6 GHz	
	E 1 GHz, 802.11n HT20 MODE, 5.6 GHz	
8.2.6. TX ABOV	E 1 GHz, 802.11n HT40 MODE, 5.6 GHz	142
8.3. RECEIVER AE	BOVE 1 GHz	145
	E 1 GHz, 20 MHz BANDWIDTH, 5.2 GHz	
8.3.2. RX ABOV	E 1 GHz, 20 MHz BANDWIDTH, 5.6 GHz	146
8.4. WORST-CASE	E BELOW 1 GHz	147
0 40 DOWED LINE	CONDUCTED EMISSIONS	4.40
9. AC POWER LINE	CONDUCTED EMISSIONS	149
10. DYNAMIC FREC	QUENCY SELECTION	152
10.1. OVERVIEW	,	152
	3	
	AND MEASUREMENT SYSTEM	
	P OF EUT	
10.1.4. DESC	RIPTION OF EUT	160
	OR 20 MHz BANDWIDTH MODE	
	CHANNEL	
	S OF RADAR WAVEFORMS AND WLAN TRAFFIC	
10.2.3. CHAN	NEL AVAILABILITY CHECK TIME	169

1	0.2.4.	MOVE AND CLOSING TIME	174
1	0.2.5.	NON-OCCUPANCY PERIOD	
1	0.2.6.	DETECTION BANDWIDTH	181
1	0.2.7.	IN-SERVICE MONITORING	183
10.	3. RES	SULTS FOR 40 MHz BANDWIDTH MODE	190
1	0.3.1.	TEST CHANNEL	190
1	0.3.2.	PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC	190
1	0.3.3.	CHANNEL AVAILABILITY CHECK TIME	197
1	0.3.4.	MOVE AND CLOSING TIME	202
1	0.3.5.	NON-OCCUPANCY PERIOD	208
1	0.3.6.	DETECTION BANDWIDTH	209
1	0.3.7.	IN-SERVICE MONITORING	211
11.	MAXIMU	UM PERMISSIBLE EXPOSURE	218
12	SETLIP	PHOTOS	222

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: ATHEROS COMMUNICATIONS, INC.

5480 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, U.S.A.

EUT DESCRIPTION: 802.11a/b/g/n PCI Module

MODEL: AR5BMB82

SERIAL NUMBER: MB82-031-S0263

DATE TESTED: OCTOBER 18 – NOVEMBER 7, 2007

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E No Non-Compliance Noted

INDUSTRY CANADA RSS-GEN ISSUE 2 No Non-Compliance Noted

INDUSTRY CANADA RSS 210 ISSUE 7 No Non-Compliance Noted

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

MH

MICHAEL HECKROTTE
ENGINEERING MANAGER
COMPLIANCE CERTIFICATION SERVICES

DEVIN CHANG EMC ENGINEER

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC MO&O 06-96, RSS-GEN Issue 2, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: DECEMBER 3, 2007

IC: 4104A-AR5BMB82

This report shall not be reproduced except in full, without the written approval of CCS.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n PCI Module.

The radio module is manufactured by ATHEROS COMMUNICATIONS, INC.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range Mode		Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5320	802.11a	18.09	64.42
5180 - 5320	802.11n HT20	21.93	155.96
5190 - 5310	802.11n HT40	22.01	158.85
5500 - 5700	802.11a	16.87	48.64
5500 - 5700	802.11n HT20	20.32	107.65
5510 - 5670	802.11n HT40	22.80	190.55

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Dipole Antenna, model: TWF-614C-406, with a maximum gain of 3 dBi in the 2.4 GHz bands, and 5 dBi in the 5 GHz bands. The minimum gain dipole antenna is 0 dBi in the 5 GHz bands.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was ART revision 0.5 Build # 20, ART_11n. For TX-related testing, the program puts the EUT in continuous transmitting mode with a duty cycle of 99%, for RX-related testing, the program puts the EUT in continuous receiving mode.

5.5. WORST-CASE CONFIGURATION AND MODE

EUT was tested as an external module inserted to a host Laptop PC.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11a Mode (20 MHz BW operation): 9Mbps, OFDM, Spatial Stream 1 802.11n MIMO HT20 Mode: MCS0, 6.5Mbps, OFDM, Spatial Stream 1 802.11n MIMO HT40 Mode: MCS0, 13.5Mbps, OFDM, Spatial Stream 1

Worst-case mode and channel used for 30-1000 MHz radiated and power line conducted emissions was the mode and channel with the highest output power, that was determined to be 11b, Mid Channel.

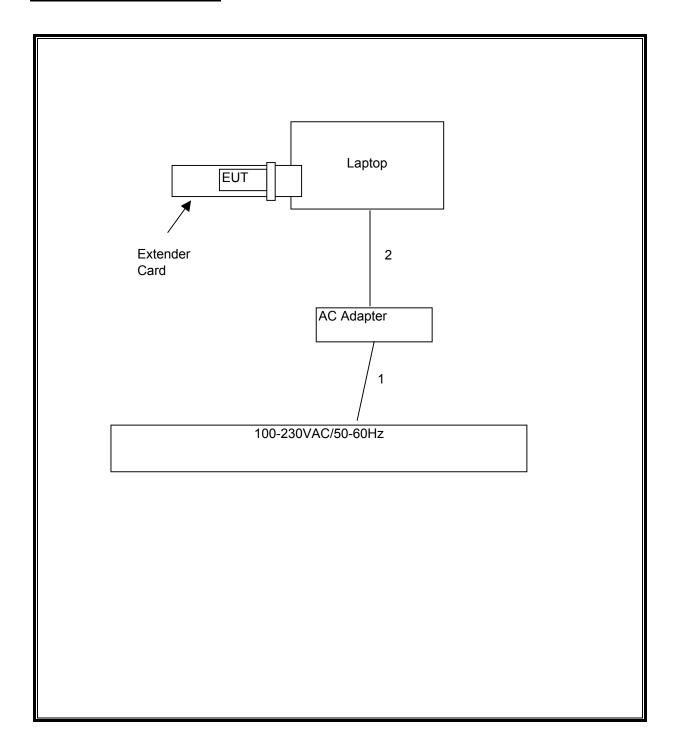
For 26 dB BW measurement preliminary testing showed that Chain 2 is worst-case chain, so final measurement was performed on chain 2 for all modes and channels.

For conducted spurious measurement preliminary testing showed that combiner is worst-case compared to individual chains; therefore, final measurement was performed using combiner for all channels and modes.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Laptop PC	LENOVO	T43	L3-AB1GT	DOC			
AC/DC Adapter	IBM	08K8204	11S08K8204Z1Z6LV3974JQ	N/A			
Cardbus to MINI-PCI	VYTEK	stcbmpi3	244	N/A			


I/O CABLES

	I/O CABLE LIST							
Cable No.			Connector Type	Cable Type	Cable Length	Remarks		
1	AC	1	US 115V	Un-shielded	0.8m	N/A		
2	DC	1	DC	Un-shielded	1.8m	Ferrite at one end		

TEST SETUP

The EUT is connected to a laptop PC via a PCI extension card during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Description Manufacturer Model S/N Cal Due							
Power Meter	Agilent / HP	438A	C01068	09/12/08				
Power Sensor, 18 GHz	Agilent / HP	8481A	N02782	04/22/08				
RF Filter Section	Agilent / HP	85420E	C00958	06/12/08				
Harmonic Mixer Cable	Agilent / HP	5061-5458	C00627*	CNR				
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	CO1012	08/07/08				
Antenna, Bilog, 2 GHz	Sund Sciences	JB1	CO1011	09/28/08				
Preamplifier, 1300 MHz	Agilent / HP	8447D	0	05/09/08				
Antenna, Hom, 18 GHz	EMCO	3115	C00945	04/15/08				
Preamplifier, 26.5 GHz	Agilent / HP	8449B	CO1052	08/03/08				
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/30/08				
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	01/27/08				
2.4-2.5 GHz Reject Filter	Moro-Tronics	BRIV50702	1	CNR				
Reject Filter, 5.15-5.35 GHz	Moro-Tronics	BRC13190	N02679	CNR				
Reject Filter, 5.47-5.725 GHz	Moro-Tronics	BRC13191	N02678	CNR				
Reject Filter, 5.725-5.825 GHz	Moro-Tronics	BRC13192	N02677	CNR				
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	10/11/08				
Antenna, Hom, 26.5 GHz	ARA	MWH-1826/B	C00980	09/28/08				
Antenna, Hom, 40 GHz	ARA	MWH-2640/B	C00981	04/11/08				

7. ANTENNA PORT TEST RESULTS

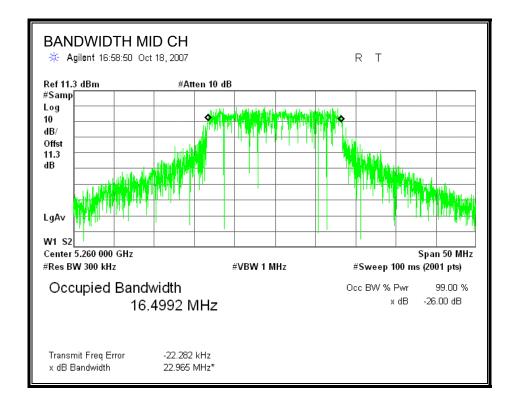
7.1. 802.11a THREE CHAINS LEGACY MODE IN THE 5.2 GHz BAND

7.1.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
Low	5180	21.1140	16.4911	
Middle	5260	22.9650	16.4992	
High	5320	22.6140	16.4611	

The Middle channel plot is included hereafter.

26 dB and 99% BANDWIDTH

7.1.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

Antenna	10 Log	Effective
Gain	(# Tx Chains)	Legacy Gain
(dBi)	(dB)	(dBi)
5	4.77	9.77

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

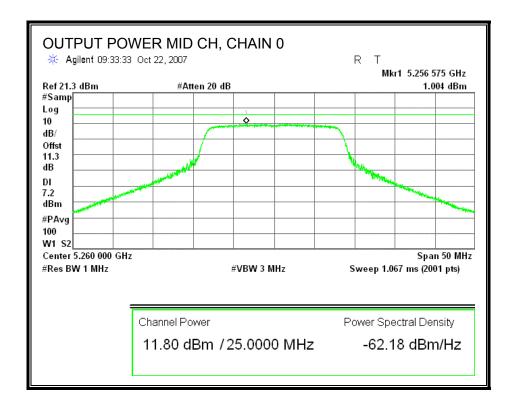
The transmitter output operates continuously therefore Method # 1 is used.

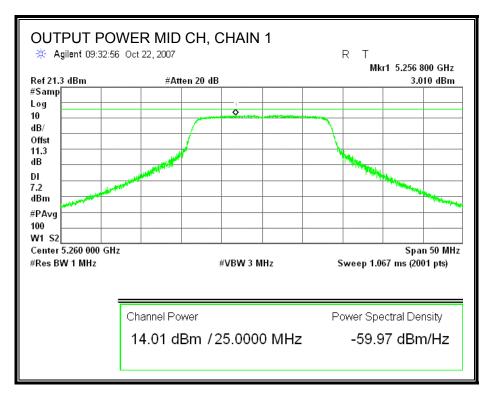
RESULTS

Limit in 5150 to 5250 MHz Band

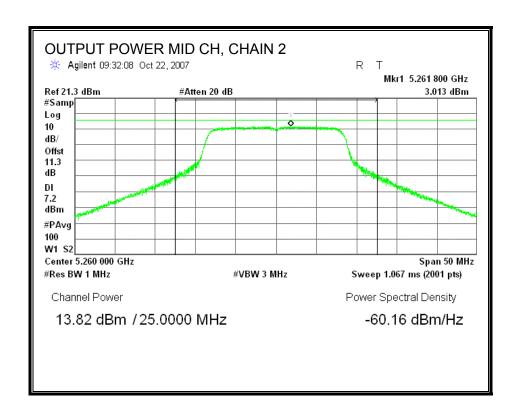
Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	21.114	17.25	9.77	13.22

Limit in 5250 to 5350 MHz Band


Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Mid	5260	23.98	22.965	24.61	9.77	20.21
High	5320	23.98	22.614	24.54	9.77	20.21


Individual Chain Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	4.05	6.48	7.38	10.95	13.22	-2.27
Mid	5260	11.80	14.01	13.82	18.09	20.21	-2.12
High	5320	11.50	13.83	13.67	17.89	20.21	-2.32


Middle channel plots are included hereafter.

OUTPUT POWER

Page 17 of 17

7.1.3. AVERAGE POWER FOR LEGACY MODES (5.2GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	4.10	6.50	7.10	10.85
Middle	5260	11.80	13.80	13.80	18.00
High	5320	11.50	13.50	13.30	17.63

7.1.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
5	4.77	9.77

For the 5.15–5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band.

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

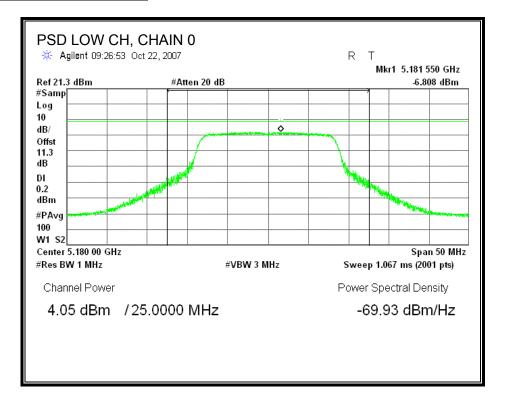
The maximum Effective antenna gain is 9.77 dBi, therefore the limit is 0.23 dBm in the lower band and 7.23 dBm in the upper band.

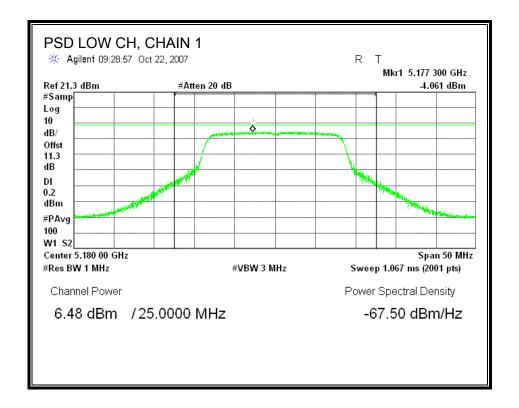
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

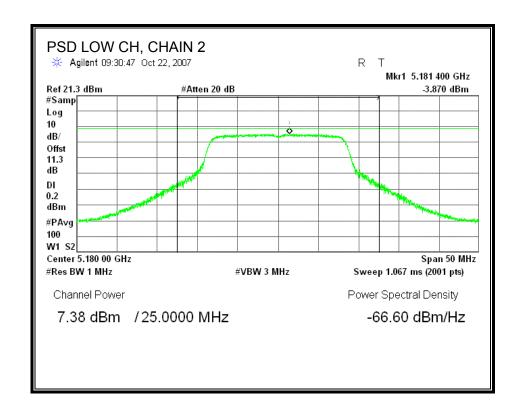
This report shall not be reproduced except in full, without the written approval of CCS.

RESULTS

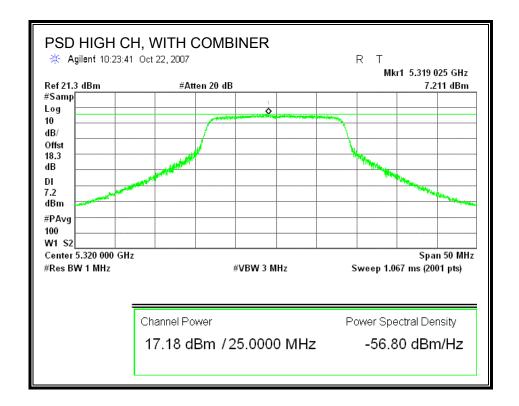

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	0.207	0.230	-0.023
Middle	5260	7.183	7.230	-0.047
High	5320	7.211	7.230	-0.019


High channel plots are included hereafter.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	-6.808	-4.061	-3.870	4.000
Middle	5260	1.004	3.010	3.013	11.000
High	5320	1.126	3.009	2.838	11.000


Low channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 22 of 22

POWER SPECTRAL DENSITY WITH COMBINER

7.1.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

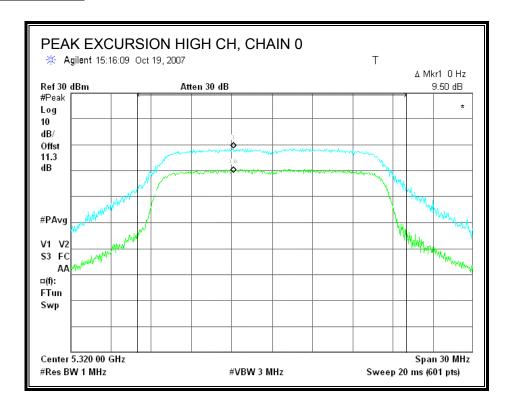
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

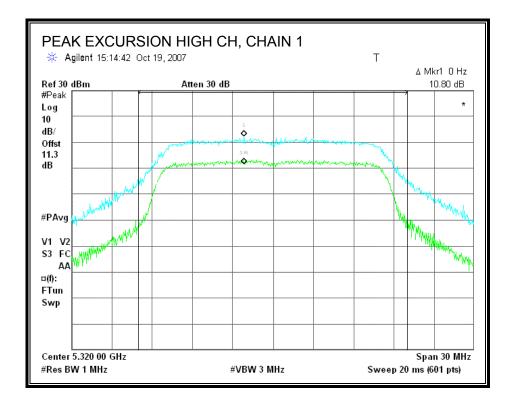
RESULTS

Chain 0

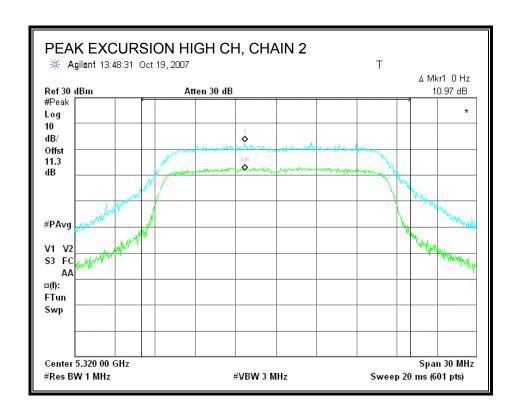
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.24	13	-3.76
Middle	5260	9.48	13	-3.52
High	5320	9.50	13	-3.50

Chain 1


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	9.79	13	-3.21
Middle	5260	10.13	13	-2.87
High	5320	10.80	13	-2.20


Chain 2

Channel	Frequency Peak Excursion		Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.27	13	-2.73
Middle	5260	10.47	13	-2.53
High	5320	10.97	13	-2.03


High channel, chain 2 plots are included hereafter.

PEAK EXCURSION

Page 26 of 26

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

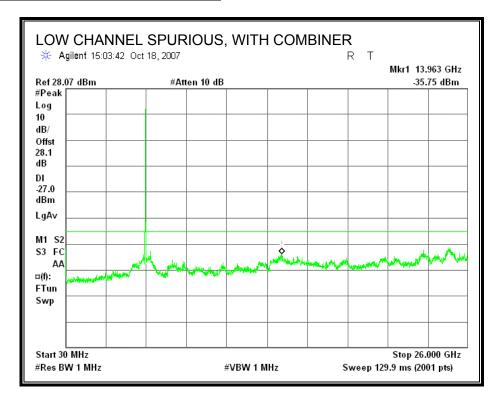
FCC §15.407 (b) (1 & 2)

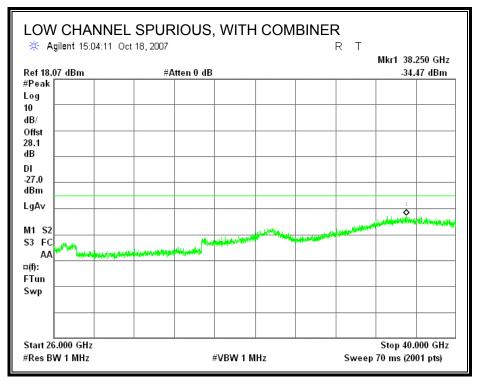
IC RSS-210 A9.3 (1 & 2)

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

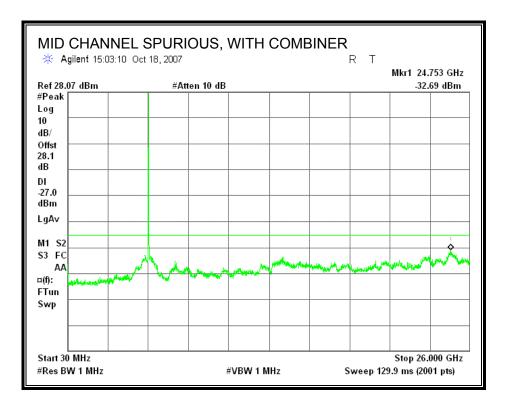
TEST PROCEDURE

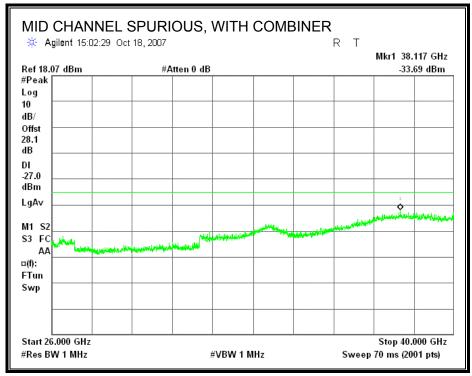
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

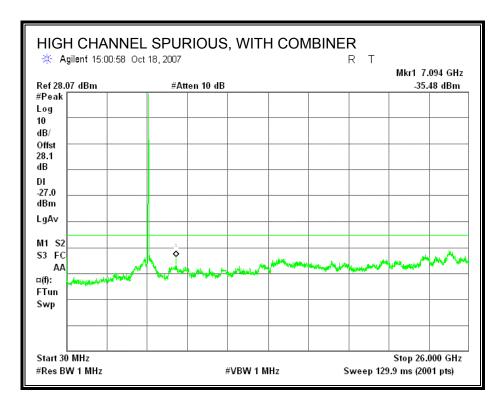

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

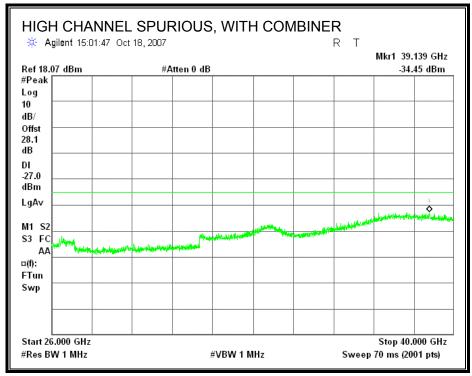

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 29 of 29

Page 31 of 31

7.2. 802.11n THREE CHAINS HT20 MODE IN THE 5.2 GHz BAND

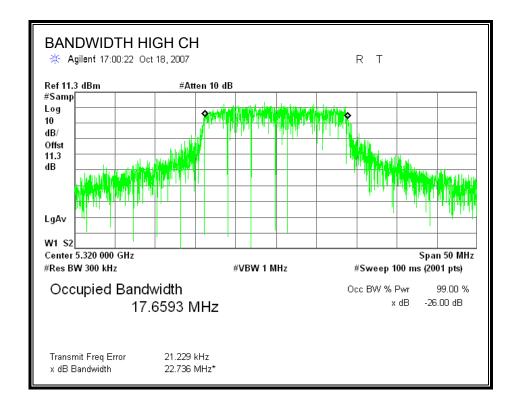
DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.2.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5180	21.7610	17.6577
Middle	5260	22.4120	17.7148
High	5320	22.7360	17.6593

High channel plot is included hereafter.

