APPENDIX C Calibration Documents

SN: 3563 Probe Calibration Certificate SN: 1008 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

0.4.1.15

Accreditation No.: SCS 108

S

Certificate No: EX3-3563_Jul10

Object	EX3DV4 - SN:3	563	
Calibration procedure(s)		QA CAL-14.v3, QA CAL-23.v3 an edure for dosimetric E-field probe	
Calibration date:	July 15, 2010		
The measurements and the unc	ertainties with confidence ucted in the closed laborat	tional standards, which realize the physical un probability are given on the following pages ar ory facility: environment temperature (22 ± 3)°(d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter E4419B	GB41293874	Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136)	Scheduled Calibration Apr-11
ower meter E4419B ower sensor E4412A	GB41293874 MY41495277		
ower meter E4419B ower sensor E4412A ower sensor E4412A	GB41293874 MY41495277 MY41498087	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11 Apr-11
ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	Apr-11 Apr-11 Apr-11 Mar-11
ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID #	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10
Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 20-Apr-10 (No. DAE4-660_Apr10) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Apr-11 Scheduled Check In house check: Oct-11 In house check: Oct10

Certificate No: EX3-3563_Jul10

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid	
NORMx,y,z	sensitivity in free space	
ConvF	sensitivity in TSL / NORMx,y,z	
DCP	diode compression point	
CF	crest factor (1/duty_cvcle) of the RF signal	
A, B, C	modulation dependent linearization parameters	
Polarization o	φ rotation around probe axis	
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),	
	i.e., $9 = 0$ is normal to probe axis	

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3563_Jul10

Page 2 of 11

This the

July 15, 2010

Probe EX3DV4

SN:3563

Manufactured: Last calibrated: Recalibrated:

February 14, 2005 July 16, 2009 July 15, 2010

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3563_Jul10

Page 3 of 11

NATA

EX3DV4 SN:3563

July 15, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3563

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m)²) ^A	0.39	0.38	0.48	± 10.1%
DCP (mV) ^B	85.3	89.8	85.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^E (k=2)
10000	cw	0.00	х	0.00	0.00	1.00	300	± 1.5%
			Y	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3563_Jul10

Page 4 of 11

EX3DV4 SN:3563

DASY/EASY - Parameters of Probe: EX3DV4 SN:3563

Calibration Parameter Determined in Head Tissue Simulating Media

Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
± 50 / ± 100	41.5 ± 5%	0.97 ± 5%	8.31	8.31	8.31	0.49	0.70 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	7.24	7.24	7.24	0.50	0.69 ± 11.0%
± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	6.93	6.93	6.93	0.57	0.62 ± 11.0%
± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.53	6.53	6.53	0.34	0.81 ± 11.0%
± 50 / ± 100	37.9 ± 5%	2.91 ± 5%	6.28	6.28	6.28	0.30	1.32 ± 13.1%
± 50 / ± 100	36.0 ± 5%	4.66 ± 5%	4.26	4.26	4.26	0.38	1.80 ± 13.1%
± 50 / ± 100	35.5 ± 5%	5.07 ± 5%	3.82	3.82	3.82	0.38	1.80 ± 13.1%
± 50 / ± 100	35.3 ± 5%	5.27 ± 5%	3.70	3.70	3.70	0.43	1.80 ± 13.1%
	$\pm 50 / \pm 100$ $\pm 50 / \pm 100$	$\begin{array}{c} \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 5\% \\ \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 100 \\ \pm 50 \ / \pm 5\% \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3563_Jul10

Page 5 of 11

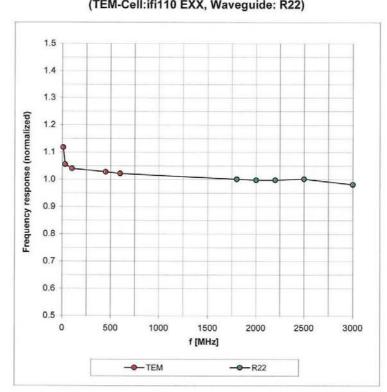
July 15, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3563

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	8.51	8.51	8.51	0.53	0.71 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.04	7.04	7.04	0.55	0.69 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	7.13	7.13	7.13	0.47	0.73 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.72	6.72	6.72	0.23	1.00 ± 11.0%
3500	± 50 / ± 100	51.3 ± 5%	3.31 ± 5%	5.62	5.62	5.62	0.20	2.26 ± 13.1%
5200	± 50 / ± 100	49.0 ± 5%	5.30 ± 5%	3.78	3.78	3.78	0.45	1.90 ± 13.1%
5600	± 50 / ± 100	48.5 ± 5%	5.77 ± 5%	3.20	3.20	3.20	0.50	1.90 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	6.00 ± 5%	3.25	3.25	3.25	0.60	1.90 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: EX3-3563_Jul10

