Client

Schweizerischer Kalibrierdienst

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

EMC Technologies

C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

S

SWIS

BRP

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-724_Dec10

Object	D2450V2 - SN: 724				
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits			
Calibration date:	December 09, 20	010			
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
	ID # GB37480704	Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11		
Power meter EPM-442A					
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	GB37480704 US37292783 SN: 5086 (20g)	06-Oct-10 (No. 217-01266)	Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-11 Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-11 Oct-11 Mar-11 Mar-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10)	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11		
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11		
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-10) Function	Oct-11 Oct-11 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-11		

Certificate No: D2450V2-724_Dec10

Page 1 of 6

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-724_Dec10

Page 2 of 6

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	1.91 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-724_Dec10

Page 3 of 6

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Appendix

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 4.3 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 16, 2002	

Certificate No: D2450V2-724_Dec10

Page 4 of 6

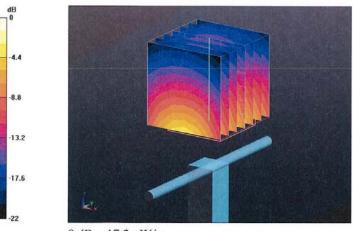
Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

DASY5 Validation Report for Body

Date/Time: 09.12.2010 13:23:23

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:724


Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U12 BB Medium parameters used: f = 2450 MHz; σ = 1.92 mho/m; ϵ_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

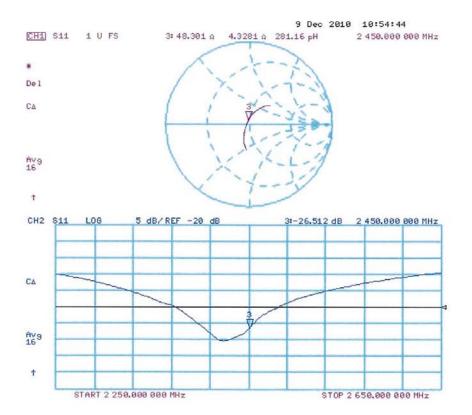
- Probe: ES3DV3 SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.3 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/gMaximum value of SAR (measured) = 17.2 mW/g

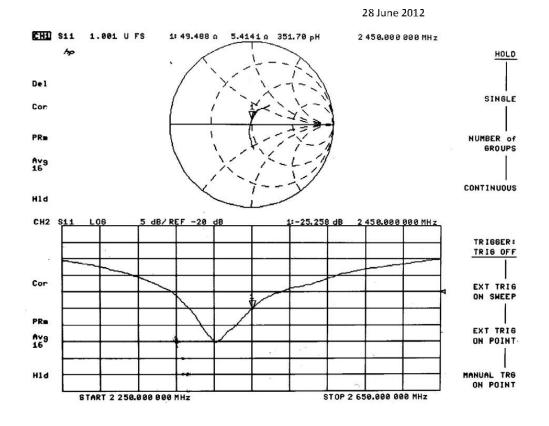
 $0 \, dB = 17.2 \, mW/g$

Certificate No: D2450V2-724_Dec10


Page 5 of 6

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Impedance Measurement Plot for Body TSL


Certificate No: D2450V2-724_Dec10

Page 6 of 6

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

п

Accreditation No.: SCS 108

Certificate No: DAE3-442_Dec11

bject	DAE3 - SD 000 D	03 AE - SN: 442					
alibration procedure(s)	QA CAL-06.v23 Calibration procedure for the data acquisition electronics (DAE)						
alibration date:	December 5, 2011						
he measurements and the uncer	rtainties with confidence pro	nal standards, which realize the physica obability are given on the following pages facility: environment temperature (22 ±	s and are part of the certificate.				
	ID # Cal Date (Cartificate No.) Schodulad Calibration						
imary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
	ID # SN: 0810278	Cal Date (Certificate No.) 28-Sep-11 (No:11450)	Scheduled Calibration Sep-12				
eithley Multimeter Type 2001							
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	SN: 0810278	28-Sep-11 (No:11450) Check Date (in house)	Sep-12				
eithley Multimeter Type 2001 econdary Standards	SN: 0810278	28-Sep-11 (No:11450) Check Date (in house) 08-Jun-11 (in house check)	Sep-12 Scheduled Check In house check: Jun-12				
eithley Multimeter Type 2001 econdary Standards alibrator Box V1.1	SN: 0810278	28-Sep-11 (No:11450) Check Date (in house) 08-Jun-11 (in house check) Function	Sep-12 Scheduled Check In house check: Jun-12				
eithley Multimeter Type 2001 econdary Standards alibrator Box V1.1	SN: 0810278	28-Sep-11 (No:11450) Check Date (in house) 08-Jun-11 (in house check)	Sep-12 Scheduled Check In house check: Jun-12				
eithley Multimeter Type 2001 econdary Standards	SN: 0810278	28-Sep-11 (No:11450) Check Date (in house) 08-Jun-11 (in house check) Function	Sep-12 Scheduled Check In house check: Jun-12				

Certificate No: DAE3-442_Dec11

Page 1 of 5

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS CP ZO PRIBRATIO

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics

information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-442_Dec11

Page 2 of 5

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	parameters: Aut	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	x	Y	z
High Range	404.367 ± 0.1% (k=2)	405.009 ± 0.1% (k=2)	405.229 ± 0.1% (k=2)
Low Range	3.98363 ± 0.7% (k=2)	$3.98114 \pm 0.7\%$ (k=2)	$3.98948 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	57.0 ° ± 1 °

Certificate No: DAE3-442_Dec11

Page 3 of 5

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Appendix

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	200002.2	-0.05	-0.00
Channel X	+ Input	20000.16	0.66	0.00
Channel X	- Input	-19997.14	2.86	-0.01
Channel Y	+ Input	200008.3	-2.15	-0.00
Channel Y	+ Input	19996.72	-2.68	-0.01
Channel Y	- Input	-19998.92	0.08	-0.00
Channel Z	+ Input	200008.5	-0.80	-0.00
Channel Z	+ Input	20000.01	-0.09	-0.00
Channel Z	- Input	-19998.00	1.90	-0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	1999.8	-0.20	-0.01
Channel X + Input	200.22	0.22	0.11
Channel X - Input	-198.99	1.01	-0.50
Channel Y + Input	2000.6	0.94	0.05
Channel Y + Input	199.59	-0.51	-0.26
Channel Y - Input	-200.74	-0.84	0.42
Channel Z + Input	2000.0	-0.14	-0.01
Channel Z + Input	198.71	-1.29	-0.64
Channel Z - Input	-200.84	-0.94	0.47

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-8.70	-10.53
	- 200	11.41	10.05
Channel Y	200	0.01	-0.31
	- 200	-1.37	-1.76
Channel Z	200	-5.64	-5.53
	- 200	3.08	3.29

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.76	-1.72
Channel Y	200	1.75		1.74
Channel Z	200	2.90	-0.48	-

Certificate No: DAE3-442_Dec11

Page 4 of 5

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15778	16839
Channel Y	15772	16308
Channel Z	15590	16770

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.87	-2.04	0.18	0.54
Channel Y	-1.01	-2.34	-0.08	0.42
Channel Z	-1.28	-3.05	1.11	0.70

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-442_Dec11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.