26 dB and 99% BANDWIDTH

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.2.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

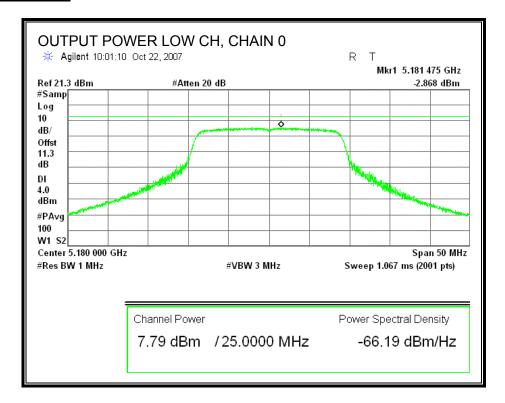
The transmitter output operates continuously therefore Method # 1 is used.

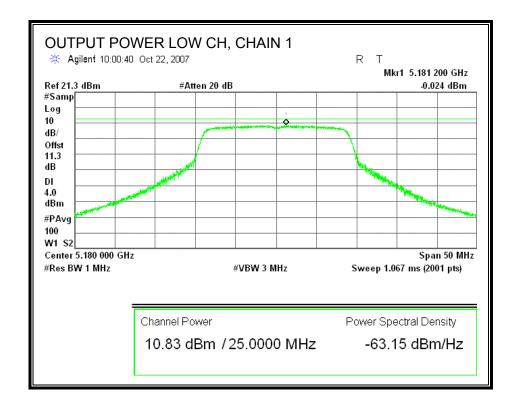
RESULTS

Limit in 5150 to 5250 MHz Band

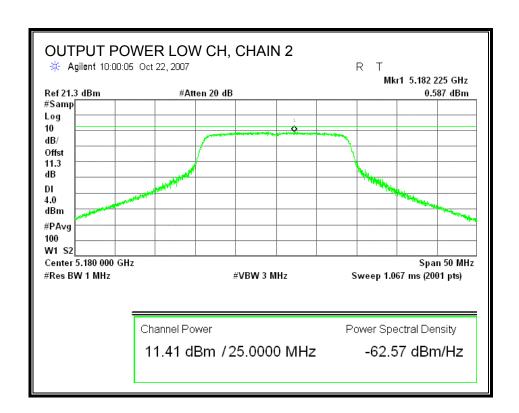
Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5180	16.99	21.761	17.38	5.00	16.99

Limit in 5250 to 5350 MHz Band


Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Mid	5260	23.98	22.412	24.50	5.00	23.98
High	5320	23.98	22.736	24.57	5.00	23.98


Individual Chain Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	7.79	10.83	11.41	15.05	16.99	-1.94
Mid	5260	15.89	17.66	17.69	21.93	23.98	-2.05
High	5320	15.48	17.18	17.22	21.47	23.98	-2.51


Low channel plots are included hereafter.

OUTPUT POWER

Page 36 of 36

7.2.3. AVERAGE POWER FOR HT20 MODES (5.2GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	7.60	10.70	11.00	14.78
Middle	5260	15.30	17.10	17.10	21.35
High	5320	14.80	17.00	16.90	21.12

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.2.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

For the 5.15–5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band.

For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.

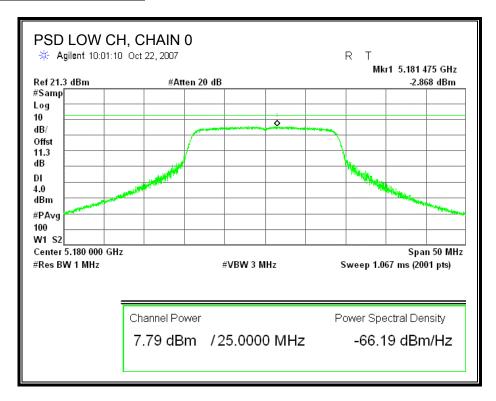
If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

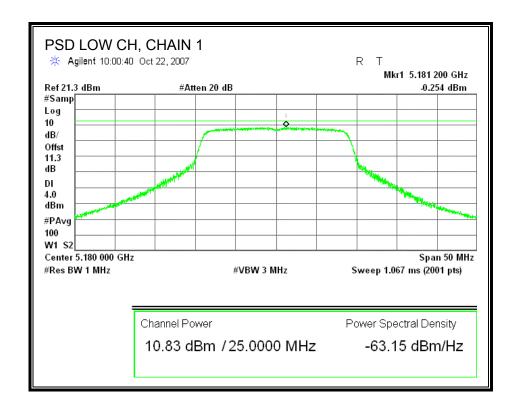
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm in the lower band and 11 dBm in the upper band.

TEST PROCEDURE

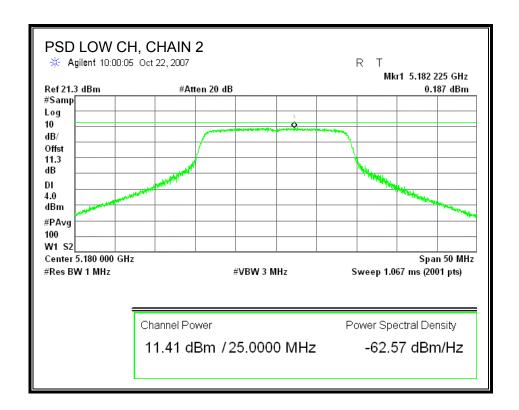
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

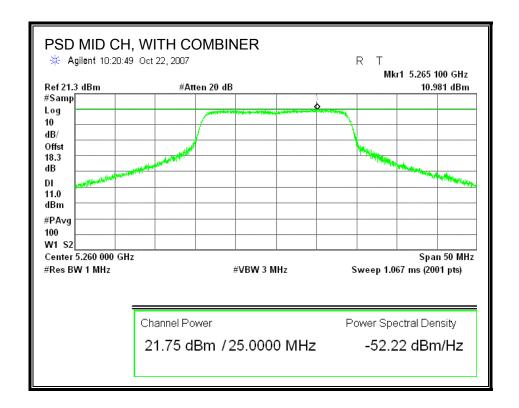

Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5180	-2.868	-0.254	0.187	4.000
Middle	5260	5.062	6.827	6.281	11.000
High	5320	4.826	6.255	6.145	11.000


Low channel plots are included hereafter.

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5180	3.917	4.000	-0.083
Middle	5260	10.981	11.000	-0.019
High	5320	10.906	11.000	-0.094


Middle channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 41 of 41

POWER SPECTRAL DENSITY WITH COMBINER

7.2.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

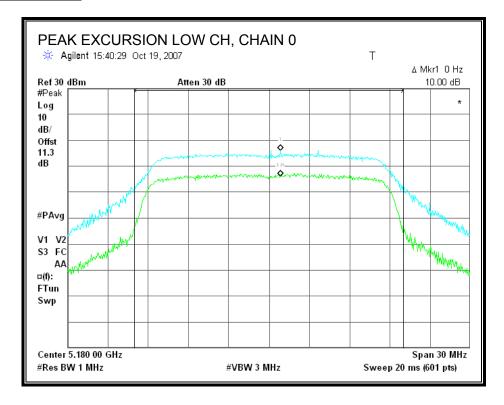
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

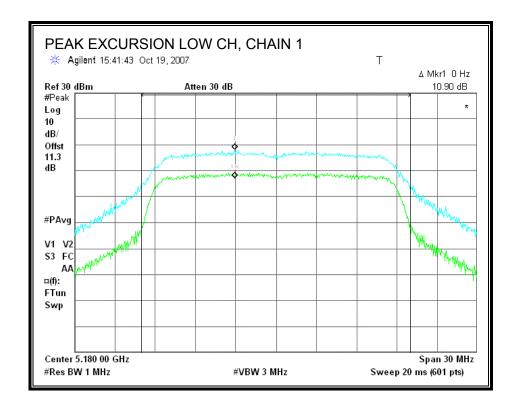
RESULTS

Chain 0

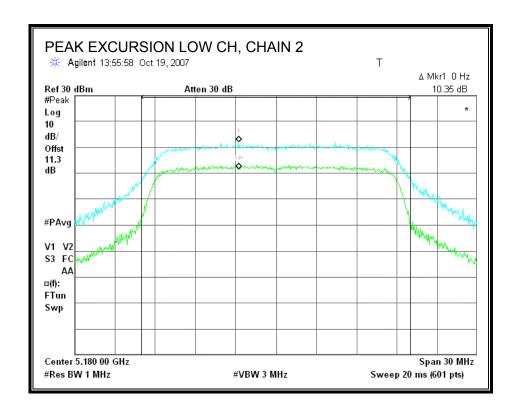
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.00	13	-3.00
Middle	5260	10.56	13	-2.44
High	5320	9.01	13	-3.99

Chain 1


Channel	Frequency	Peak Excursion	Limit	Margin			
	(MHz)	(dB)	(dB)	(dB)			
Low	5180	10.90	13	-2.10			
Middle	5260	8.99	13	-4.01			
High	5320	8.60	13	-4.40			


Chain 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.35	13	-2.65
Middle	5260	8.90	13	-4.10
High	5320	9.84	13	-3.16


Low channel, chain 1 plots are included hereafter.

PEAK EXCURSION

Page 45 of 45

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

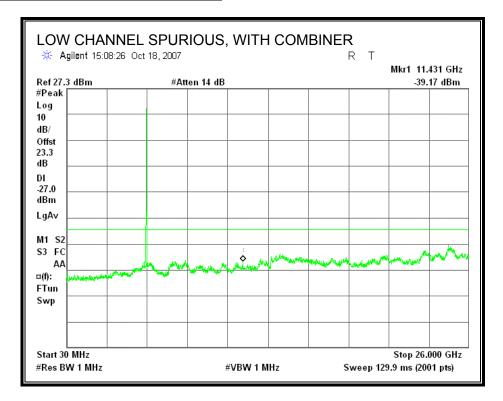
FCC §15.407 (b) (1 & 2)

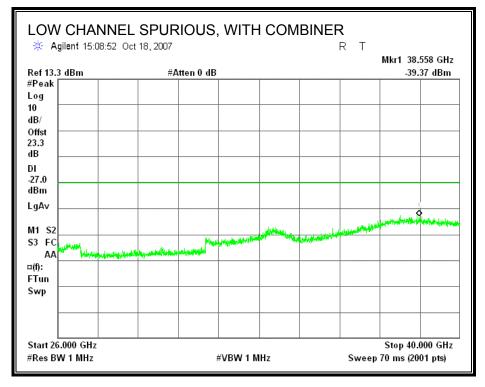
IC RSS-210 A9.3 (1 & 2)

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

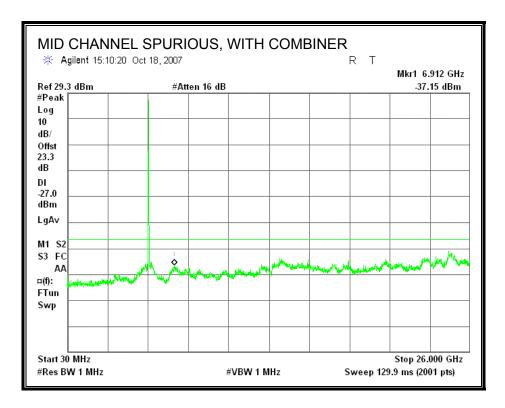
TEST PROCEDURE

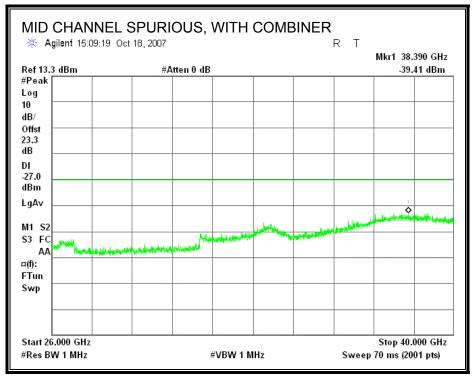
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

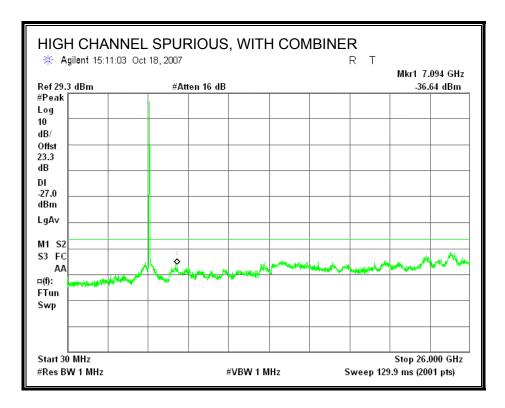

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

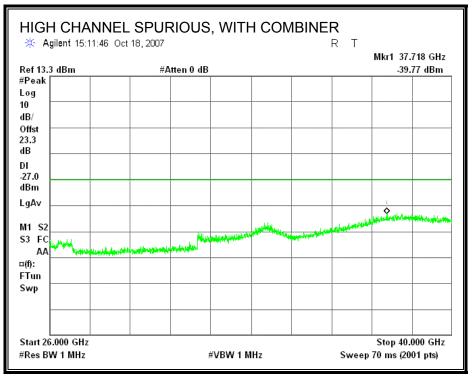

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 48 of 48

7.3. 802.11n THREE CHAINS HT40 MODE IN THE 5.2 GHz BAND

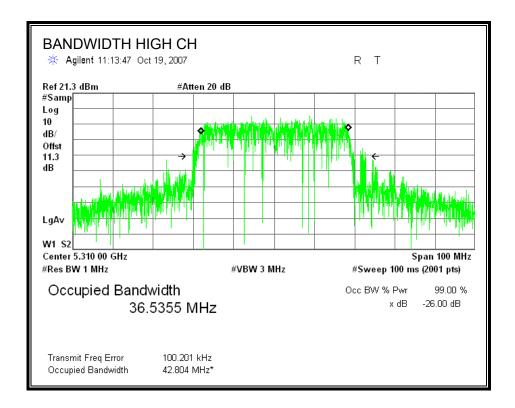
DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.3.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5190	42.6440	36.5832
Middle	5270	42.3160	36.7572
High	5310	42.8040	36.5355

HIgh channel plot is included hereafter.

26 dB and 99% BANDWIDTH

7.3.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

For the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

For the 5.25-5.35 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

DATE: DECEMBER 3, 2007

IC: 4104A-AR5BMB82

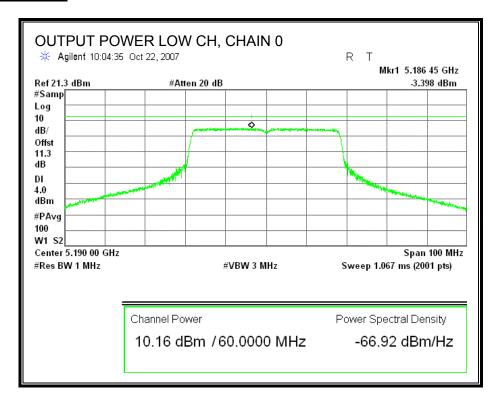
RESULTS

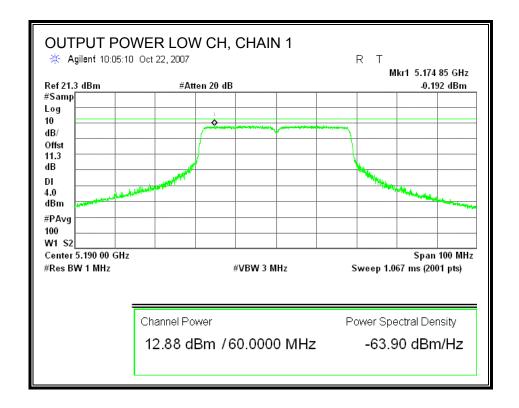
Limit in 5150 to 5250 MHz Band

Channel	Frequency	Fixed	В	4 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5190	16.99	42.6440	20.30	5.00	16.99

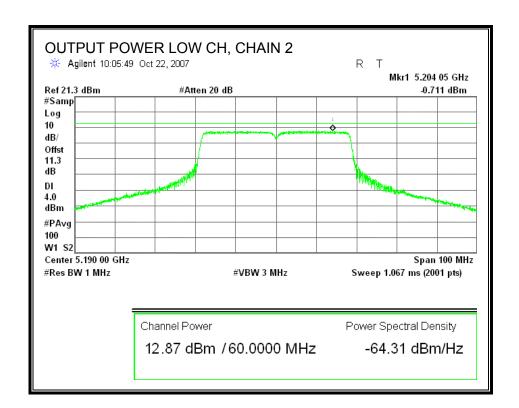
Limit in 5250 to 5350 MHz Band

Channel	Frequency	Fixed	В	11 + 10 Log B	Antenna	Limit
		Limit		Limit	Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Mid	5270	23.98	42.3160	27.27	5.00	23.98
High	5310	23.98	42.8040	27.31	5.00	23.98


Individual Chain Results


Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5190	10.16	12.88	12.87	16.92	16.99	-0.07
Mid	5270	15.99	17.73	17.77	22.01	23.98	-1.97
High	5310	11.10	14.20	13.62	17.94	23.98	-6.04

Low channel plots are included hereafter.


This report shall not be reproduced except in full, without the written approval of CCS.

OUTPUT POWER

Page 55 of 55

7.3.3. AVERAGE POWER FOR HT40 MODES (5.2GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	11.00	13.60	13.30	17.55
Middle	5270	15.90	17.60	17.40	21.80
High	5310	11.10	14.00	13.40	17.77

7.3.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (1 & 2)

IC RSS-210 A9.2 (1 & 2)

For the 5.15–5.25 GHz band, the peak power spectral density shall not exceed 4 dBm in any 1 MHz band.

DATE: DECEMBER 3, 2007

IC: 4104A-AR5BMB82

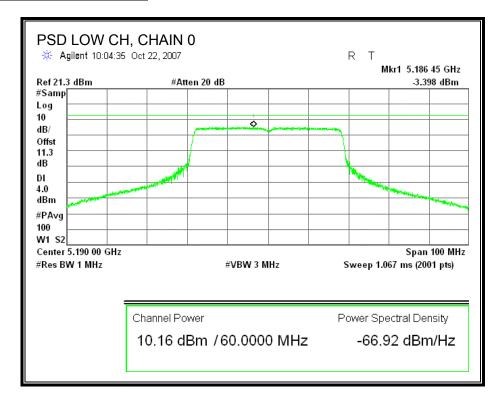
For the 5.25–5.35 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band.

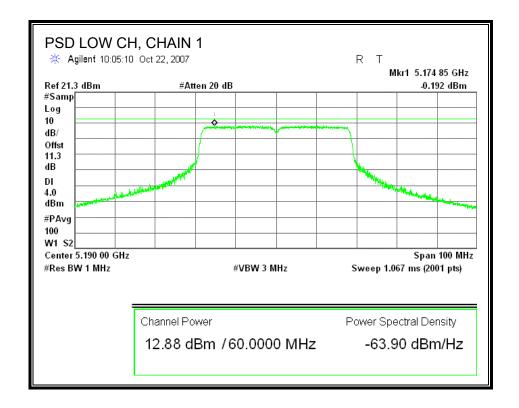
If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 4 dBm in the lower band and 11 dBm in the upper band.

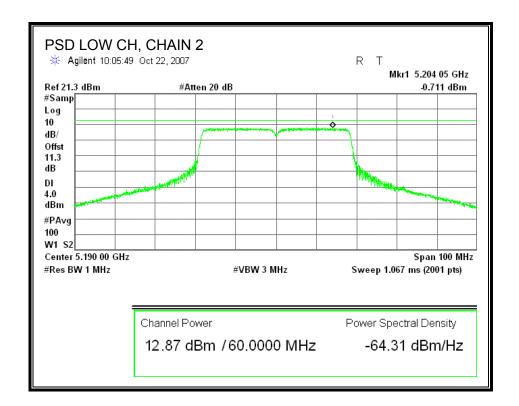
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

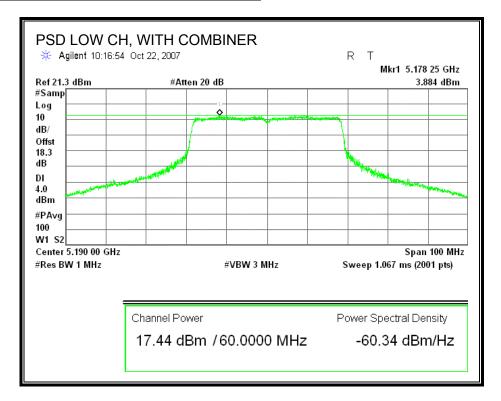

RESULTS


Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5190	-3.398	-0.192	-0.711	4.000
Middle	5270	1.776	3.457	3.645	11.000
High	5310	-3.008	0.074	-0.083	11.000

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5190	3.884	4.000	-0.116
Middle	5270	8.601	11.000	-2.399
High	5310	4.479	11.000	-6.521


Low channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 60 of 60

POWER SPECTRAL DENSITY WITH COMBINER

7.3.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

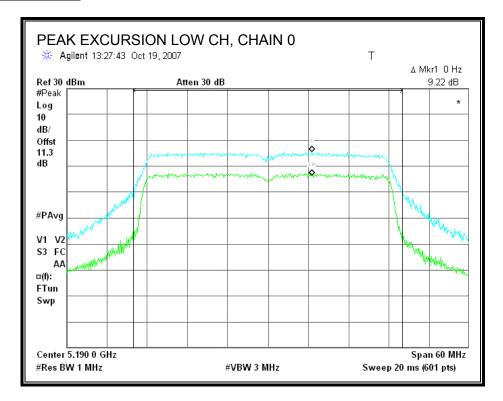
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

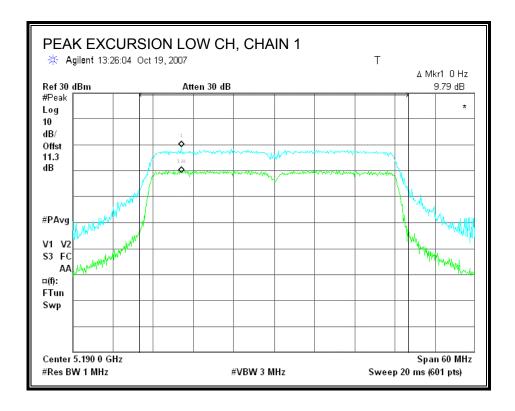
RESULTS

Chain 0

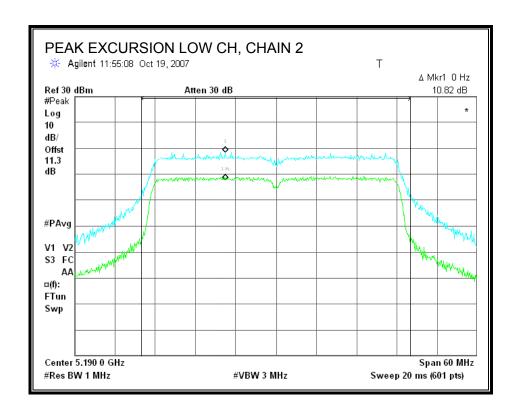
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.22	13	-3.78
Middle	5270	8.72	13	-4.28
High	5310	9.82	13	-3.18

Chain 1


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	9.79	13	-3.21
Middle	5270	9.94	13	-3.06
High	5310	9.81	13	-3.19


Chain 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5190	10.82	13	-2.18
Middle	5270	10.40	13	-2.60
High	5310	9.86	13	-3.14


Low channel, chain 2 plots are included hereafter.