Page 6 of 11

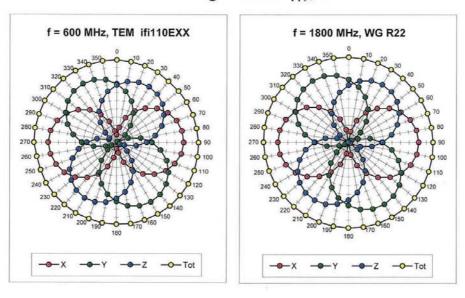
Page 140 of 152

July 15, 2010

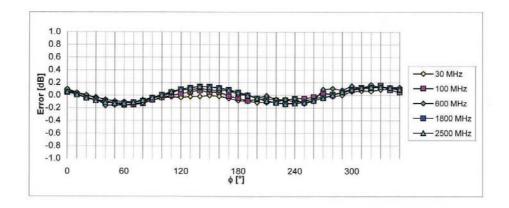
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3563_Jul10


This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Page 7 of 11


Page 141 of 152

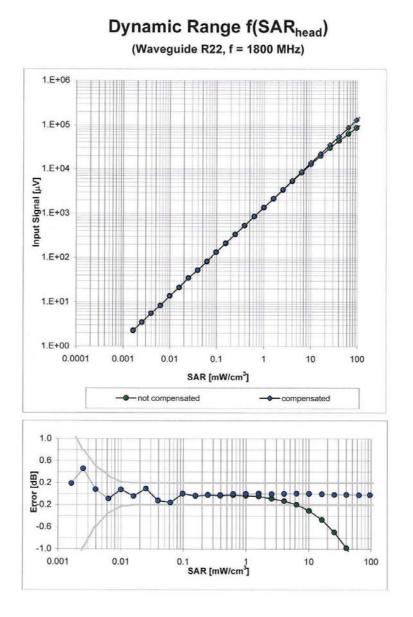
EX3DV4 SN:3563

July 15, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3563_Jul10


Page 8 of 11

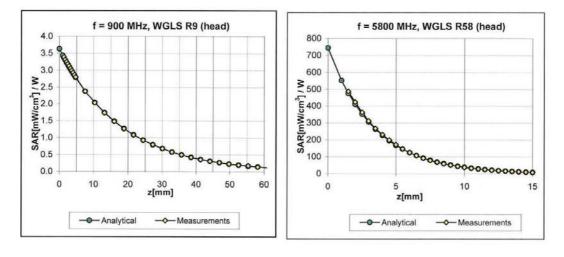
Page 142 of 152

EX3DV4 SN:3563

July 15, 2010

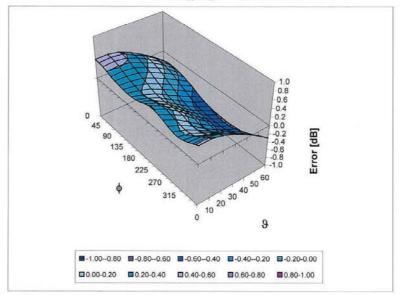
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3563_Jul10


Page 9 of 11

Page 143 of 152

EX3DV4 SN:3563


July 15, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (\, \,), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3563_Jul10

Page 10 of 11

EX3DV4 SN:3563

July 15, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3563_Jul10

Page 11 of 11

Schmid & Partner Engineering AG ^{Zeughausstrasse 43, 8004} Zuric	ch, Switzerland	Iac mra	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Servic	e is one of the signatorie	es to the EA	n No.: SCS 108
Multilateral Agreement for the r			
Client EMC Technolo		NAMES AND ADDRESS OF A DESCRIPTION	lo: D5GHzV2-1008_Dec09/2
CALIBRATION	ERTIFICATE	E (Replacement of No:D	5GHzV2-1008_Dec09)
Object	D5GHzV2 - SN:	1008	
			5-039-18 1.5
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	edure for dipole validation kits be	
Calibration date:	December 16, 20	009	
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un robability are given on the following pages a	nd are part of the certificate.
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^\circ$	nd are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate. °C and humidity < 70%.
The measurements and the unce All calibrations have been conduc	rtainties with confidence p	robability are given on the following pages a	nd are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	rtainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A	rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ritainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ritainties with confidence p cted in the closed laborato ITE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID #	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° <u>Cal Date (Certificate No.)</u> 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A	ritainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. ^a C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	nd are part of the certificate. ^a C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	ritainties with confidence p cited in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3503 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	robability are given on the following pages a ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	nd are part of the certificate. ^a C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 11-Mar-09 (No. 217-01029) 11-Mar-09 (No. EX3-3503_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	nd are part of the certificate. ^a C and humidity < 70%. <u>Scheduled Calibration</u> Oct-10 Oct-10 Mar-10 Mar-10 Mar-10 Mar-10 <u>Scheduled Check</u> In house check: Oct-11 In house check: Oct-11 In house check: Oct-10

