11. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of $\S 2.1093$ of this chapter.

Table 1-Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3-3.0	614	1.63	${ }^{*}(100)$	6
$3.0-30$	18427	4.897	${ }^{*}\left(900 \mathrm{ff}^{2}\right)$	6
30-300	61.4	0.163	1.0	6
300-1500	f/300	6
1500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	${ }^{*}(100)$	30
1.34-30	824f	2.197	${ }^{*}\left(180 \mathrm{~F}^{2}\right)$	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIbLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A / m)	Power density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Averaging time (minutes)
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	1.0	30

[^0]
IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms $(\mathrm{V} / \mathrm{m})$	3 Magnetic Field Strength; rms $(\mathrm{A} / \mathrm{m})$	4 Power Density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$	5 Averaging Time (min)
$0.003-1$	280	2.19		6
$1-10$	$280 / f$	$2.19 / f$		6
$10-30$	28	$2.19 / f$		6
$30-300$	28	0.073	2^{*}	6
$300-1500$	$1.585 f^{0.5}$	$0.0042 f^{0.5}$	$f / 150$	6
$1500-15000$	61.4	0.163	10	6
$15000-150000$	61.4	0.163	10	$616000 / f^{1.2}$
$150000-300000$	$0.158 f^{0.5}$	$4.21 \times 10^{-4} f^{0.5}$	$6.67 \times 10^{-5} f$	$616000 / f^{1.2}$

* Power density limit is applicable at frequencies greater than 100 MHz .

Notes: 1. Frequency, f, is in MHz.
2. A power density of $10 \mathrm{~W} / \mathrm{m}^{2}$ is equivalent to $1 \mathrm{~mW} / \mathrm{cm}^{2}$.
3. A magnetic field strength of $1 \mathrm{~A} / \mathrm{m}$ corresponds to 1.257 microtesla $(\mu \mathrm{T})$ or 12.57 milligauss (mG).

CALCULATIONS

Given

$$
E=\sqrt{ }(30 * P * G) / d
$$

and

$$
S=E^{\wedge} 2 / 3770
$$

where

$$
\begin{aligned}
& E=\text { Field Strength in Volts/meter } \\
& P=\text { Power in Watts } \\
& G=\text { Numeric antenna gain } \\
& d=\text { Distance in meters } \\
& S=\text { Power Density in milliwatts/square centimeter }
\end{aligned}
$$

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm , and substituting the logarithmic form of power and gain yields:

$$
d=0.282 * 10^{\wedge}((P+G) / 20) / \sqrt{ } S
$$

where

$$
\begin{aligned}
& \mathrm{d}=\text { MPE distance in } \mathrm{cm} \\
& \mathrm{P}=\text { Power in } \mathrm{dBm} \\
& \mathrm{G}=\text { Antenna Gain in } \mathrm{dBi} \\
& \mathrm{~S}=\text { Power Density Limit in } \mathrm{mW} / \mathrm{cm}^{\wedge} 2
\end{aligned}
$$

Rearranging terms to calculate the power density at a specific distance yields

$$
S=0.0795 * 10^{\wedge}((P+G) / 10) /\left(d^{\wedge} 2\right)
$$

The power density in units of $\mathrm{mW} / \mathrm{cm}^{\wedge} 2$ is converted to units of $\mathrm{W} / \mathrm{m}^{\wedge} 2$ by multiplying by a factor of 10 .

LIMITS

From FCC $\S 1.1310$ Table $1(B)$, the maximum value of $S=1.0 \mathrm{~mW} / \mathrm{cm}^{\wedge} 2$

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S $=10 \mathrm{~W} / \mathrm{m}^{\wedge} 2$

RESULTS

Mode	Band	MPE				
(MHz)	Output $(\mathbf{c m})$	Antenna Power (dBm)	FCC Power Gain $(\mathbf{d B i})$	IC Power Density $\left(\mathrm{mW} / \mathrm{cm}^{\wedge} 2\right)$	Density $\left(\mathbf{W} / \mathbf{m}^{\wedge} \mathbf{2}\right)$	
Legacy CDD	$5150-5250$	20.0	15.82	7.06	0.04	0.39
HT20	$5150-5250$	20.0	16.81	4.63	0.03	0.28
HT40	$5150-5250$	20.0	16.89	4.63	0.03	0.28

Legacy CDD	$5250-5350$	20.0	21.07	7.76	0.15	1.52
HT20	$5250-5350$	20.0	23.68	5.56	0.17	1.67
HT40	$5250-5350$	20.0	23.43	5.56	0.16	1.58

Legacy CDD	$5470-5725$	20.0	21.47	8.20	0.18	1.84
HT20	$5470-5725$	20.0	22.16	5.34	0.11	1.12
HT40	$5470-5725$	20.0	23.58	5.34	0.15	1.55

[^0]: $\mathrm{f}=$ frequency in MHz

 * = Plane-wave equivalent power density

 NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