PEAK EXCURSION

Page 64 of 64

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.3.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.407 (b) (1 & 2)

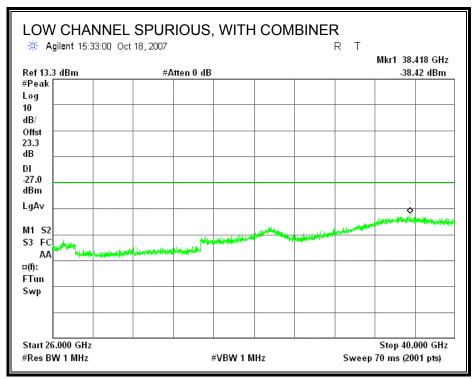
IC RSS-210 A9.3 (1 & 2)

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm / MHz.

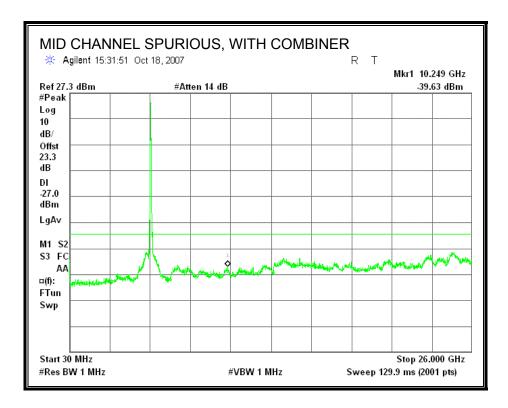
TEST PROCEDURE

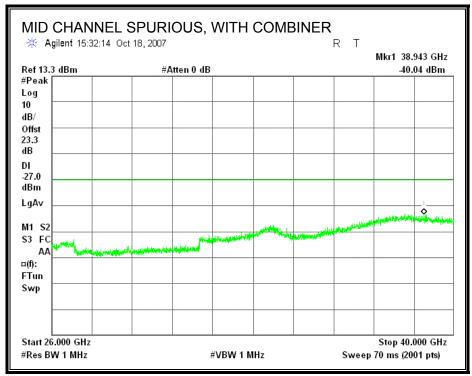
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

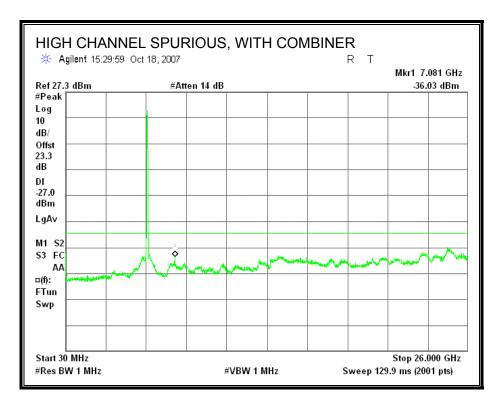
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

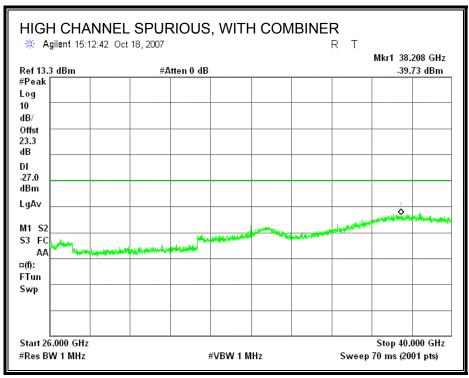

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 67 of 67

7.4. 802.11a THREE CHAINS LEGACY MODE IN THE 5.5 GHz BAND

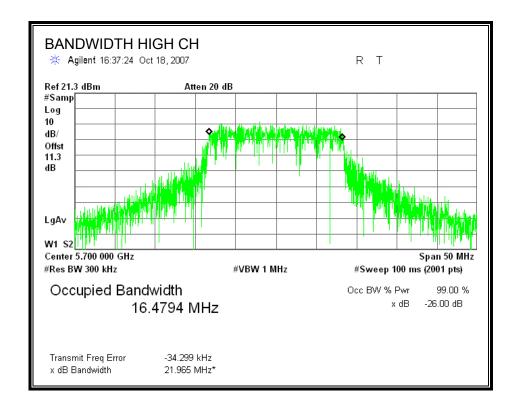
DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.4.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5500	21.7050	16.5097
Middle	5600	21.7910	16.4569
High	5700	21.9650	16.4794

High channel plot is included hereafter.

26 dB and 99% BANDWIDTH

7.4.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

Antenna	10 Log	Effective
Gain	(# Tx Chains)	Legacy Gain
(dBi)	(dB)	(dBi)
5	4.77	9.77

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

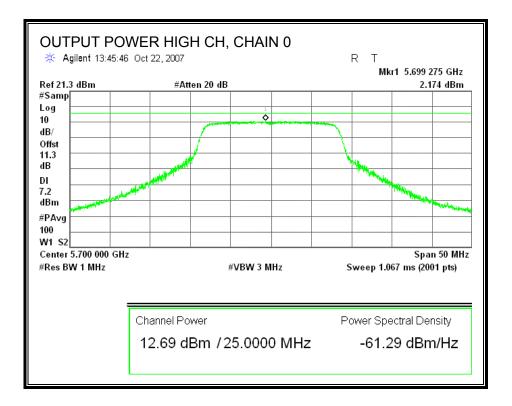
TEST PROCEDURE

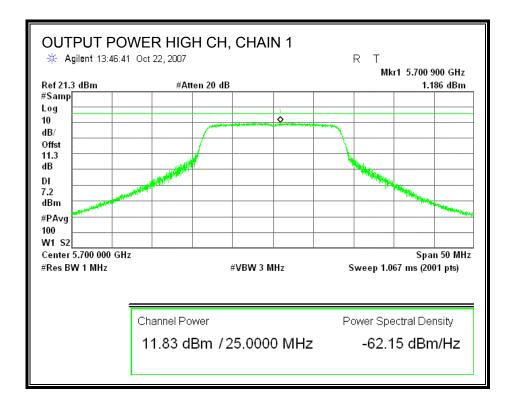
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

The transmitter output operates continuously therefore Method # 1 is used.

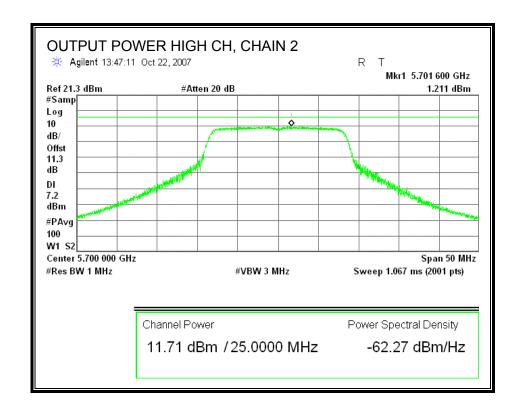
RESULTS

Limit


Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	23.98	21.705	24.37	9.77	20.21
Mid	5600	23.98	21.791	24.38	9.77	20.21
High	5700	23.98	21.965	24.42	9.77	20.21


Individual Chain Results

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	11.33	10.92	11.93	16.18	20.21	-8.88
Mid	5600	11.68	11.34	12.01	16.46	20.21	-8.53
High	5700	12.69	11.83	11.71	16.87	20.21	-7.52


High channel plots are included hereafter.

OUTPUT POWER

Page 74 of 74

7.4.3. AVERAGE POWER FOR LEGACY MODES (5.6GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	11.50	11.50	12.20	16.52
Middle	5600	11.30	11.10	11.60	16.11
High	5700	12.10	11.30	11.40	16.39

7.4.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

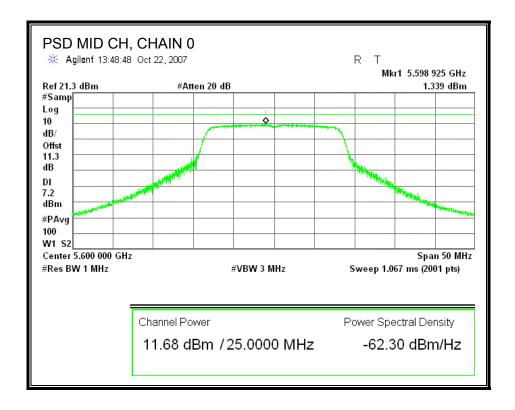
Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
5	4.77	9.77

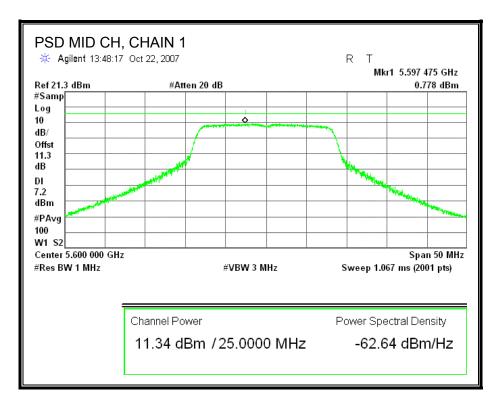
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum effective antenna gain is 9.77 dBi, therefore the limit is 7.23 dBm.

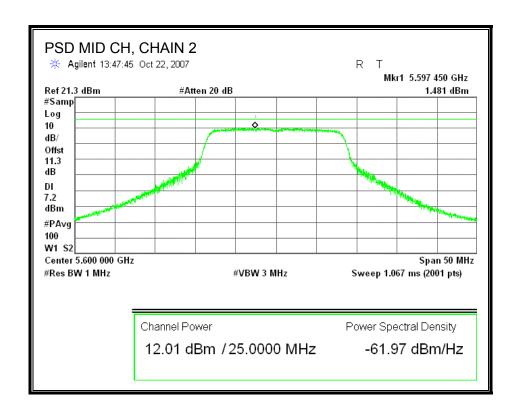
TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

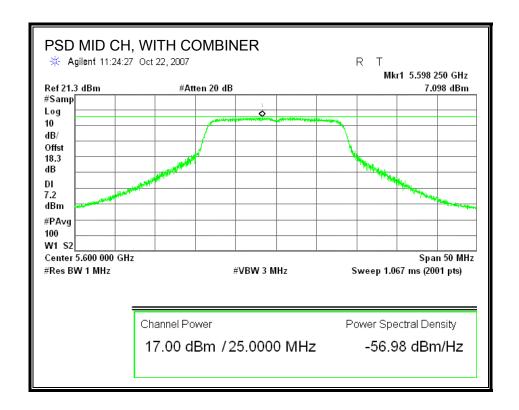

RESULTS


Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	1.049	0.488	1.326	7.23
Middle	5600	1.339	0.778	1.481	7.23
High	5700	2.174	1.186	1.211	7.23

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	6.692	7.23	-0.538
Middle	5600	7.098	7.23	-0.132
High	5700	6.834	7.23	-0.396


Middle channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 79 of 79

POWER SPECTRAL DENSITY WITH COMBINER

7.4.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

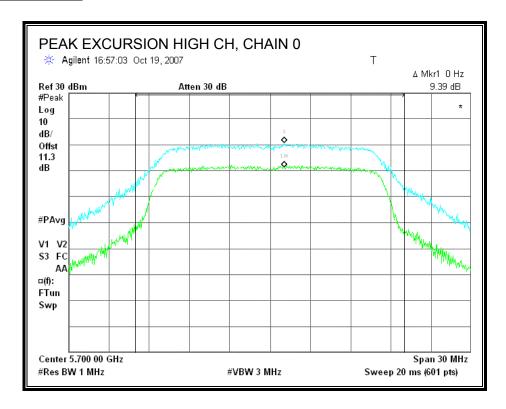
RESULTS

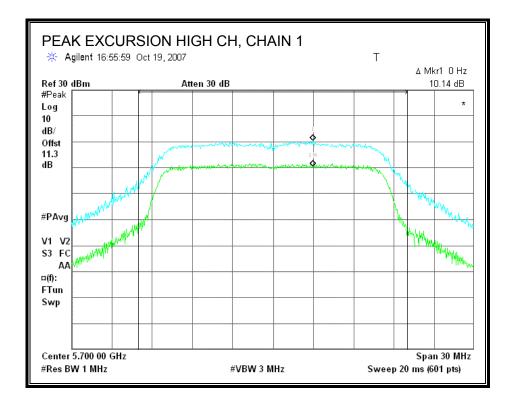
Chain 0

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.49	13	-3.51
Middle	5600	8.68	13	-4.32
High	5700	9.39	13	-3.61

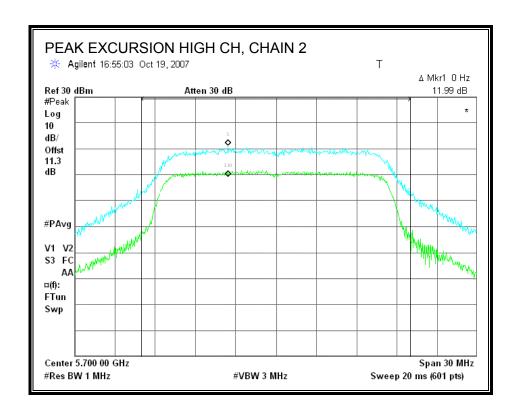
Chain 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.70	13	-3.30
Middle	5600	10.34	13	-2.66
High	5700	10.14	13	-2.86


Chain 2


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	8.85	13	-4.15
Middle	5600	10.21	13	-2.79
High	5700	11.99	13	-1.01

High channel, chain 2 plots are included hereafter.


Page 82 of 82

PEAK EXCURSION

Page 83 of 83

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.4.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

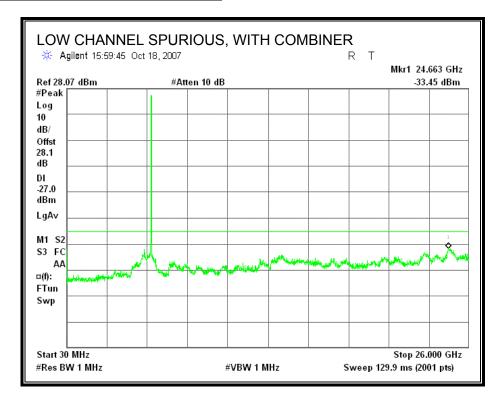
FCC §15.407 (b) (3)

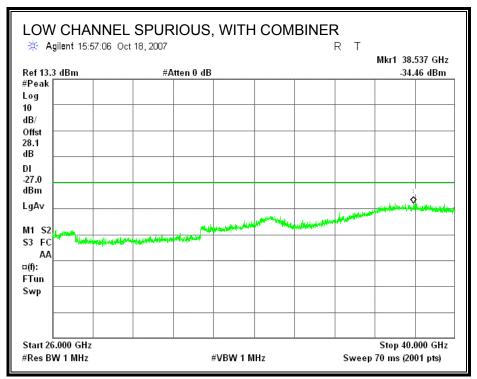
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

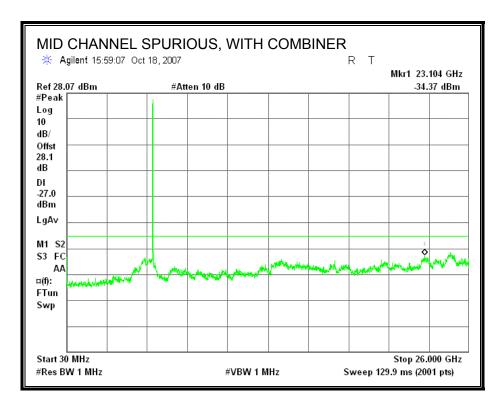
TEST PROCEDURE

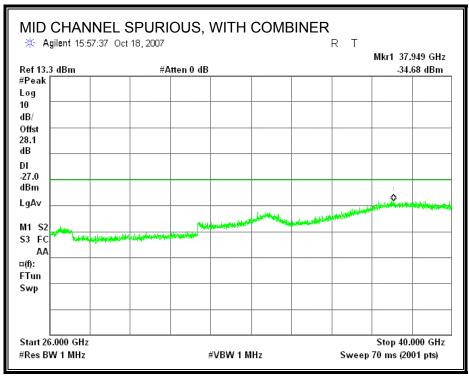
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

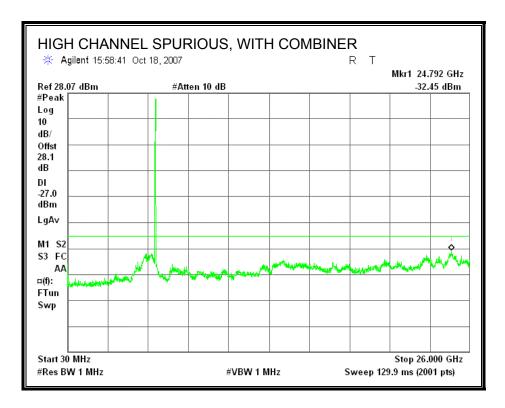

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

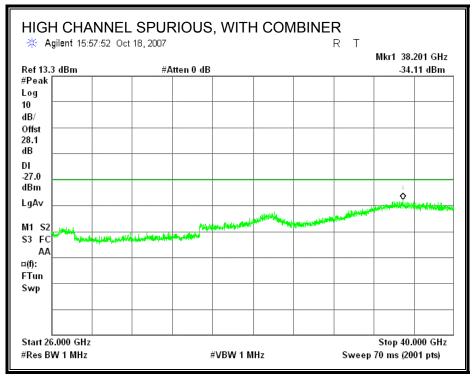

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 86 of 86

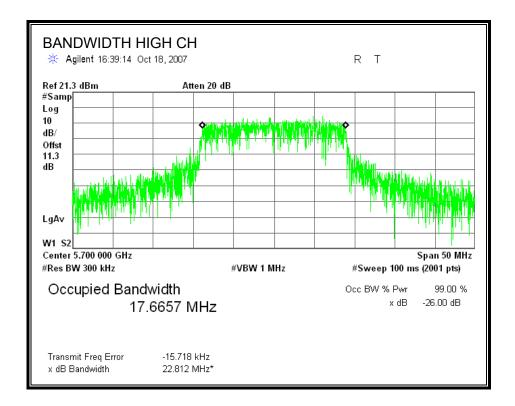
7.5. 802.11n THREE CHAINS HT20 MODE IN THE 5.6 GHz BAND

7.5.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5500	22.3050	17.7034
Middle	5600	22.7410	17.7370
High	5700	22.8120	17.6657

High channel plot is included hereafter.

26 dB and 99% BANDWIDTH

7.5.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

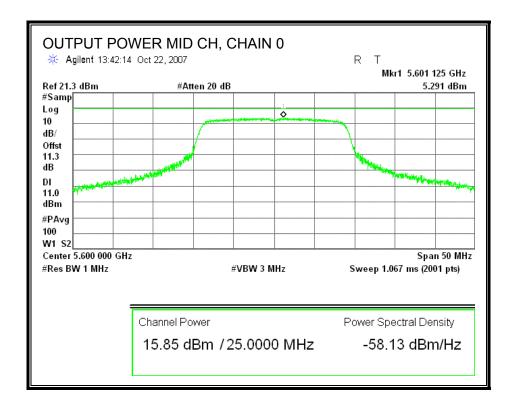
The transmitter output operates continuously therefore Method # 1 is used.

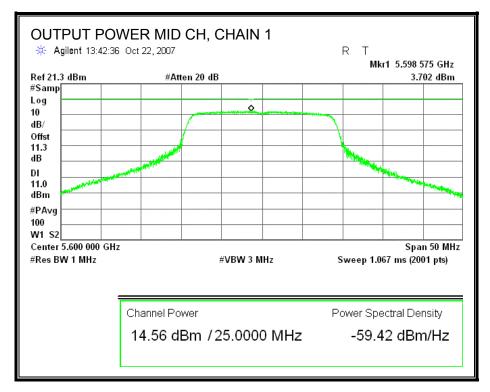
RESULTS

Limit

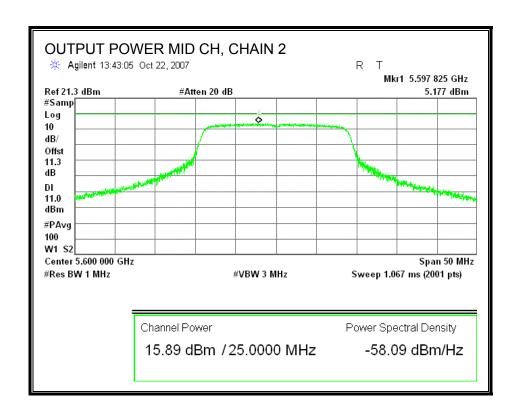
Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5500	24	22.305	24.48	5.00	24.00
Mid	5600	24	22.741	24.57	5.00	24.00
High	5700	24	22.812	24.58	5.00	24.00

Individual Chain Results


mairiadai	onam recounts						
Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5500	15.42	15.26	15.93	20.32	24.00	-8.58
Mid	5600	15.85	14.56	15.89	20.25	24.00	-8.15
High	5700	15.49	15.11	15.22	20.05	24.00	-8.51


Middle channel plots are included hereafter.

DATE: DECEMBER 3, 2007


IC: 4104A-AR5BMB82

OUTPUT POWER

Page 92 of 92

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.5.3. AVERAGE POWER FOR HT20 MODES (5.6GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	15.60	15.60	16.20	20.58
Middle	5600	15.80	14.80	16.10	20.37
High	5700	15.70	15.30	15.40	20.24

This report shall not be reproduced except in full, without the written approval of CCS.