Certificate No: D5GHzV2-1008_Dec09/2

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst
- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1008_Dec09/2

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.54 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.90 mW / g
SAR normalized	normalized to 1W	79.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	78.6 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 mW / g
SAR normalized	normalized to 1W	22.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.9 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec09/2

Page 3 of 8

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.89 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

condition	
100 mW input power	8.54 mW / g
normalized to 1W	85.4 mW / g
normalized to 1W	84.9 mW / g ± 19.9 % (k=2)
condition	
100 mW input power	2.36 mW / g
100 mW input power normalized to 1W	2.36 mW / g 23.6 mW / g
	100 mW input power normalized to 1W normalized to 1W

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	6.27 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

 \bigcirc

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.36 mW / g
SAR normalized	normalized to 1W	73.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.03 mW / g
SAR normalized	normalized to 1W	20.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.2 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec09/2

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	54.9 Ω - 10.6 jΩ	
Return Loss	-19.1 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	47.8 Ω - 4.4 jΩ	
Return Loss	-25.9 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω + 5.2 jΩ	
Return Loss	-22.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	August 28, 2003	

Certificate No: D5GHzV2-1008_Dec09/2

Page 5 of 8

DASY5 Validation Report for Body TSL

Date/Time: 16.12.2009 11:43:05

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1008

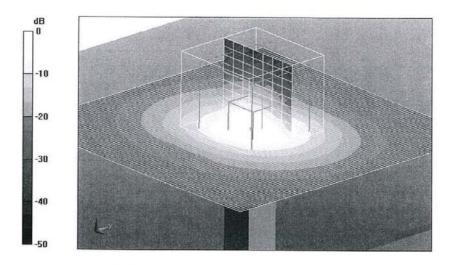
Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz Medium parameters used: f = 5200 MHz; σ = 5.54 mho/m; ε_r = 47.7; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.89 mho/m; ε_r = 47; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.27 mho/m; ε_r = 46.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 11.03.2009
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 15.4 mW/g

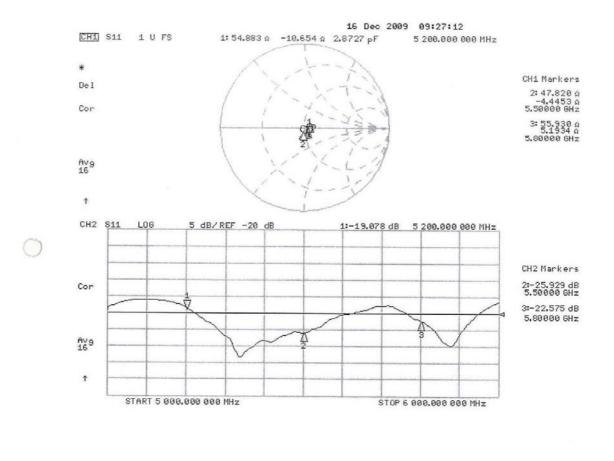
D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 59.7 V/m; Power Drift = -0.036 dB Peak SAR (extrapolated) = 30.6 W/kgSAR(1 g) = 7.9 mW/g; SAR(10 g) = 2.2 mW/gMaximum value of SAR (measured) = 15.7 mW/g


D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 60.6 V/m; Power Drift = 0.00878 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.54 mW/g; SAR(10 g) = 2.36 mW/g Maximum value of SAR (measured) = 17.3 mW/g

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 55 V/m; Power Drift = -0.021 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 7.36 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 15 mW/g

Certificate No: D5GHzV2-1008_Dec09/2

Page 6 of 8


Certificate No: D5GHzV2-1008_Dec09/2

Page 7 of 8

the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1008_Dec09/2

Page 8 of 8