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.5.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

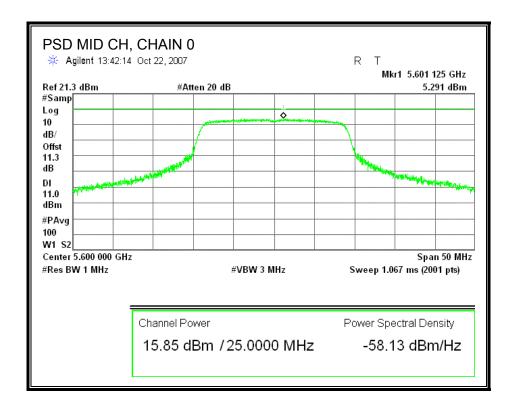
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

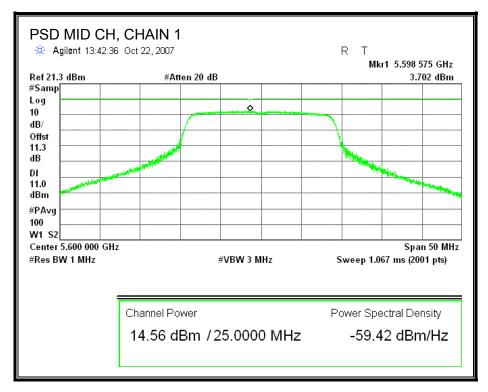
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

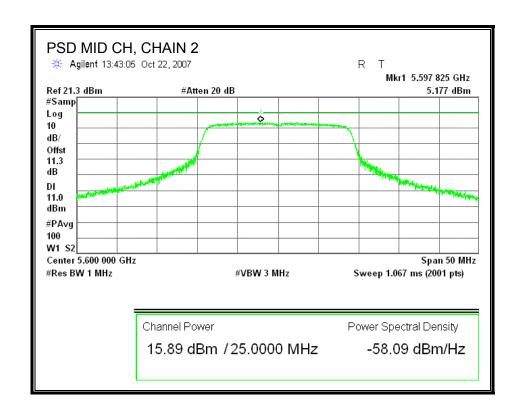
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

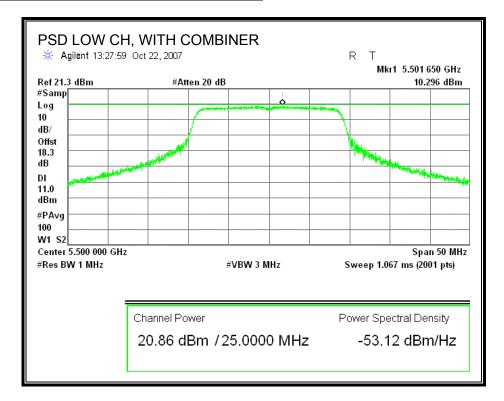

Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	4.360	4.612	4.923	11
Middle	5600	5.291	3.702	5.177	11
High	5700	4.610	4.301	4.455	11


Middle channel plots are included hereafter.

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5500	10.296	11	-0.704
Middle	5600	10.160	11	-0.840
High	5700	10.089	11	-0.911


Low channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 97 of 97

POWER SPECTRAL DENSITY WITH COMBINER

7.5.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

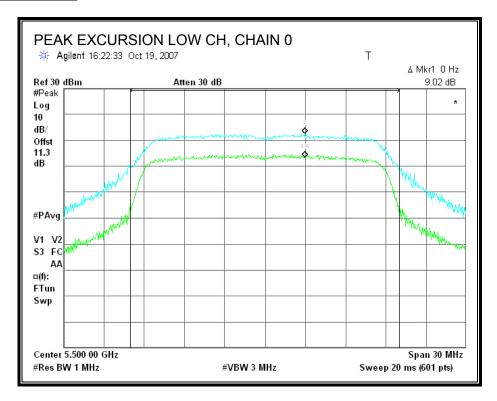
RESULTS

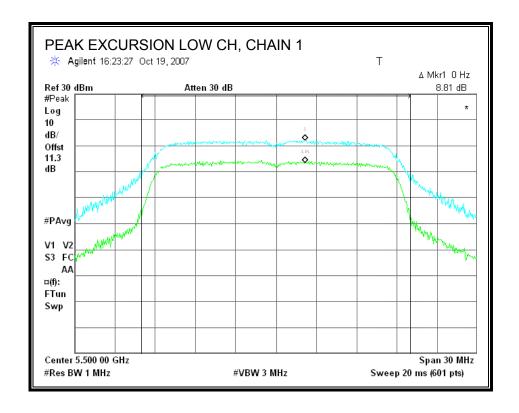
Chain 0

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	9.02	13	-3.98
Middle	5600	9.53	13	-3.47
High	5700	8.57	13	-4.43

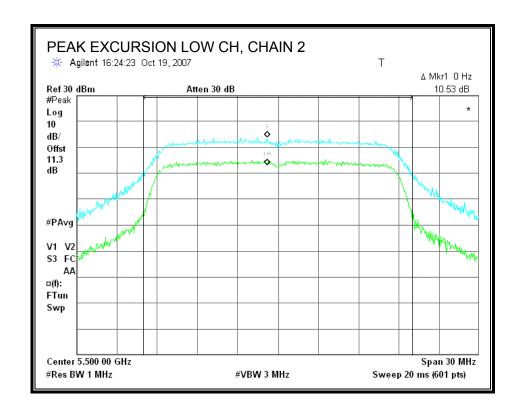
Chain 1

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	8.81	13	-4.19
Middle	5600	8.97	13	-4.03
High	5700	9.86	13	-3.14


Chain 2


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5500	10.53	13	-2.47
Middle	5600	10.48	13	-2.52
High	5700	10.20	13	-2.80

Low channel, chain 2 plots are included hereafter.


Page 100 of 100

PEAK EXCURSION

Page 101 of 101

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.5.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

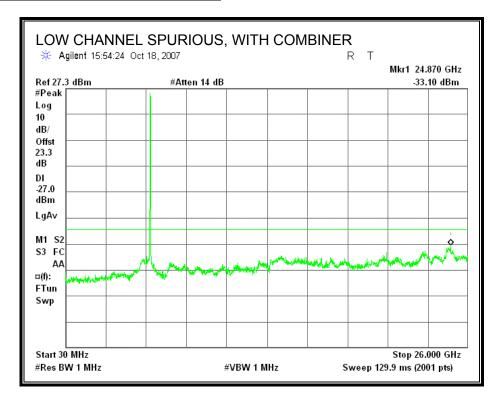
FCC §15.407 (b) (3)

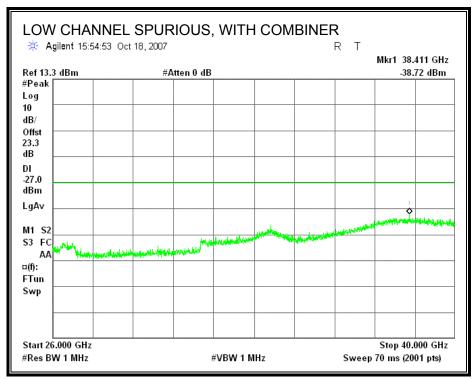
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

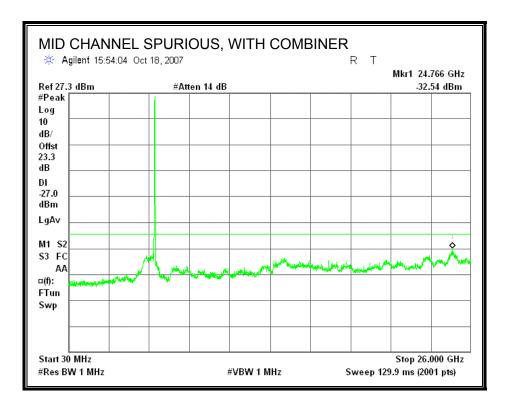
TEST PROCEDURE

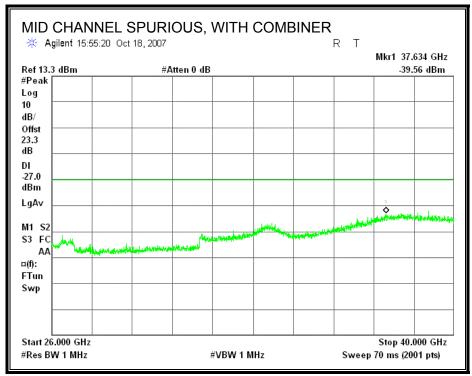
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

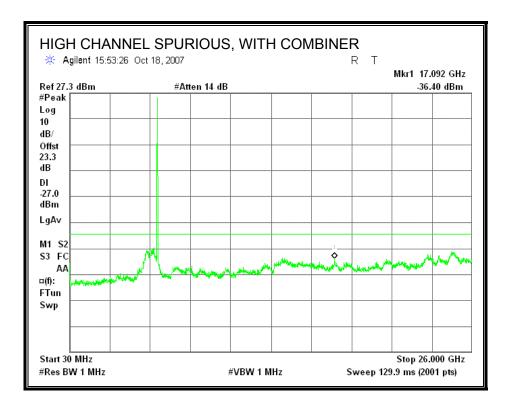

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

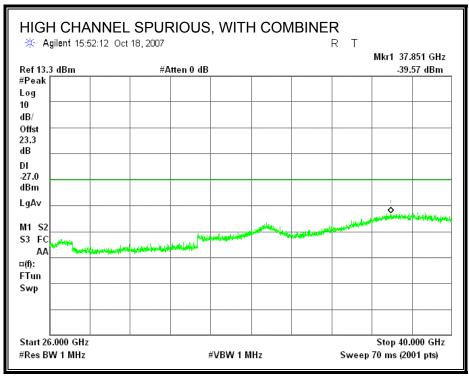

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 104 of 104

7.6. 802.11n THREE CHAINS HT40 MODE IN THE 5.6 GHz BAND

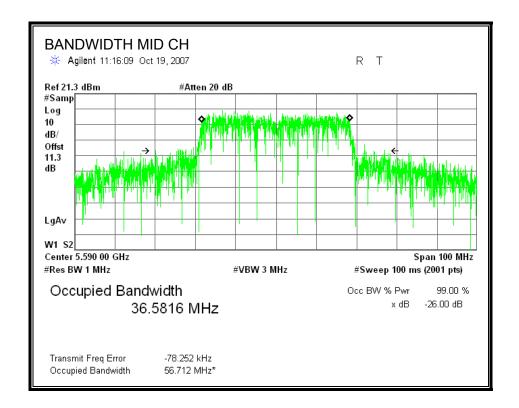
DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.6.1. 26 dB and 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE


The transmitter outputs are connected to the spectrum analyzer via a combiner. The RBW is set to 1% to 3% of the measured bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth function is utilized.

RESULTS

Channel	Frequency	26 dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
Low	5510	48.0700	36.3776
Middle	5590	56.7120	36.5816
High	5670	55.8740	36.3073

Middle channel plot is included hereafter.

26 dB and 99% BANDWIDTH

7.6.2. OUTPUT POWER

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

For the 5.47-5.725 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

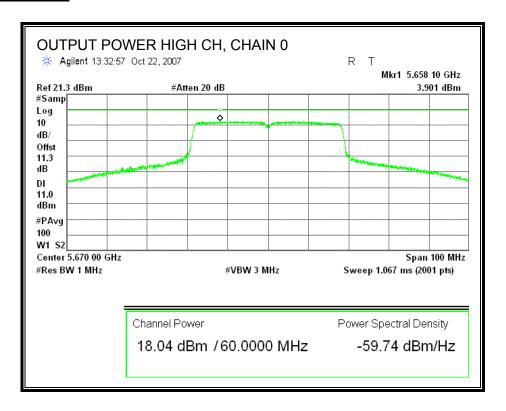
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

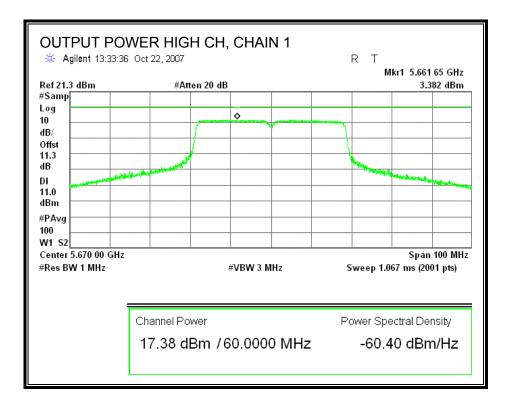
The transmitter output operates continuously therefore Method # 1 is used.

RESULTS

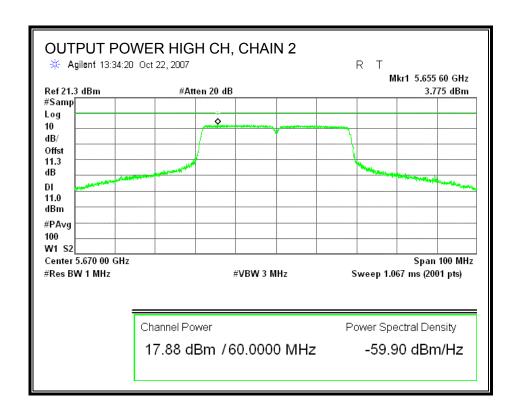
Limit

Channel	Frequency	Fixed	В	11 + 10 Log B	Effective	Limit
		Limit		Limit	Ant. Gain	
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)
Low	5510	23.98	48.0700	27.82	5.00	23.98
Mid	5590	23.98	56.7120	28.54	5.00	23.98
High	5670	23.98	55.8740	28.47	5.00	23.98


Individual Chain Results


Channel	Frequency	Chain 0	Chain 1	Chain 2	Total	Limit	Margin
		Power	Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5510	17.05	17.13	15.93	21.51	23.98	-6.93
Mid	5590	18.03	17.37	18.59	22.80	23.98	-5.95
High	5670	18.04	17.38	17.88	22.55	23.98	-5.94

High channel plots are included hereafter.


DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

OUTPUT POWER

Page 110 of 110

7.6.3. AVERAGE POWER FOR HT40 MODES (5.6GHz)

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1	Chain 2	Total
		Power	Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	16.60	16.70	17.10	21.58
Middle	5590	17.60	16.70	18.00	22.24
High	5670	17.60	16.60	17.30	21.96

This report shall not be reproduced except in full, without the written approval of CCS.

7.6.4. PEAK POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (a) (2)

IC RSS-210 A9.2 (2)

Antenna Gain	10 Log (# Tx Chains)	Effective Legacy Gain
(dBi)	(dB)	(dBi)
5	4.77	9.77

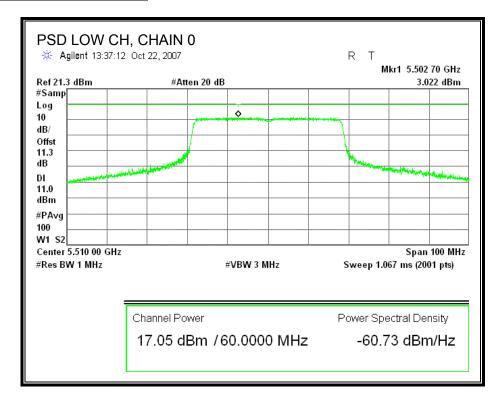
For the 5.47-5.725 GHz band, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

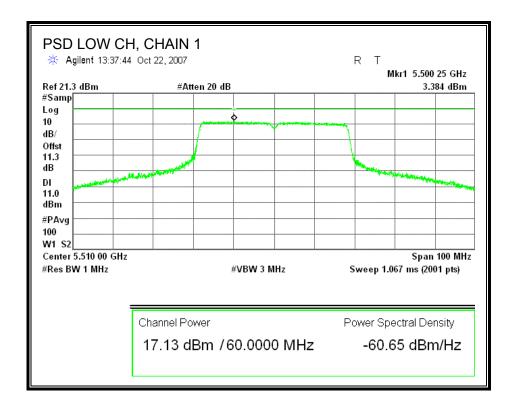
The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 11 dBm.

TEST PROCEDURE

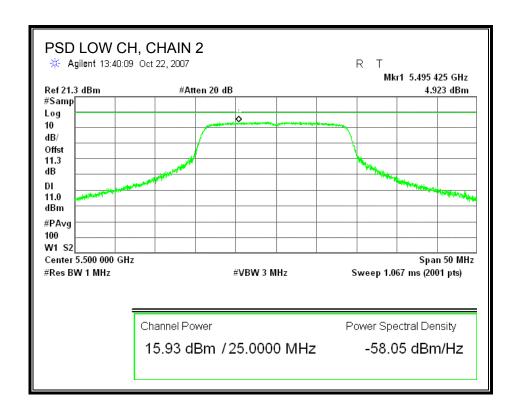
The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002. PPSD method #2 was used.

RESULTS

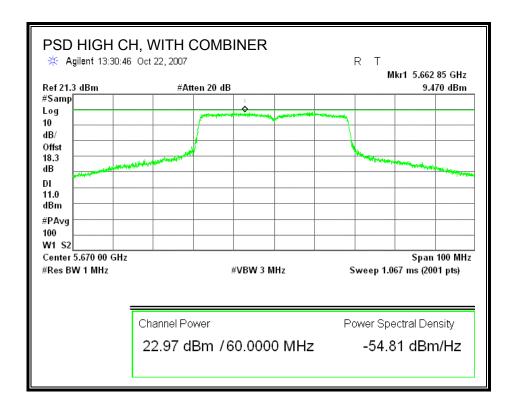

Channel	Frequency	Chain 0	Chain 1	Chain 2	Limit
		PPSD	PPSD	PPSD	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5510	3.022	3.384	4.923	11
Middle	5590	3.999	3.752	4.817	11
High	5670	3.901	3.382	3.775	11


Low channel plots are included hereafter.

Channel	Frequency	PPSD With Combiner	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	5510	8.719	11	-2.281
Middle	5590	9.305	11	-1.695
High	5670	9.470	11	-1.530


High channel plots are included hereafter.

POWER SPECTRAL DENSITY



Page 115 of 115

POWER SPECTRAL DENSITY WITH COMBINER

7.6.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

TEST PROCEDURE

The transmitter outputs are connected to the spectrum analyzer via a combiner.

The test is performed in accordance with FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices – Part 15, Subpart E, August 2002.

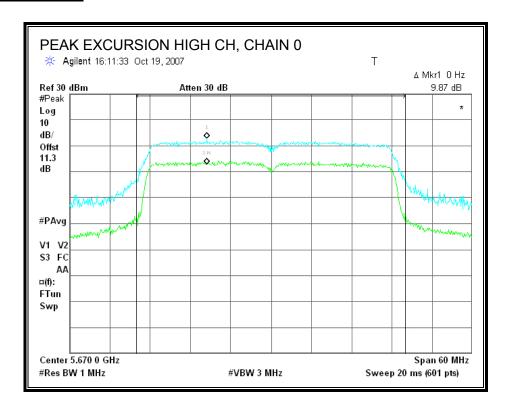
Since Method # 1 was used for peak power measurements, Method # 1 settings are used for the second PPSD trace.

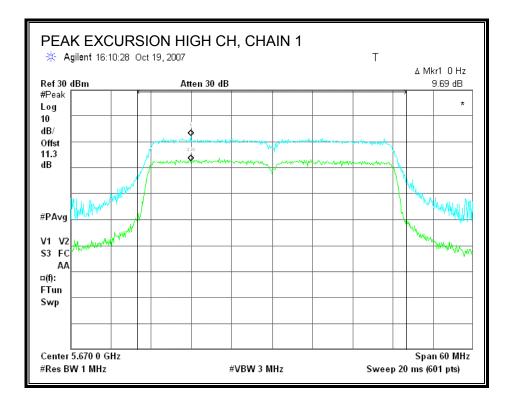
RESULTS

Chain 0

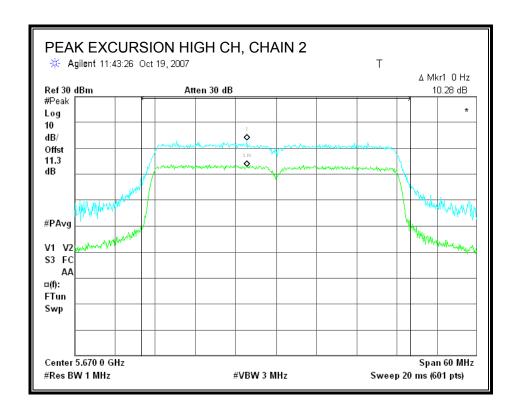
Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.91	13	-3.09
Middle	5590	9.68	13	-3.32
High	5670	9.87	13	-3.13

Chain 1


Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	8.82	13	-4.18
Middle	5590	9.07	13	-3.93
High	5670	9.69	13	-3.31


Chain 2

Channel	Frequency	Peak Excursion	Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5510	9.93	13	-3.07
Middle	5590	9.45	13	-3.55
High	5670	10.28	13	-2.72


High channel, chain 2 plots are included hereafter.

PEAK EXCURSION

Page 119 of 119

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

7.6.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

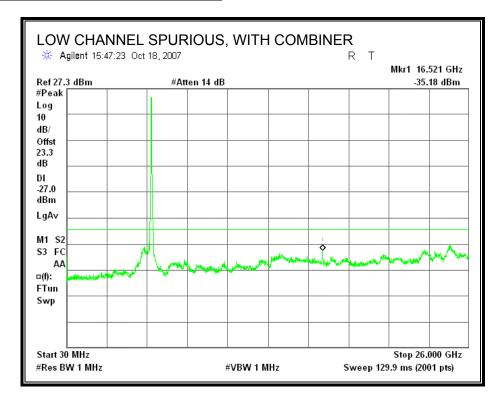
FCC §15.407 (b) (3)

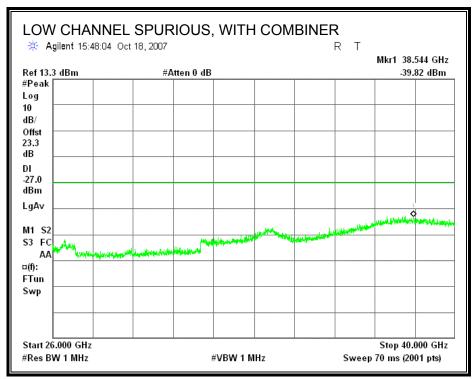
IC RSS-210 A9.3 (3)

For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm / MHz.

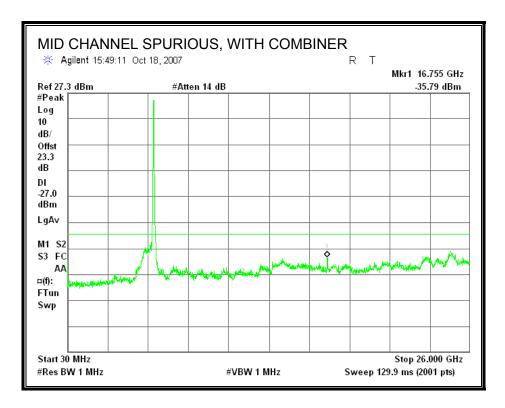
TEST PROCEDURE

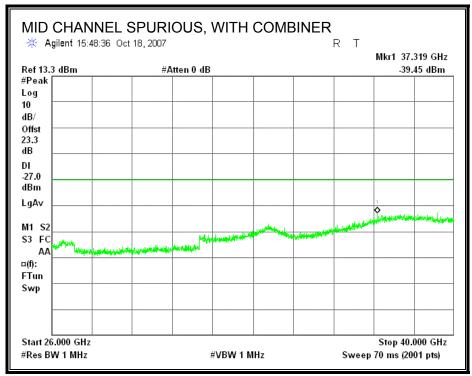
Conducted RF measurements of the transmitter output are made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

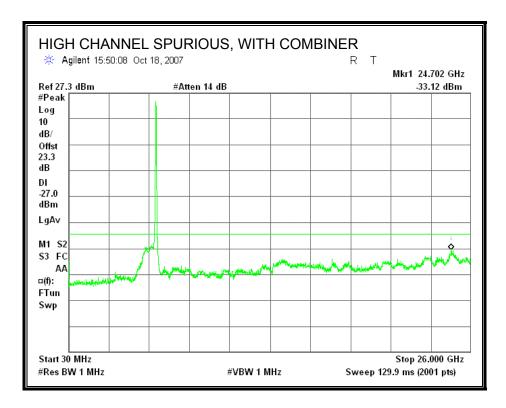

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

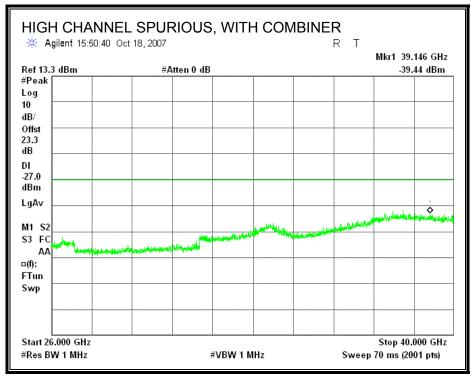

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

Offset Value = Cable Loss + Attenuation + Antenna Gain + Combiner Loss


RESULTS


SPURIOUS EMISSIONS WITH COMBINER





Page 122 of 122

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

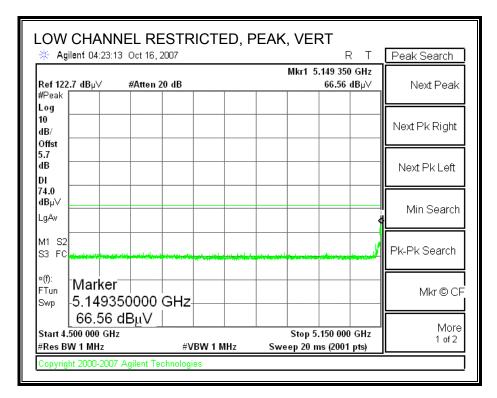
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

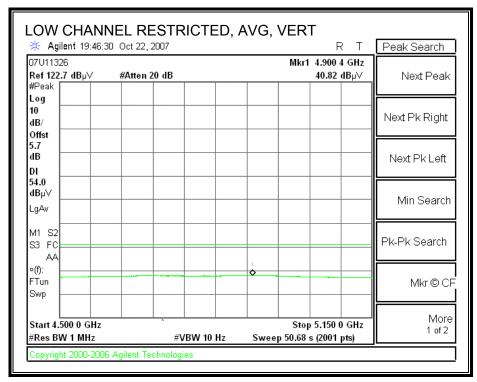
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

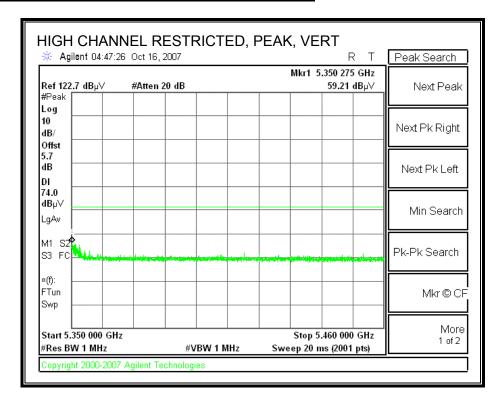
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

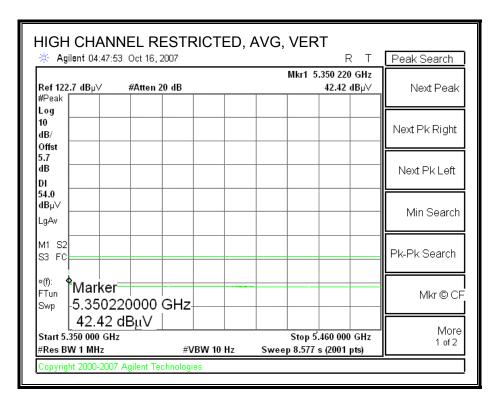

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

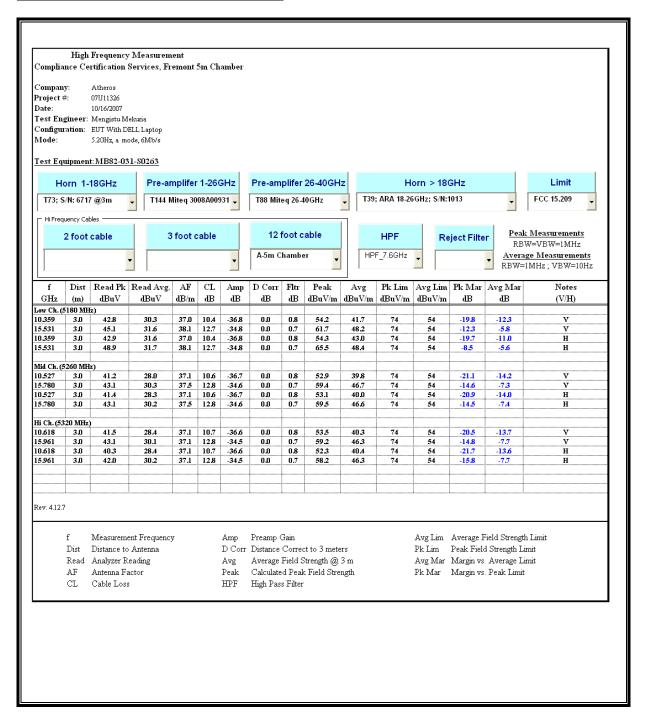
8.2. TRANSMITTER ABOVE 1 GHz

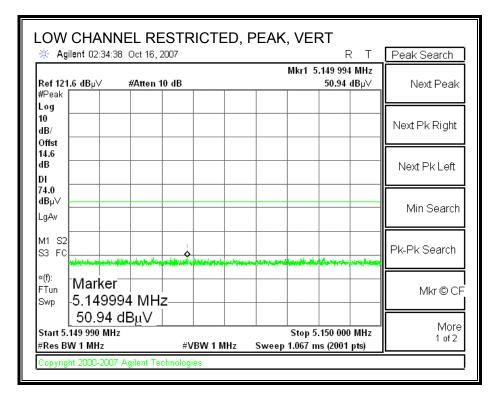
8.2.1. TX ABOVE 1 GHz, 802.11a THREE CHAINS LEGACY MODE, 5.2 GHz

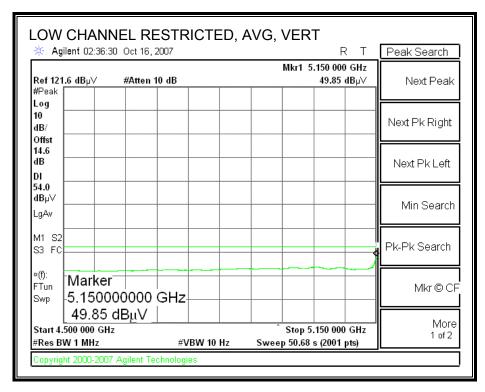

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



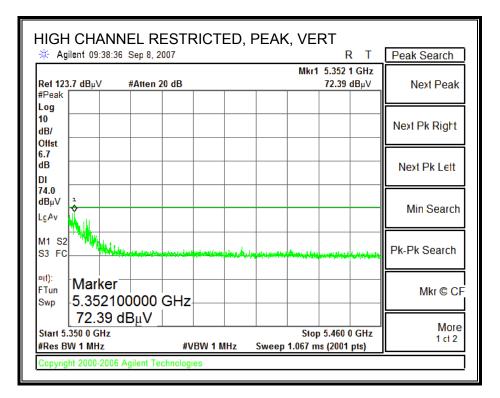
Page 126 of 126

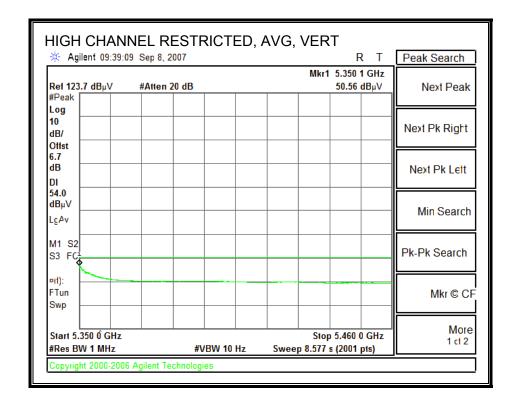

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


Page 127 of 127

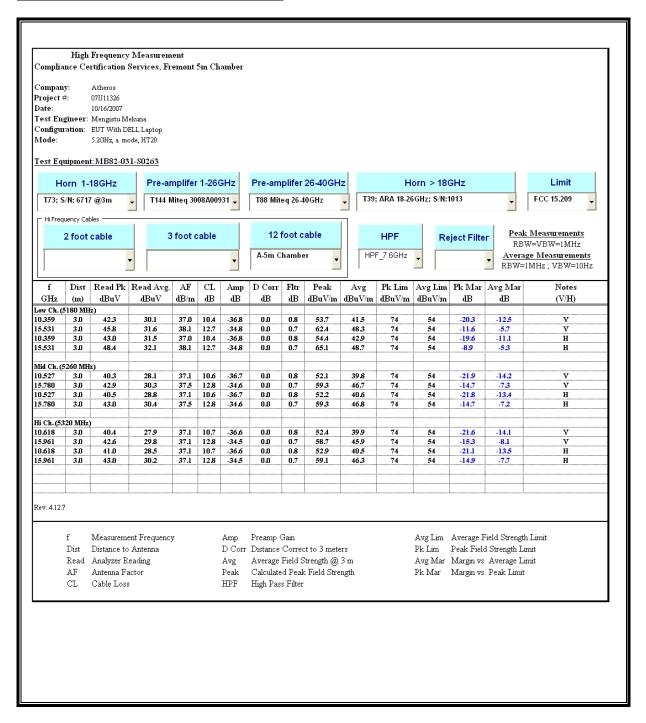

HARMONICS AND SPURIOUS EMISSIONS

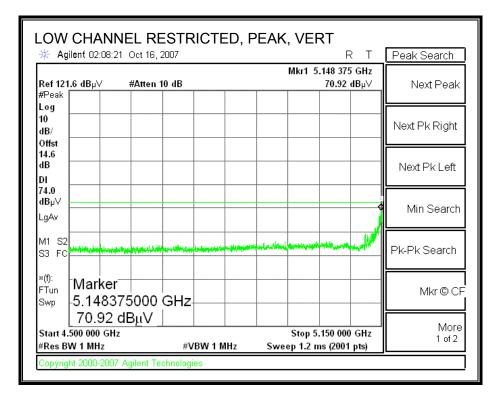
8.2.2. TX ABOVE 1 GHz, 802.11n HT20 MODE, 5.2 GHz

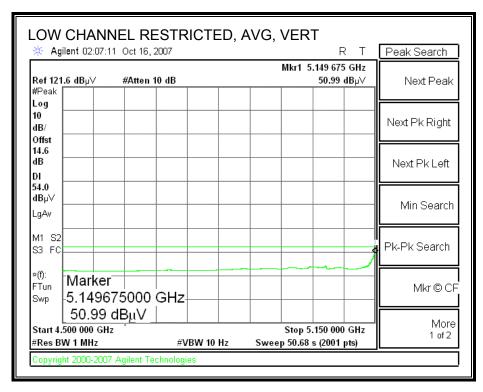

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



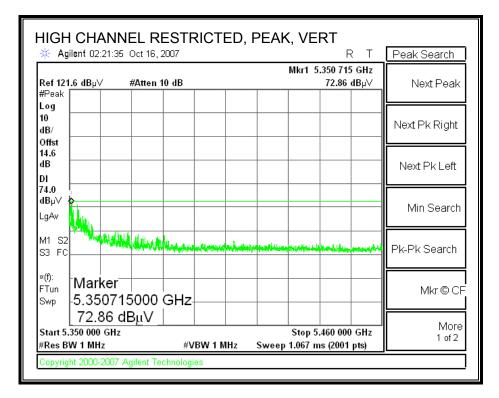
Page 129 of 129

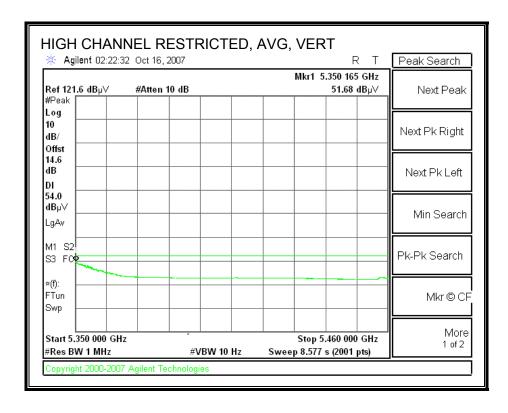

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)


Page 130 of 130

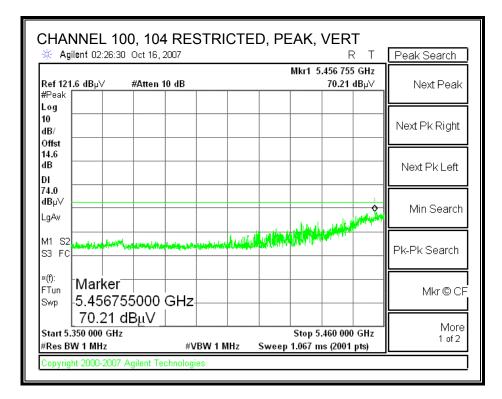

HARMONICS AND SPURIOUS EMISSIONS

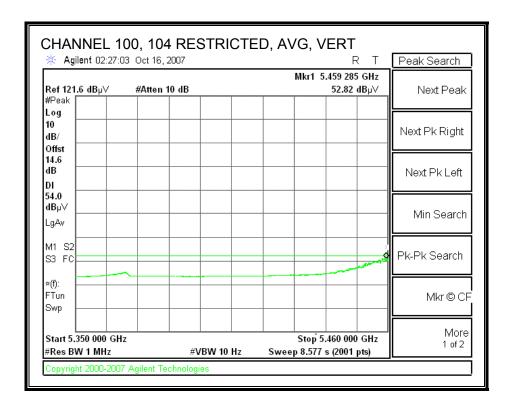
8.2.3. TX ABOVE 1 GHz, 802.11n HT40 MODE, 5.2 GHz


RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

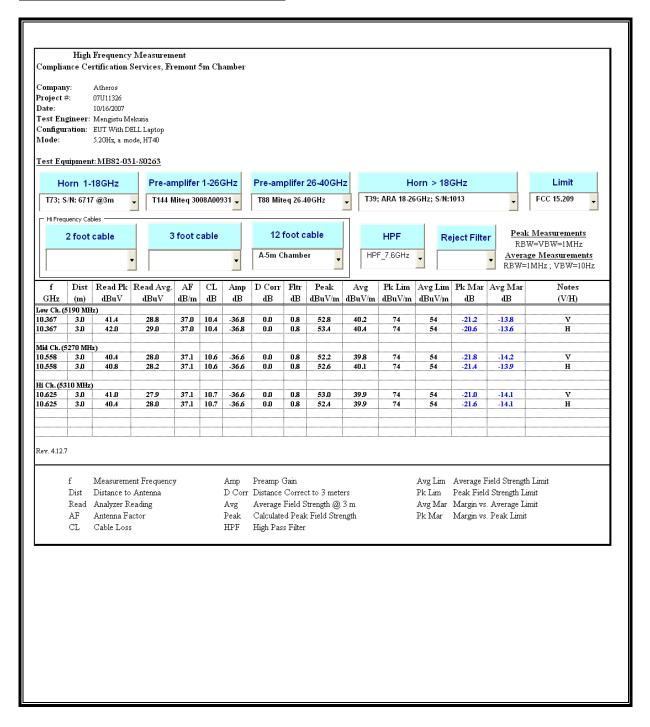


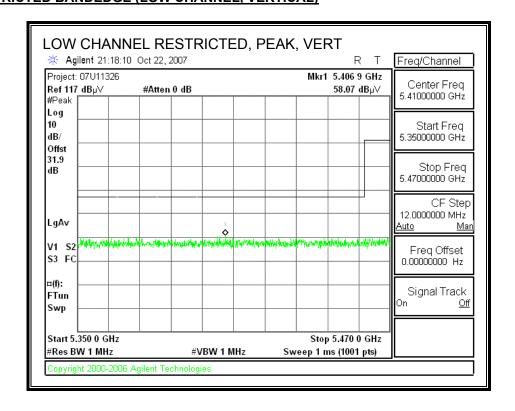
Page 132 of 132

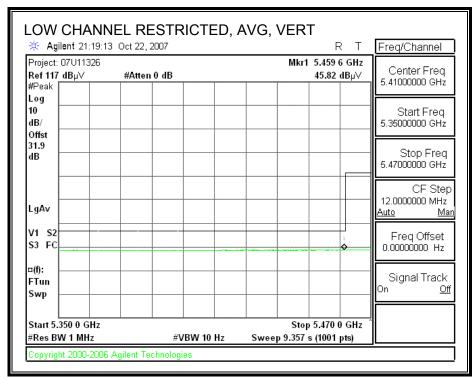

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



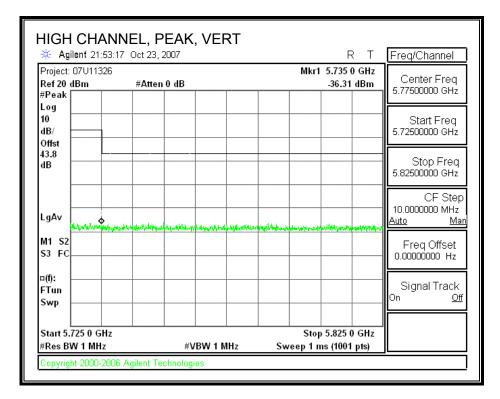
Page 133 of 133

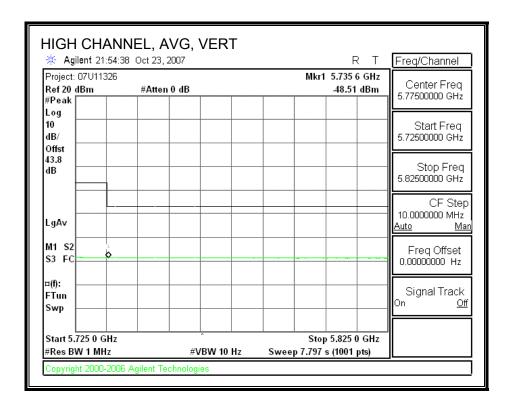

RESTRICTED BANDEDGE (CHANNEL 100, 104, VERTICAL)



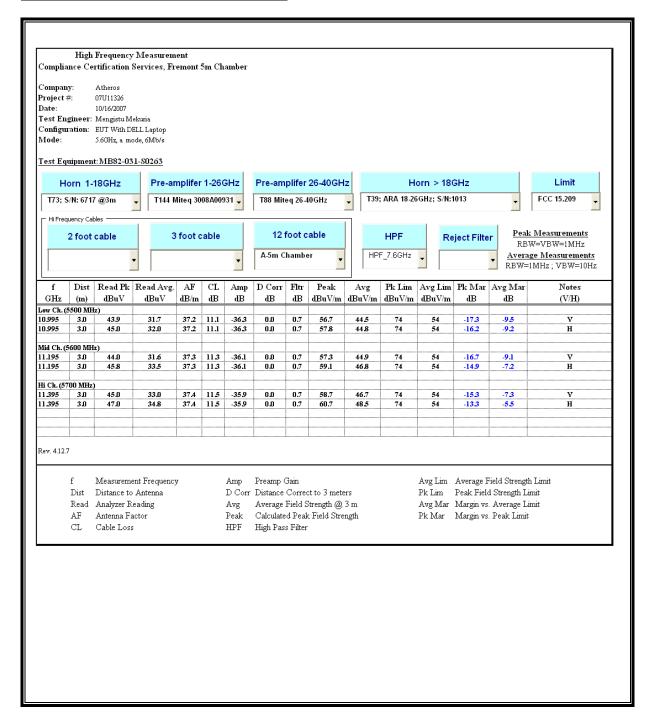

Page 134 of 134

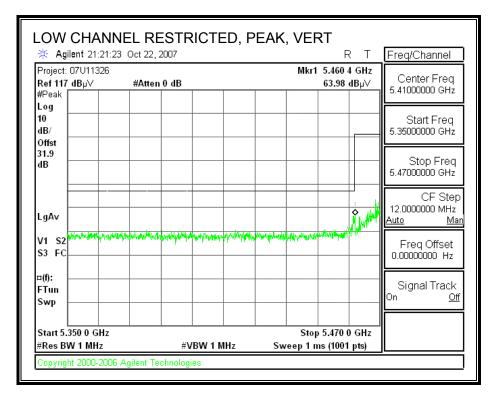
HARMONICS AND SPURIOUS EMISSIONS

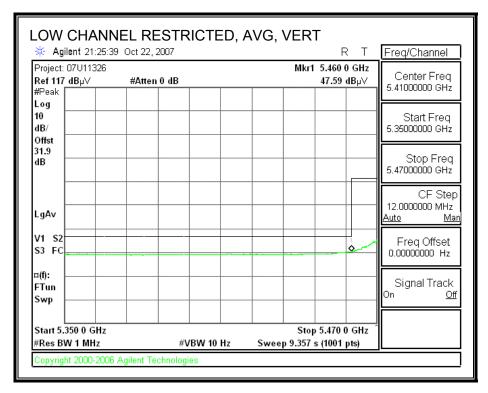

8.2.4. TX ABOVE 1 GHz, 802.11a THREE CHAINS LEGACY MODE, 5.6 GHz RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



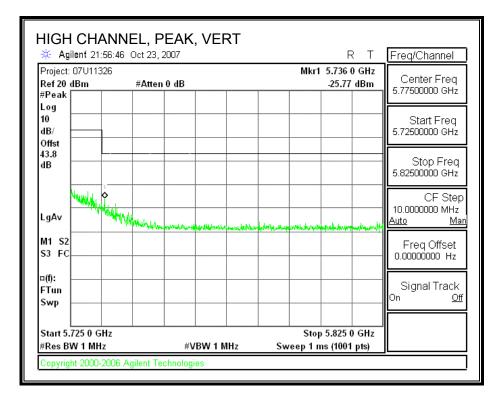
Page 136 of 136

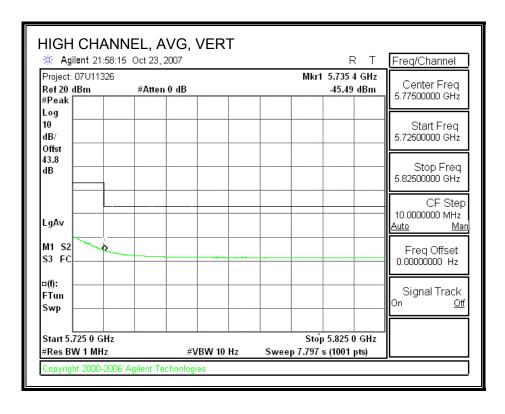

<u>AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)</u>


Page 137 of 137

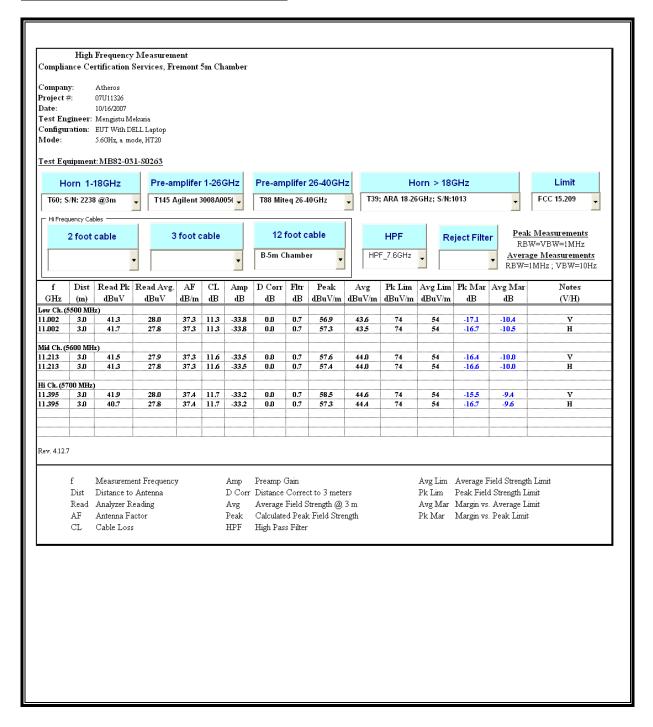

HARMONICS AND SPURIOUS EMISSIONS

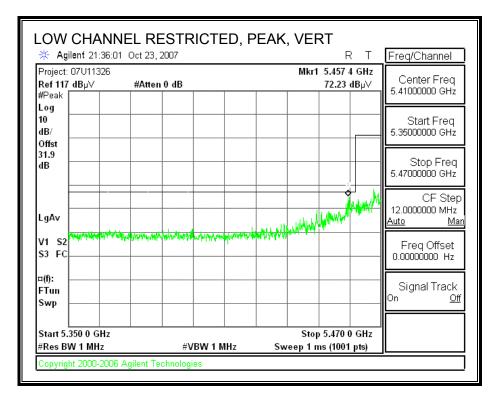
8.2.5. TX ABOVE 1 GHz, 802.11n HT20 MODE, 5.6 GHz

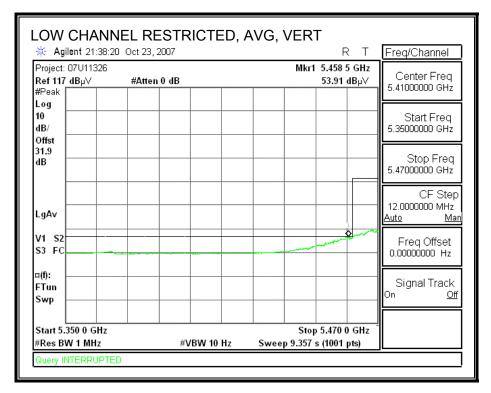

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



Page 139 of 139

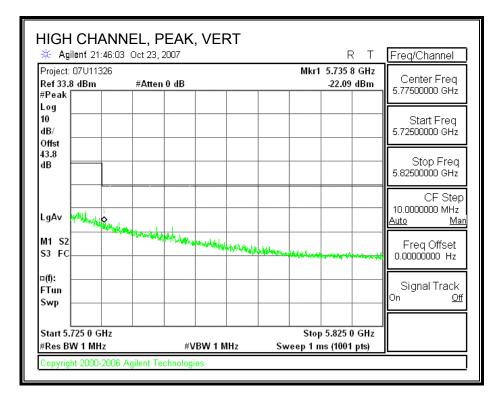

<u>AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)</u>

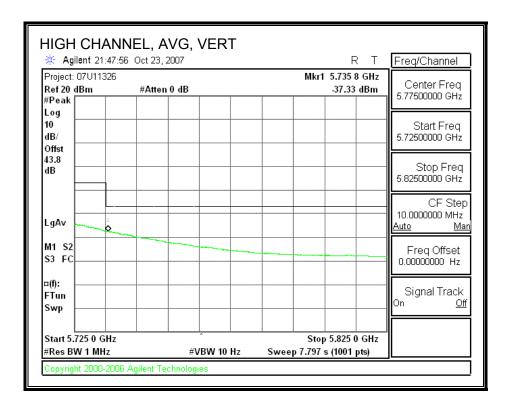

Page 140 of 140


HARMONICS AND SPURIOUS EMISSIONS

8.2.6. TX ABOVE 1 GHz, 802.11n HT40 MODE, 5.6 GHz

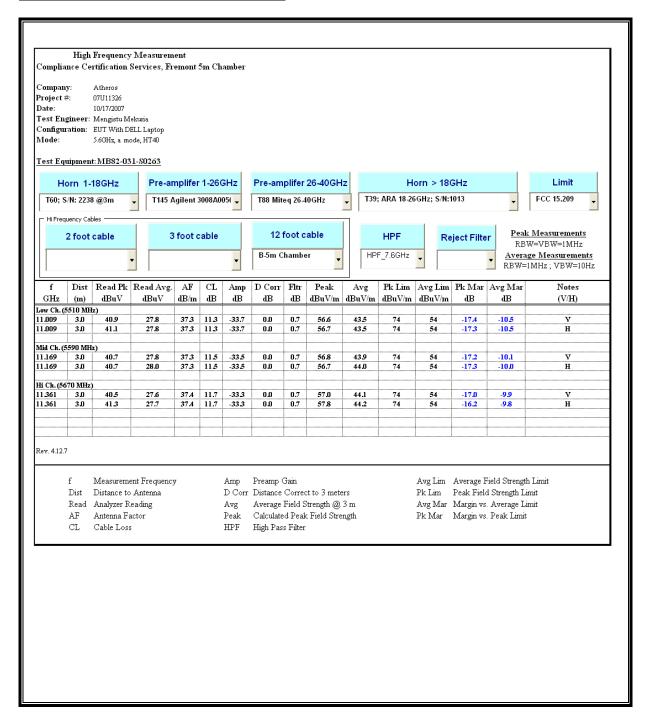
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

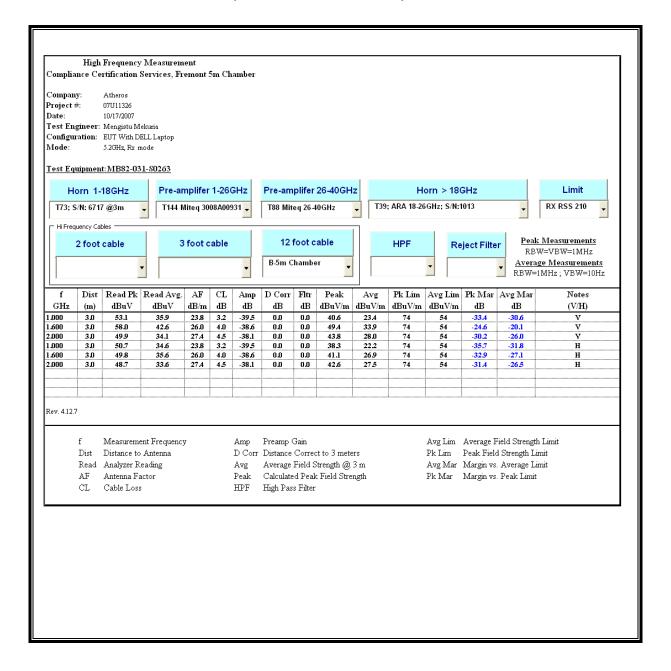




Page 142 of 142

This report shall not be reproduced except in full, without the written approval of CCS.


<u>AUTHORIZED BANDEDGE (HIGH CHANNEL, VERTICAL)</u>

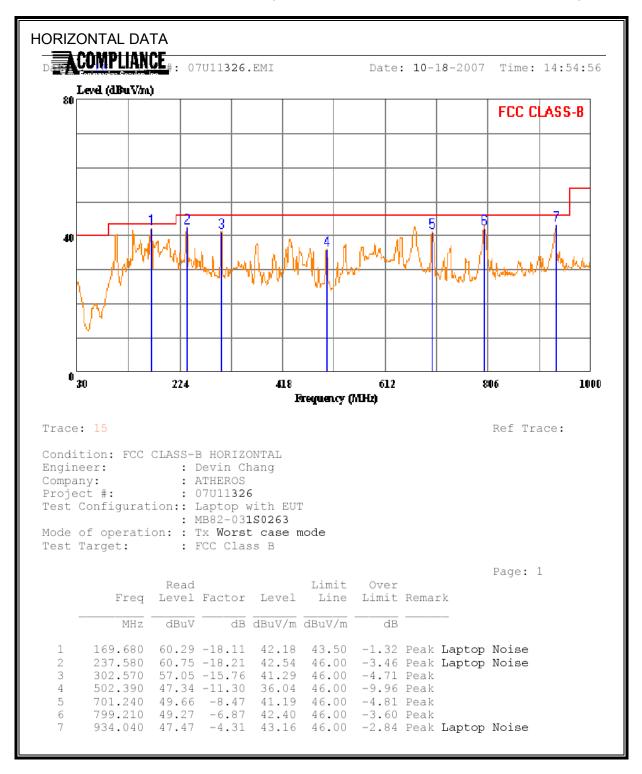

Page 143 of 143

HARMONICS AND SPURIOUS EMISSIONS

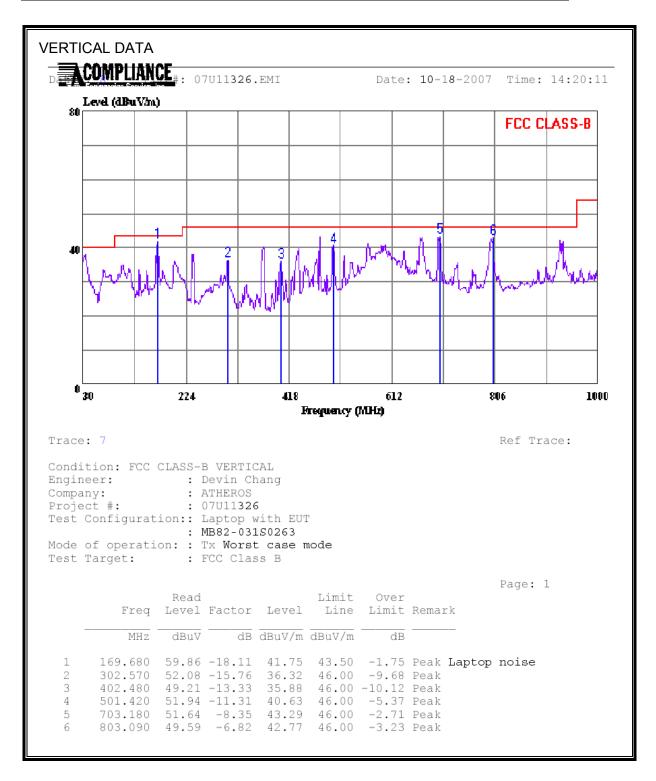


8.3. RECEIVER ABOVE 1 GHz

8.3.1. RX ABOVE 1 GHz, 20 MHz BANDWIDTH, 5.2 GHz



8.3.2. RX ABOVE 1 GHz, 20 MHz BANDWIDTH, 5.6 GHz



8.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56 °	56 to 46 *
0.5-5	56	46
5-30	60	50

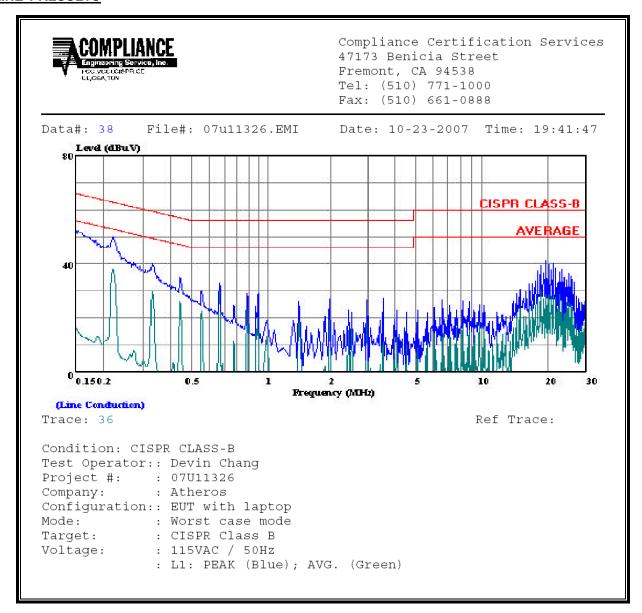
Decreases with the logarithm of the frequency.

TEST PROCEDURE

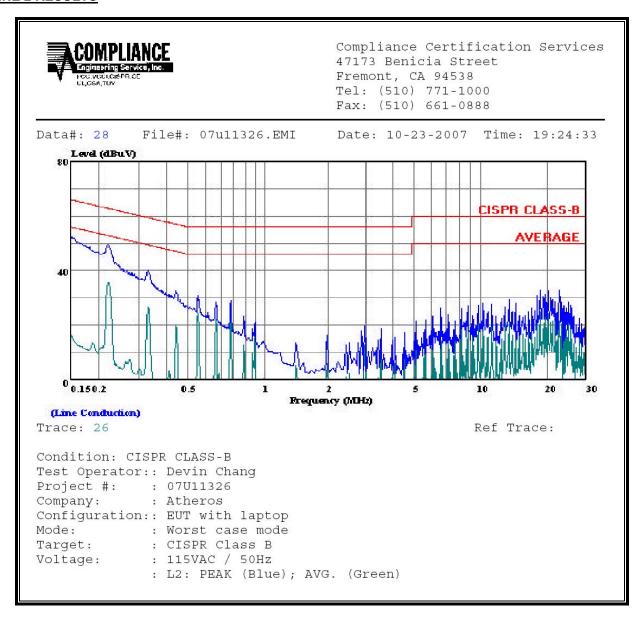
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.


RESULTS

6 WORST EMISSIONS


	CONDUCTED EMISSIONS DATA (115VAC 60Hz)											
Freq.	q. Reading			Reading			Closs	Limit	FCC_B	Marg	in	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2			
0.22	49.82		37.57	0.00	62.86	52.86	-13.04	-15.29	L1			
0.33	40.04		29.63	0.00	59.45	49.45	-19.41	-19.82	L1			
19.74	41.16		32.82	0.00	60.00	50.00	-18.84	-17.18	L1			
0.22	49.40		35.52	0.00	62.78	52.78	-13.38	-17.26	L2			
0.33	39.29		26.82	0.00	59.38	49.38	-20.09	-22.56	L2			
18.72	32.84		24.81	0.00	60.00	50.00	-27.16	-25.19	L2			
6 Worst l	Data											

Page 149 of 149

LINE 1 RESULTS

LINE 2 RESULTS

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

10. DYNAMIC FREQUENCY SELECTION

10.1. OVERVIEW

10.1.1. LIMITS

FCC

§15.407 (h) and FCC MO&O 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

RSS-210 Issue 7 A9.4 (b) (iv) **Channel closing time:** the maximum channel closing time is 260 ms.

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

REQUIREMENTS AND LIMITS

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode			
	Master	Client (without radar detection)	Client (with radar detection)	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operationa	I Mode	e		
	Master	Client	Client		
		(without DFS)	(with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value
	(see note)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the *Burst*.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

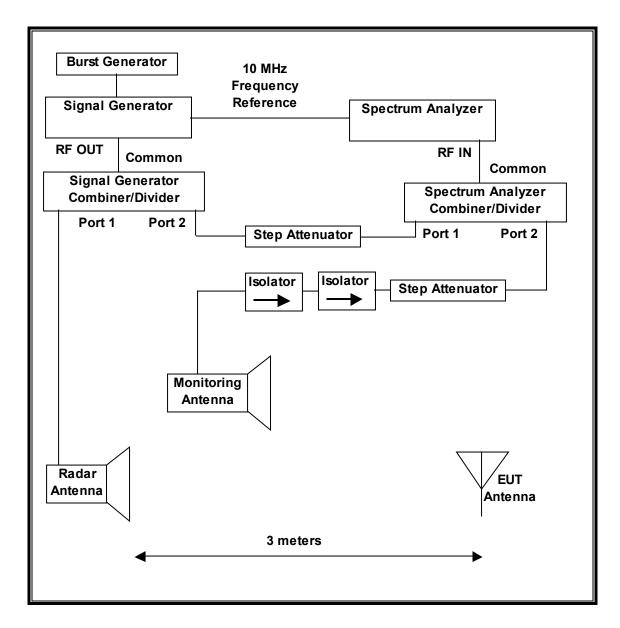
The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum	
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials	
				Successful		
				Detection		
1	1	1428	18	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Radar Types 1-4) 80% 120						

Table 6 - Long Pulse Radar Test Signal

	Table 6 Long Tales Tales Tool Orginal							
Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials	
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30	


Table 7 – Frequency Hopping Radar Test Signal

	. cquone	y i ioppi	ng naaa		giiai		
Radar	Pulse	PRI	Burst	Pulses	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	Length	per	Rate	Percentage of	Trials
	(µsec)		(ms)	Нор	(kHz)	Successful	
						Detection	
6	1	333	300	9	.333	70%	30

This report shall not be reproduced except in full, without the written approval of CCS.

10.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

DATE: DECEMBER 3, 2007

IC: 4104A-AR5BMB82

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A horn antenna is set up with its main beam oriented directly toward the radar test generator antenna at a 3-meter distance (this is the same location at which the EUT will be placed during the test). The spectrum analyzer is connected to this horn antenna via a coaxial cable, with the reference level offset set equal to the horn antenna assembly gain (horn antenna gain – coaxial cable loss). A 50-ohm load is connected to each unused port of the test system. The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The amplitude is measured and the difference from –64 dBm is calculated. The Reference Level Offset of the spectrum analyzer is adjusted to this difference.

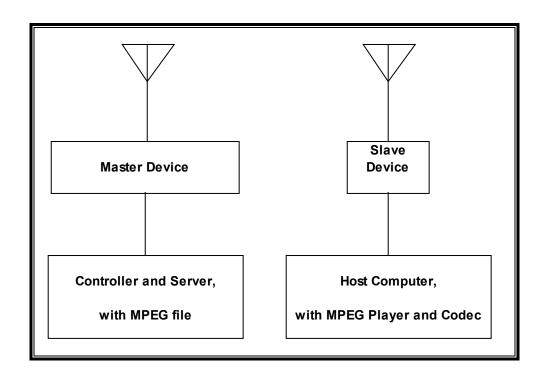
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

The signal generator is set to produce a radar waveform, a burst is triggered manually and the level on the spectrum analyzer is observed. The amplitude of the signal generator is adjusted as required so that the peak level of the waveform is at a displayed level equal to specified interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave, adjusting the distance between the units as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The WLAN traffic, as displayed on the spectrum analyzer, is confirmed to be at a lower amplitude than the radar detection threshold, and the displayed traffic is confirmed to be only from the EUT and not from the support device associated with the EUT.

If different settings of the Step Attenuators are required to meet the above conditions, a new System Calibration is performed for the new Step Attenuator settings.


TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST						
Description Manufacturer Model Serial Number Cal Due						
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	MY45300064	3/18/2008		
Vector Signal Generator 250kHz-						
20GHz	Agilent / HP	E8267C	US43320336	12/2/2007		
	National					
High Speed Digital I/O Card	Instruments	PCI-6534	HA1612845	1/16/2008		

10.1.3. **SETUP OF EUT**

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	ption Manufacturer Model Serial Number FCC ID				
AC Adapter	IBM	08K8204	11S08K8204Z1ZAC85AJ1MT	DoC	
Laptop	IBM	T43	L3-AB1AT	DoC	
AC Adapter	IBM	92P1107	11S92P1107Z1ZACT5972BT	DoC	
Laptop	IBM	T60p	ZZ-8D115	DoC	

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

10.1.4. **DESCRIPTION OF EUT**

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Master Device.

The highest conducted power level within these bands is 21.93 dBm in the 5250-5350 MHz band and 20.32 dBm in the 5470-5725 MHz band, for 20 MHz bandwidth operation, and 22.01 dBm in the 5250-5350 MHz band and 22.80 dBm in the 5470-5725 MHz band, for 40 MHz bandwidth operation.

The highest gain antenna assembly utilized with the EUT has a gain of 5 dBi. The lowest gain antenna assembly utilized with the EUT has a gain of 0 dBi.

The highest radiated power level within these bands is 27.8 dBm EIRP.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm.

The calibrated radiated DFS Detection Threshold level is set to -64 dBm.

The EUT uses three transmitters connected to three 50-ohm coaxial antenna ports to satisfy MIMO operational requirements.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 1/2 Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. Two nominal channel bandwidths are implemented: 20 MHz and 40 MHz.

The software installed in the access point is revision 4.0.0.

Test results show that the EUT requires 47.2 seconds to complete its initial power-up cycle in the 20 MHz bandwidth mode and 47.4 seconds in the 40 MHz bandwidth mode.

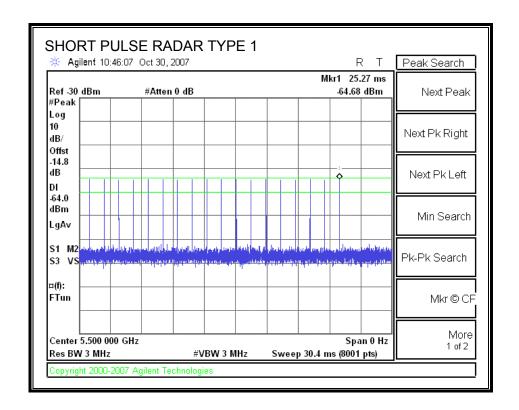
DATE: DECEMBER 3, 2007 FCC ID: PPD-AR5BMB82 IC: 4104A-AR5BMB82

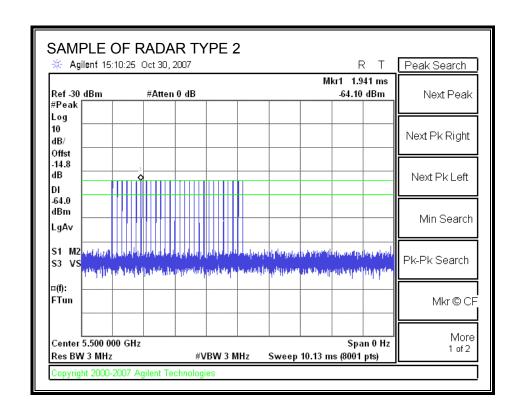
DESCRIPTION OF TPC FUNCTION

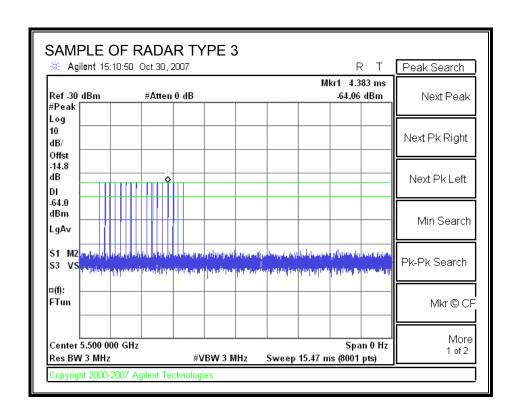
The power is adjustable over a range of approximately 12 dB, therefore the EUT is capable of the required 6 dB TPC reduction.

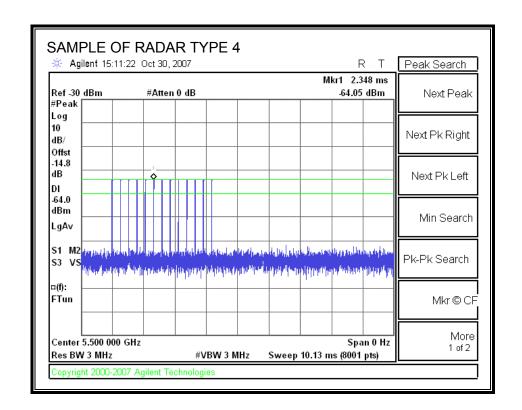
MANUFACTURER'S DESCRIPTION OF UNIFORM CHANNEL SPREADING FUNCTION

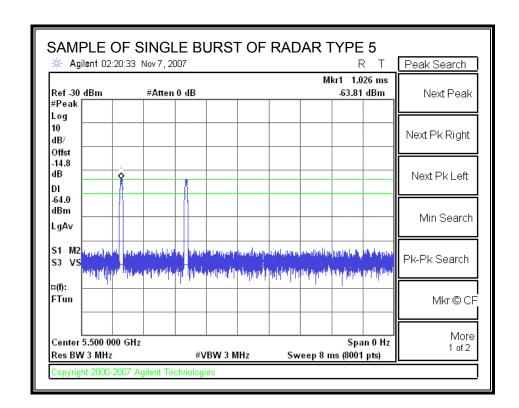
This is in a separate document.

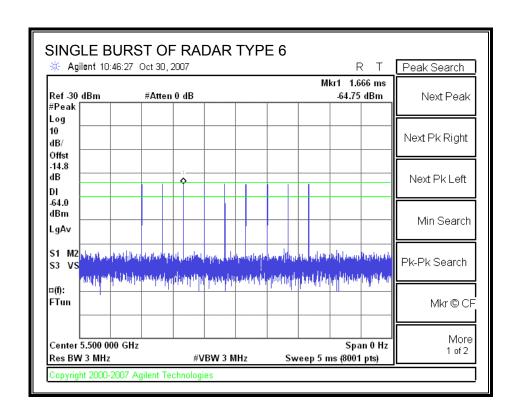

10.2. RESULTS FOR 20 MHz BANDWIDTH MODE

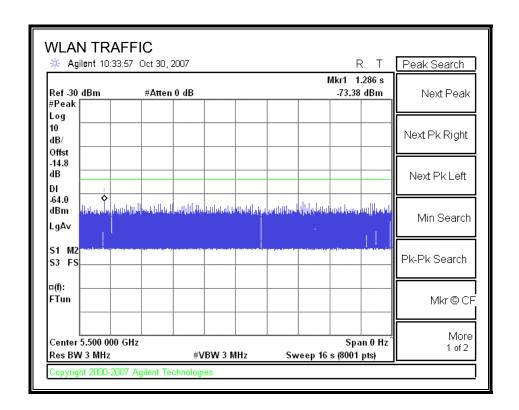

10.2.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5500 MHz. Measurements were performed using radiated test methods.


10.2.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

10.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel, then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

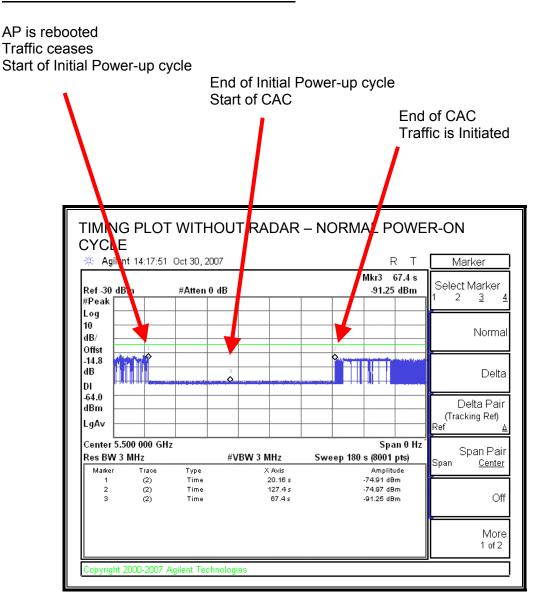
RESULTS

No Radar Triggered

No Radai Triggered							
Timing of	Timing of Timing of		Initial Power-up				
Reboot	Start of Traffic	Cycle Time	Cycle Time				
(sec)	(sec)	(sec)	(sec)				
20.16	127.4	107.2	47.2				

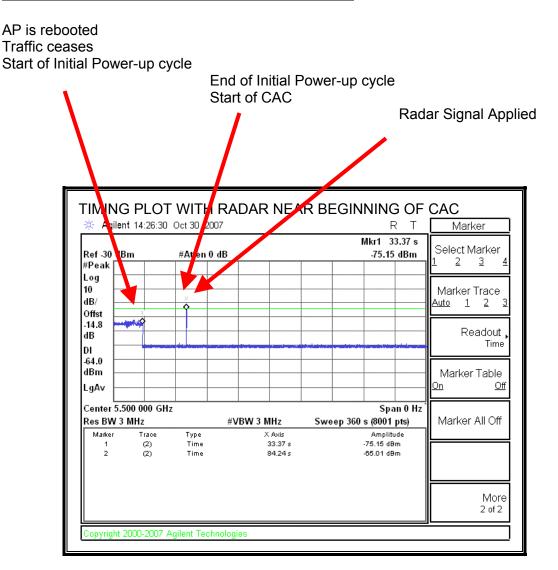
Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
33.37	84.2	50.9	3.6

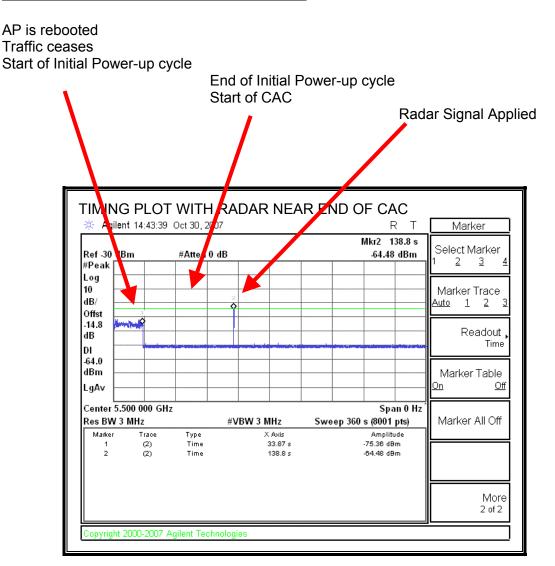

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
33.87	138.8	104.9	57.7

If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.


Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel

TIMING PLOT WITHOUT RADAR DURING CAC


Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

10.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

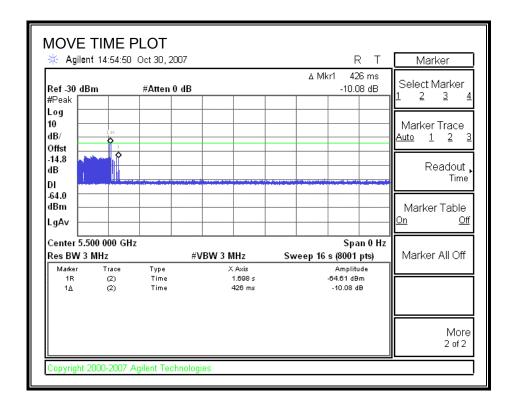
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

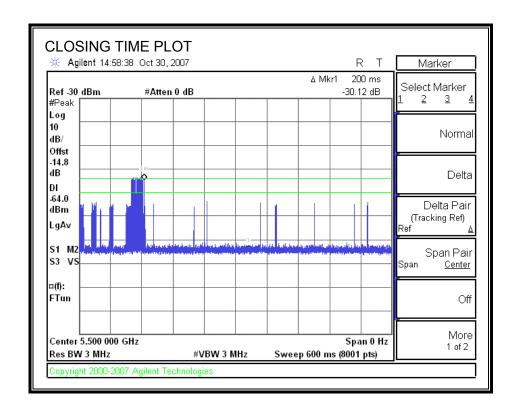
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

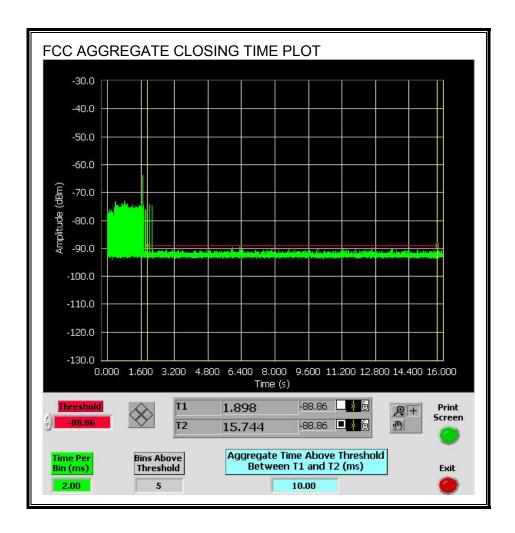

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

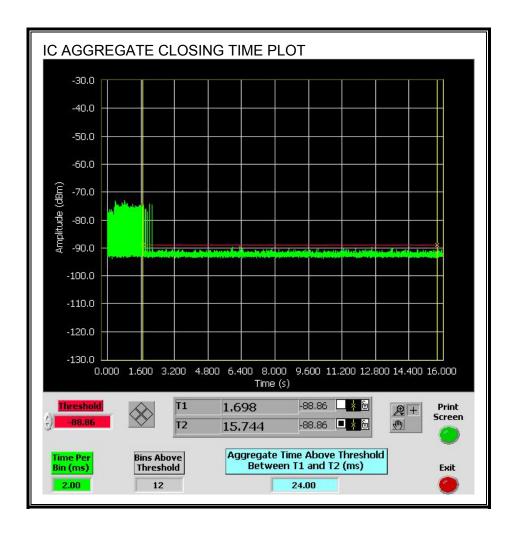

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.4	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	10.0	60
IC	24.0	260

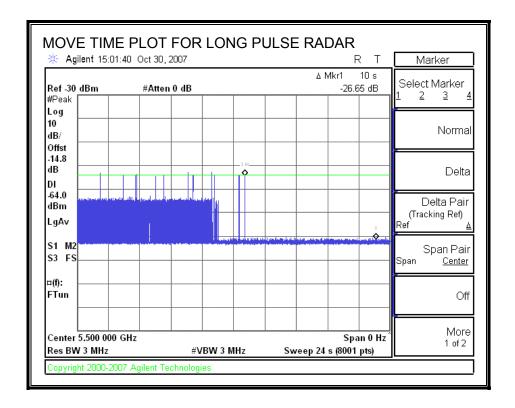
MOVE TIME



CHANNEL CLOSING TIME

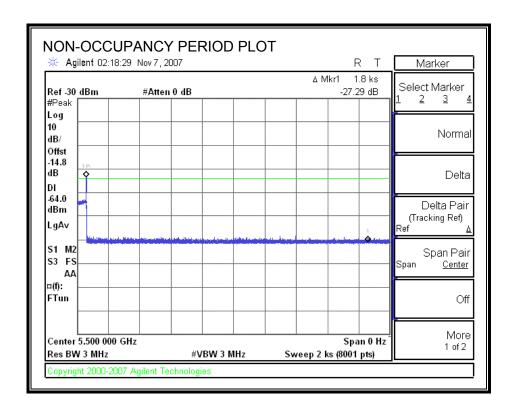

FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the monitoring period.

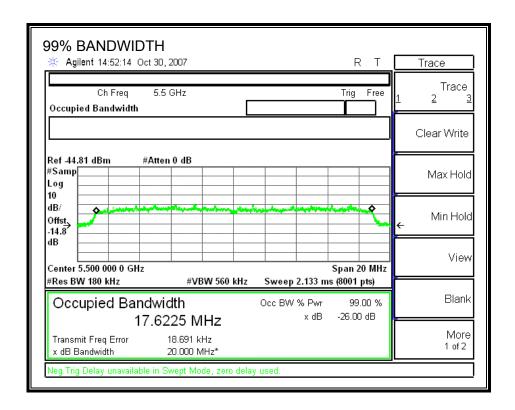

IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

10.2.5. NON-OCCUPANCY PERIOD


RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

10.2.6. **DETECTION BANDWIDTH**

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5490	5510	20	17.623	113.5	80

DETECTION BANDWIDTH PROBABILITY

-((IVNA IVVa	veform: 1 us Pulse V	Vidth 1428 us PRL 1	8 Puleae nar f	Ruret
Frequency (MHz)		Number Detected	Detection (%)	Mark
5489	10	2	20	
5490	10	10	100	FL
5491	10	9	90	
5492	10	9	90	
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	FH
5511	10	1	10	

10.2.7. IN-SERVICE MONITORING

RESULTS

CC Radar Tes	t Summary			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	76.67	60	Pass
FCC TYPE 3	30	96.67	60	Pass
FCC TYPE 4	30	93.33	60	Pass
Aggregate		91.67	80	Pass
FCC TYPE 5	30	86.67	80	Pass
FCC TYPE 6	42	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

us Pulse Width, 1428 us PRI, 18 Pulses per Burst			
Trial	Successful Detection		
	(Yes/No)		
1	Yes		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	Yes		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	Yes		
17	Yes		
18	Yes		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	2.5	152.00	29	Yes
2002	3.9	227.00	26	Yes
2002	2.9	151.00	28	Yes
2003	2.2	209.00	23	Yes
2004	4.5	150.00	25	Yes
2005	4.3	171.00	25	Yes
2007	2.2	224.00	23	No Tes
	3.3		29	
2008	3.3 4.4	167.00	23	Yes
2009	1.5	222.00	25	No Yes
2010	4.3	174.00	25	Yes
2011		224.00 168.00	23	Yes
2012	2.7 3		28	Yes
		190.00	23	No
2014	2.3	173.00		
2015	1	165.00	23	Yes
2016	1.4	198.00	28	Yes
2017	2.5	183.00	24	No Yee
2018	4.9	191.00	29	Yes
2019	3.8	196.00	26	No
2020	4.3	167.00	26	Yes
2021	3.1	165.00	24	No
2022	2.3	161.00	23	Yes
2023	2.5	172.00	26	Yes
2024	3.6	150.00	25	Yes
2025	3.2	218.00	25	Yes
2026	3.3	212.00	26	Yes
2027	3.6	205.00	29	Yes
2028	3.1	179.00	29	Yes
2029	2.7	185.00	29	No
2030	4.1	219.00	26	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	10	337.00	18	Yes
3002	6.1	380.00	16	Yes
3003	7.7	365.00	17	No
3004	5.5	250.00	17	Yes
3005	9.7	395.00	17	Yes
3006	6.8	318.00	17	Yes
3007	5.4	292.00	18	Yes
3008	8.4	489.00	18	Yes
3009	9.7	498.00	17	Yes
3010	8.6	451.00	18	Yes
3011	9.5	331.00	18	Yes
3012	9.4	279.00	16	Yes
3013	9.6	397.00	16	Yes
3014	6	329.00	18	Yes
3015	8	433.00	17	Yes
3016	8.6	499.00	16	Yes
3017	7.7	330.00	16	Yes
3018	9.2	394.00	17	Yes
3019	8	431.00	18	Yes
3020	9.1	468.00	18	Yes
3021	8.3	341.00	17	Yes
3022	9.7	470.00	17	Yes
3023	9.4	327.00	16	Yes
3024	6.1	490.00	17	Yes
3025	5	370.00	18	Yes
3026	5.4	308.00	18	Yes
3027	6.1	442.00	17	Yes
3028	7.2	469.00	17	Yes
3029	5.3	416	16	Yes
3030	6.3	444	17	Yes

TYPE 4 DETECTION PROBABILITY

Data Sheet f Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	12.7	338.00	16	Yes
4002	16.4	303.00	13	Yes
4003	18.8	471.00	16	Yes
4004	13.7	487.00	16	Yes
4005	11.8	267.00	15	Yes
4006	13.1	353.00	16	Yes
4007	15.7	322.00	12	Yes
4008	11.8	253.00	16	Yes
4009	15.2	266.00	12	Yes
4010	12.2	458.00	16	Yes
4011	16	253.00	14	Yes
4012	14.5	258.00	15	Yes
4013	17.7	358.00	14	Yes
4014	10.5	487.00	12	Yes
4015	13.5	496.00	13	Yes
4016	18.8	412.00	15	No
4017	12.6	375.00	16	Yes
4018	12.3	407.00	12	Yes
4019	13.9	477.00	12	Yes
4020	19.9	500.00	12	Yes
4021	11.7	366.00	14	Yes
4022	17.6	321.00	15	Yes
4023	11.6	482.00	16	Yes
4024	14	264.00	16	Yes
4025	15.9	500.00	12	Yes
4026	10.1	378.00	16	Yes
4027	11.1	258.00	15	Yes
4028	11.1	315.00	15	Yes
4029	18.9	383.00	14	Yes
4030	18.9	450.00	15	No

TYPE 5 DETECTION PROBABILITY

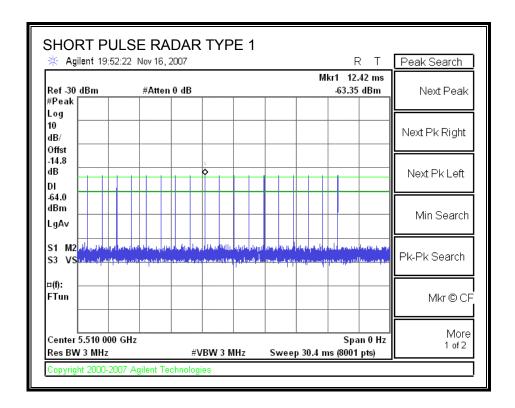
Data Sheet for FCC Long Pulse Radar Type 5			
Trial	Successful Detection (Yes/No)		
1	No		
2	Yes		
3	Yes		
4	Yes		
5	Yes		
6	Yes		
7	No		
8	Yes		
9	Yes		
10	Yes		
11	Yes		
12	Yes		
13	Yes		
14	Yes		
15	Yes		
16	No		
17	Yes		
18	No		
19	Yes		
20	Yes		
21	Yes		
22	Yes		
23	Yes		
24	Yes		
25	Yes		
26	Yes		
27	Yes		
28	Yes		
29	Yes		
30	Yes		

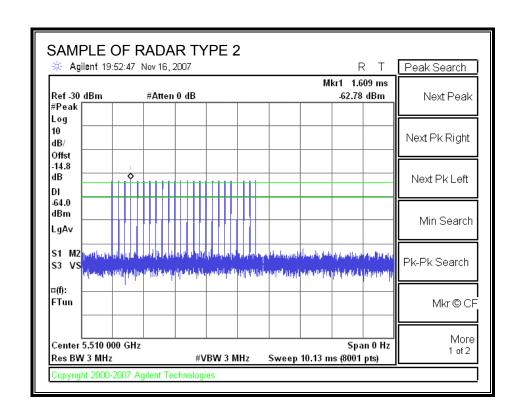
Note: The Type 5 randomized parameters are shown in a separate document.

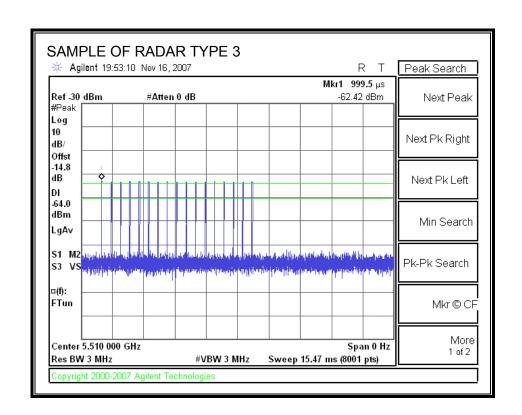
TEL: (510) 771-1000 FAX: (510) 661-0888

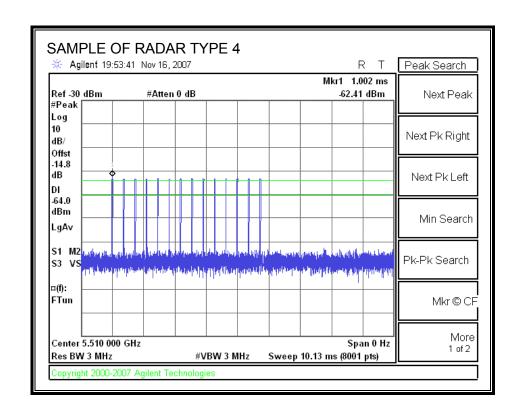
TYPE 6 DETECTION PROBABILITY

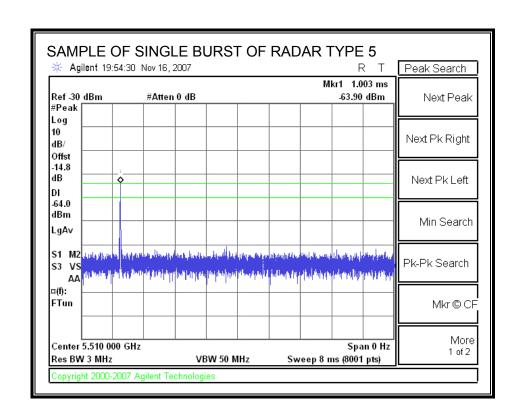
us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop TIA August 2005 Hopping Sequence					
Trial	Starting Index Within Sequence (Base 1)	Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)	
1	36	5490	6	Yes	
2	511	5491	4	Yes	
3	986	5492	4	Yes	
4	1461	5493	6	Yes	
5	1936	5494	7	Yes	
6	2411	5495	6	Yes	
7	2886	5496	3	Yes	
8	3361	5497	3	Yes	
9	3836	5498	5	Yes	
10	4311	5499	6	Yes	
11	4786	5500	5	Yes	
12	5261	5501	5	Yes	
13	5736	5502	2	Yes	
14	6211	5503	7	Yes	
15	6686	5504	5	Yes	
16	7161	5505	5	Yes	
17	7636	5506	7	Yes	
18	8111	5507	3	Yes	
19	8586	5508	5	Yes	
20	9061	5509	4	Yes	
21	9536	5510	6	Yes	
22	10011	5490	5	Yes	
23	10486	5491	1	Yes	
24	10961	5492	6	Yes	
25	11436	5493	5	Yes	
26	11911	5494	5	Yes	
27	12386	5495	5	Yes	
28	12861	5496	5	Yes	
29	13336	5497	6	Yes	
30	13811	5498	1	Yes	
31	14286	5499	6	Yes	
32	14761	5500	3	Yes	
33	15236	5501	5	Yes	
34	15711	5502	4	Yes	
35	16186	5503	4	Yes	
36	16661	5504	3	Yes	
37	17136	5505	5	Yes	
38	17611	5506	8	Yes	
39	18086	5507	4	Yes	
40	18561	5508	4	Yes	
41	19036	5509	1	Yes	
42	19511	5510	3	Yes	

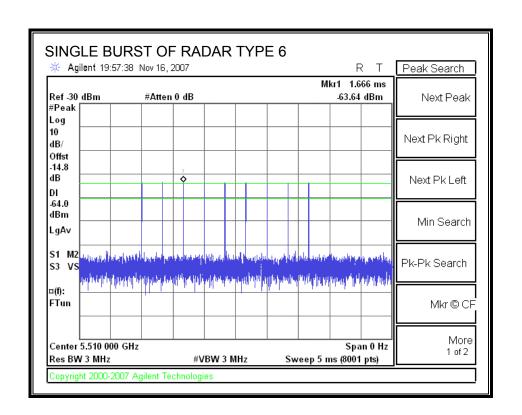

10.3. RESULTS FOR 40 MHz BANDWIDTH MODE

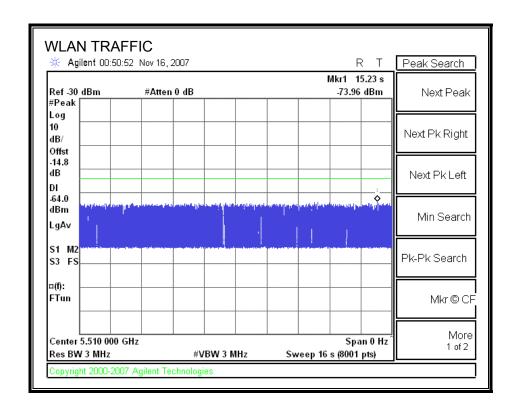

10.3.1. TEST CHANNEL


All tests were performed at a channel center frequency of 5510 MHz. Measurements were performed using radiated test methods.


10.3.2. PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC


PLOTS OF RADAR WAVEFORMS





PLOT OF WLAN TRAFFIC FROM MASTER

10.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then a software reboot command was issued to the EUT. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

DATE: DECEMBER 3, 2007 IC: 4104A-AR5BMB82

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

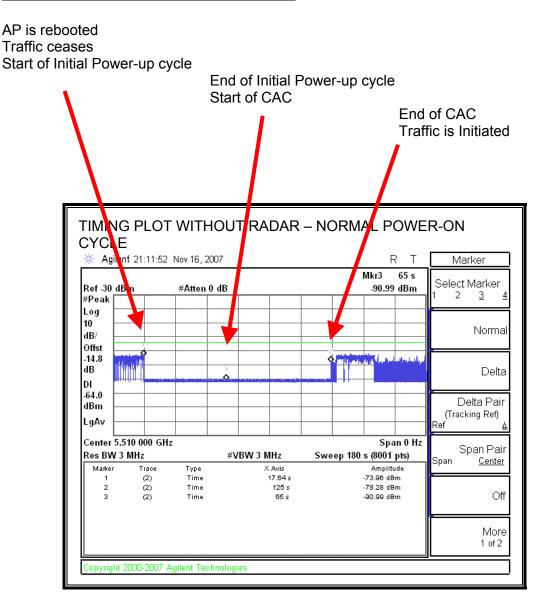
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
17.64	125.00	107.36	47.36

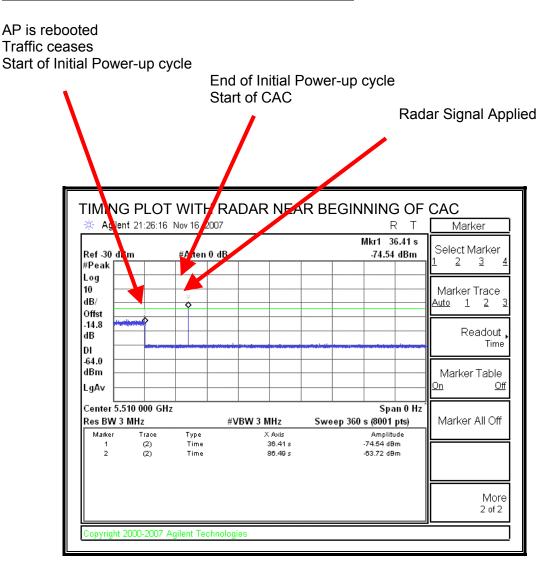
Radar Near Beginning of CAC

Timing of Reboot	Timing of Radar Burst	Radar Relative to Reboot	Radar Relative to Start of CAC
(sec)	(sec)	(sec)	(sec)
36.41	86.49	50.08	2.72

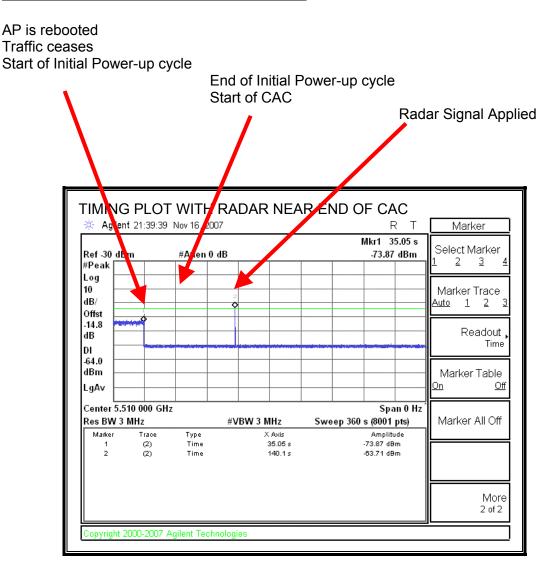

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
35.05	140.10	105.05	57.69

QUALITATIVE RESULTS


Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any	No transmissions on channel
	radar parameter values	
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel
	EUT does not display any radar parameter values	

TIMING PLOT WITHOUT RADAR DURING CAC


Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

TIMING PLOT WITH RADAR NEAR BEGINNING OF CAC

No EUT transmissions were observed after the radar signal.

TIMING PLOT WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

10.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

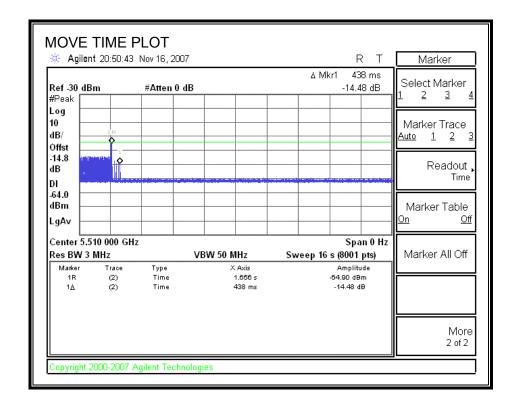
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

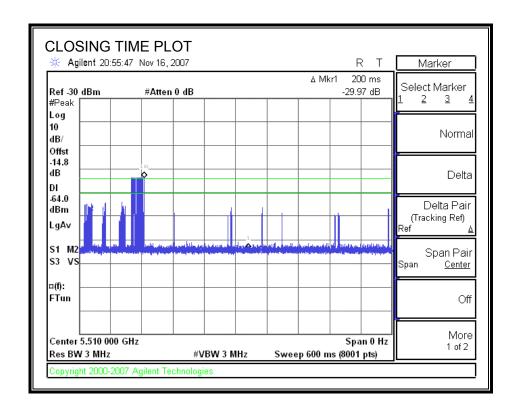
The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the FCC aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

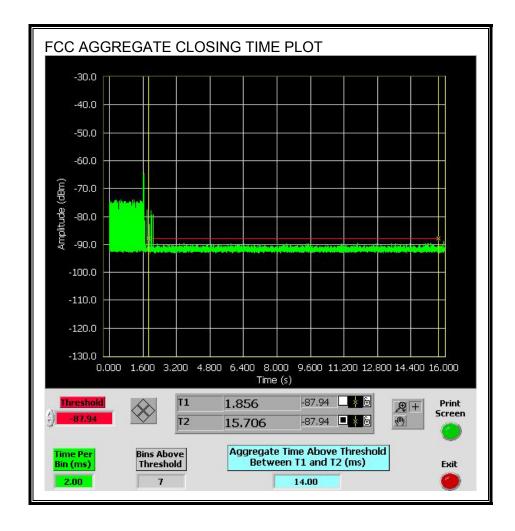

The observation period over which the IC aggregate time is calculated begins at (Reference Marker) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

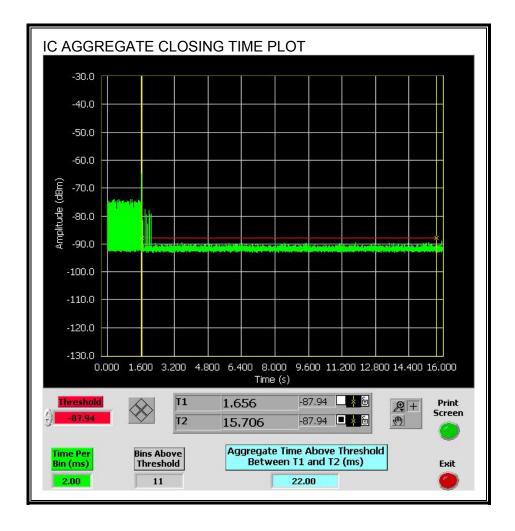

Agency	Channel Move Time	Limit
	(sec)	(sec)
FCC / IC	0.438	10

Agency	Aggregate Channel Closing Transmission Time	Limit
	(msec)	(msec)
FCC	14.0	60
IC	22.0	260

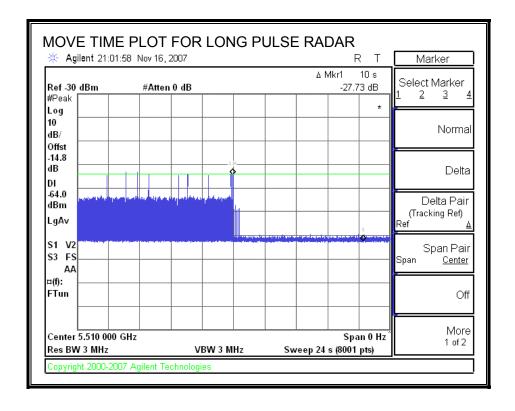
MOVE TIME



CHANNEL CLOSING TIME

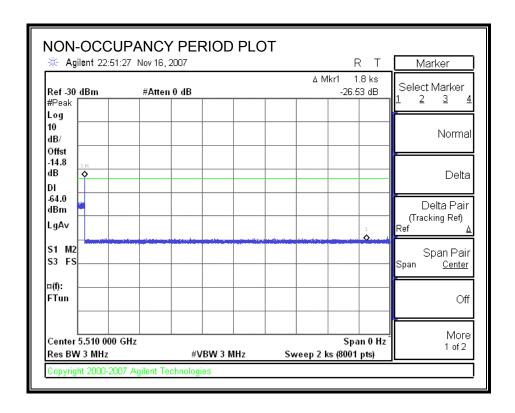

FCC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

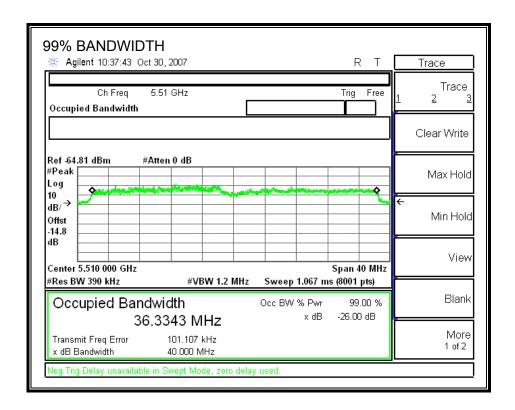

IC AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

LONG PULSE CHANNEL MOVE TIME


The traffic ceases prior to 10 seconds after the end of the radar waveform.

10.3.5. NON-OCCUPANCY PERIOD


RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

10.3.6. **DETECTION BANDWIDTH**

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5490	5530	40	36.334	110.1	80

DETECTION BANDWIDTH PROBABILITY

	lwidth Test Results rveform: 1 us Pulse V	Nidth 1429 us DDL 4	9 Duless nor ¹	Qure+
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark
5489	10	8	80	
5490	10	10	100	FL
5491	10	10	100	
5492	10	10	100	
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5496	10	10	100	
5497	10	10	100	
5498	10	10	100	
5499	10	10	100	
5500	10	10	100	
5501	10	10	100	
5502	10	10	100	
5503	10	10	100	
5504	10	10	100	
5505	10	10	100	
5506	10	10	100	
5507	10	10	100	
5508	10	10	100	
5509	10	10	100	
5510	10	10	100	
5511	10	10	100	
5512	10	10	100	
5513	10	10	100	
5514	10	10	100	
5515	10	10	100	
5516	10	10	100	
5517	10	10	100	
5518	10	10	100	
5519	10	10	100	
5520	10	10	100	
5521	10	10	100	
5522	10	10	100	
5523	10	10	100	
5524	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	10	100	
5528	10	10	100	
5529	10	10	100	
5530 5531	10 10	10 6	100 60	FH

10.3.7. IN-SERVICE MONITORING

RESULTS

CC Radar Tes	st Summary			
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC TYPE 1	30	100.00	60	Pass
FCC TYPE 2	30	96.67	60	Pass
FCC TYPE 3	30	96.67	60	Pass
FCC TYPE 4	30	100.00	60	Pass
Aggregate		98.33	80	Pass
FCC TYPE 5	30	96.67	80	Pass
FCC TYPE 6	41	100.00	70	Pass

TYPE 1 DETECTION PROBABILITY

	Fixed Radar Type 1 28 us PRI, 18 Pulses per Burs
Trial	Successful Detection
11141	
4	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 2 DETECTION PROBABILITY

Waveform	for FCC Short Pulse Radar Ty Pulse Width PRI		Pulses Per Burst	Successful Detection
· · · · · · · · · · · · · · · · · · ·	(us)	(us)	T thises I et Buist	(Yes/No)
2001	4.3	164.00	23	Yes
2002	2.2	176.00	26	Yes
2003	2.2	184.00	29	Yes
2004	2.5	171.00	28	Yes
2005	3.6	217.00	28	Yes
2006	2.5	166.00	23	Yes
2007	2.7	211.00	24	Yes
2008	3.7	215.00	24	Yes
2009	2.6	160.00	23	Yes
2010	3.8	157.00	27	Yes
2011	3.2	186.00	24	Yes
2012	1.9	186.00	27	Yes
2013	1.9	221.00	28	Yes
2014	4	164.00	23	Yes
2015	3.8	155.00	23	Yes
2016	3.6	203.00	29	Yes
2017	3.2	161.00	23	Yes
2018	2	155.00	28	Yes
2019	3.6	151.00	24	Yes
2020	3.9	180.00	26	Yes
2021	2.5	230.00	24	Yes
2022	1.3	166.00	25	Yes
2023	1.6	203.00	23	Yes
2024	1.9	189.00	23	Yes
2025	3.8	182.00	27	No
2026	2.6	150.00	23	Yes
2027	4.2	217.00	24	Yes
2028	2.3	164.00	23	Yes
2029	4.6	195.00	25	Yes
2030	1.4	154.00	23	Yes

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
3001	9.2	490.00	18	Yes
3002	5.4	363.00	18	Yes
3003	8.8	471.00	16	Yes
3004	6.4	449.00	16	Yes
3005	6.4	461.00	18	Yes
3006	5.5	379.00	18	Yes
3007	6.7	326.00	17	Yes
3008	7.7	446.00	16	Yes
3009	7	380.00	17	Yes
3010	5.8	487.00	18	Yes
3011	7	278.00	16	Yes
3012	8.4	261.00	16	Yes
3013	8.1	444.00	16	Yes
3014	9.2	337.00	16	Yes
3015	5.7	393.00	16	Yes
3016	9.3	407.00	16	Yes
3017	6.9	254.00	16	Yes
3018	8	410.00	18	Yes
3019	9.9	417.00	17	Yes
3020	7.5	327.00	16	Yes
3021	7.4	485.00	16	Yes
3022	9.2	267.00	16	Yes
3023	5.5	305.00	16	Yes
3024	5.6	480.00	18	Yes
3025	8.5	347.00	16	Yes
3026	7.1	276.00	16	Yes
3027	8.4	288.00	18	Yes
3028	5.5	350.00	16	No
3029	8	253	16	Yes
3030	8.3	266	17	Yes

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width	ilse Radar i PRI	Pulses Per Burst	Successful Detection
	(us)	(us)		(Yes/No)
4001	18.4	279.00	15	Yes
4002	10	285.00	12	Yes
4003	15.1	267.00	14	Yes
4004	15.6	489.00	16	Yes
4005	16.6	257.00	13	Yes
4006	13.1	490.00	13	Yes
4007	14.7	435.00	12	Yes
4008	12.5	467.00	15	Yes
4009	18	381.00	13	Yes
4010	18.5	398.00	16	Yes
4011	14	464.00	12	Yes
4012	16.4	436.00	13	Yes
4013	19.8	338.00	15	Yes
4014	16.5	487.00	14	Yes
4015	10	390.00	16	Yes
4016	12.7	427.00	13	Yes
4017	12.6	395.00	14	Yes
4018	11.6	461.00	15	Yes
4019	14.4	422.00	12	Yes
4020	19.4	268.00	14	Yes
4021	18.2	280.00	14	Yes
4022	13.9	394.00	12	Yes
4023	16.3	267.00	15	Yes
4024	17.6	325.00	13	Yes
4025	14.5	321.00	12	Yes
4026	10.1	442.00	13	Yes
4027	13.5	306.00	16	Yes
4028	12.9	431.00	14	Yes
4029	13.1	306.00	15	Yes
4030	14.9	446.00	15	Yes

TYPE 5 DETECTION PROBABILITY

Data Sheet for FCC Long Pulse Radar Type 5				
Trial	Successful Detection (Yes/No)			
1	Yes			
2	Yes			
3	Yes			
4	Yes			
5	Yes			
6	Yes			
7	Yes			
8	Yes			
9	Yes			
10	Yes			
11	Yes			
12	Yes			
13	Yes			
14	Yes			
15	Yes			
16	Yes			
17	Yes			
18	Yes			
19	Yes			
20	Yes			
21	Yes			
22	Yes			
23	Yes			
24	Yes			
25	Yes			
26	No			
27	Yes			
28	Yes			
29	Yes			
30	Yes			

Note: The Type 5 randomized parameters are shown in a separate document.

TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of CCS.

TYPE 6 DETECTION PROBABILITY

	et for FCC Hopping Rada e Width, 333 us PRI,		1 Burst per Hop	1
	just 2005 Hopping Se	•		
	Starting Index	Signal Generator	Hops within	Successful
Trial	Within Sequence	Frequency	Detection BW	Detection
	(Base 1)	(MHz)		(Yes/No)
1	124	5490	5	Yes
2	599	5491	13	Yes
3	1074	5492	6	Yes
4	1549	5493	10	Yes
5	2024	5494	7	Yes
6	2499	5495	10	Yes
7	2974	5496	9	Yes
8	3449	5497	8	Yes
9	3924	5498	4	Yes
10	4399	5499	9	Yes
11	4874	5500	10	Yes
12	5349	5501	8	Yes
13	5824	5502	10	Yes
14	6299	5503	7	Yes
15	6774	5504	8	Yes
16	7249	5505	8	Yes
17	7724	5506	7	Yes
18	8199	5507	12	Yes
19	8674	5508	8	Yes
20	9149	5509	12	Yes
21	9624	5510	8	Yes
22	10099	5511	7	Yes
23	10574	5512	6	Yes
24	11049	5513	9	Yes
25	11524	5514	10	Yes
26	11999	5515	10	Yes
27	12474	5516	9	Yes
28	12949	5517	15	Yes
29	13424	5518	12	Yes
30	13899	5519	4	Yes
31	14374	5520	10	Yes
32	14849	5521	10	Yes
33	15324	5522	11	Yes
34	15799	5523	7	Yes
35	16274	5524	5	Yes
36	16749	5525	8	Yes
37	17224	5526	5	Yes
38	17699	5527	9	Yes
39	18174	5528	15	Yes
40	18649	5529	10	Yes
41	19124	5530	11	Yes

11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500	27.5	0.073	0.2 f/1500	30 30
1500-100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 <i>f</i> ^{0.5}	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)/d}$$

and

$$S = E^{2}/3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

(MPE distance equals 20 cm)

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
802.11a	5.2 GHz	20.0	18.09	9.77	0.12	1.21
802.11n H20	5.2 GHz	20.0	21.93	5.00	0.10	0.98
802.11n H40	5.2 GHz	20.0	22.01	5.00	0.10	1.00

Mode	Band	MPE	Output	Antenna	FCC Power	IC Power
		Distance	Power	Gain	Density	Density
		(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
802.11a	5.6 GHz	20.0	16.87	9.77	0.09	0.92
802.11n H20	5.6 GHz	20.0	20.32	5.00	0.07	0.68
802.11n H40	5.6 GHz	20.0	22.80	5.00	0.12	1.20

The power level used for MPE calculations is the sum of the power of all transmitter chains. Since the antennas are identical for each transmitter this is equivalent to summing the power density of all transmitters. All three antennas are assumed to be at the same location to give a worst-case estimate of the total power density at a distance of 20 cm from this point. For 802.11abg transmissions the effective legacy mode antenna gain is used (this effective gain assumes that the legacy signals are coherent thus add in voltage). For 802.11n transmissions the signals are not coherent therefore they add in power and the normal antenna gain is applicable.