

FCC OET BULLETIN 65 SUPPLEMENT C Edition 01-01 IEEE STD 1528: 2003 RSS-102 Issue 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011 (Class II Permissive Change)

SAR EVALUATION REPORT

For

AR5BHB116 2x2 802.11n PCIe Module (Tested inside of Samsung Notebook PC Model Name: XE500C21)

> MODEL: AR5BHB116 FCC ID: PPD-AR5BHB116 IC: 4104A-AR5BHB116

REPORT NUMBER: 11I13731-1B

ISSUE DATE: April 19, 2011

Prepared for

ATHEROS COMMUNICATIONS, INC. 1700 TECHNOLOGY DR SAN JOSE, CA 95110

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

<u>Rev.</u>	Issue Date	Revisions	Revised By
	April 4, 2011	Initial Issue	
А	April 5, 2011	Updated host model name from "XE500C21A" to "XE500C21"	Sunny Shih
A1	April 14, 2011	Revised report based on reviewer's comments.	Sunny Shih
		 Updated Date of tested in Section 1 from "March 25 - 28, 2011" to "March 25 – 30, 2011" 	
		 Updated Notes in section 11.2 from "802.11g/HT20/HT40" to "802.11n HT20/HT40" and changed "802.11b" to "802.11a" 	
В	April 19, 2011	Re-measured RF output power and updated power table in section 11.1 and 11.2.	Sunny Shih

Page 2 of 38

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS					
2.	TE	ST METHODOLOGY	. 5			
3.	FA	CILITIES AND ACCREDITATION	. 5			
4. 4	CALIBRATION AND UNCERTAINTY 6 4.1. MEASURING INSTRUMENT CALIBRATION 6 4.2. MEASUREMENT UNCERTAINTY 7 EQUIPMENT UNDER TEST 8					
5.	EQUIPMENT UNDER TEST					
6.	SY	STEM SPECIFICATIONS	. 9			
7.	СО	MPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10			
8. 8	TIS 3. 1.	SSUE DIELECTRIC PARAMETERS	11 12			
9. g	SY 0.1.	SYSTEM CHECK RESULTS	15 16			
10.	S	SAR MEASUREMENT PROCEDURES	17			
11. 1 1	F 1.1. 1.2.	RF OUTPUT POWER VERIFICATION ⁷ RF OUTPUT POWER FOR 2.4 GHZ BAND RF OUTPUT POWER FOR 5 GHZ BANDS	18 18 19			
12.	S	SUMMARY OF SAR TEST RESULTS	21			
1 1 1	2.1. 2.2. 2.3.	SAR TEST RESULT FOR 2.4 GHZ SAR TEST RESULTS FOR 5 GHZ BANDS WORST-CASE SAR PLOTS	22 23 24			
13.	A	ATTACHMENTS	34			
14. 1 1	4 .1. 4.2.	ANTENNA LOCATIONS AND SEPARATION DISTANCES ANTENNA-TO-USERS AND NEARBY PERSONS ANTENNA-TO-ANTENNA	35 35 36			
15.	٦	TEST SETUP PHOTOS	37			
16.	ŀ	HOST DEVICE PHOTO	38			

Page 3 of 38

1. ATTESTATION OF TEST RESULTS

Applicant name:	ATHEROS COMMUNICATIONS, INC.				
	SAN JOSE. CA 95110				
EUT description:	AR5BHB116 2x2 802.11n PCIe Module				
	(Tested inside of Samsung N	Notebook PC Model Name: XE	500C21)		
Model number:	AR5BHB116				
Device category:	Portable				
Exposure category:	General Population/Uncontrolled Exposure				
Date tested:	March 25 - 30, 2011 (SAR testing) April 19 (Re-measured RF output power)				
FCC / IC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR	Limit (W/kg)		
15.247 / RSS-102	2412 – 2462	0.343 W/kg			
	5150 – 5250	0.775 W/kg			
15.407 / RSS-102	5250 – 5350 0.843 W/kg 1.6				
	5500 – 5700 0.638 W/kg				
15.247 / RSS-102	5725 – 5850	0.362 W/kg			

Applicable Standards			
FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528,			
RSS-102 Issue 4, March 2010 and RSS-102 Supplementary Procedures (SPR)-001,	Pass		
January 1, 2011			

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

Surnay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

125 202

Chenghua Yang Associate RF Engineer Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, RSS-102 Issue 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011 and the following specific FCC Test Procedures.

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- KDB 616217 D03 SAR Supp. Note and Netbook Laptop V01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 5 of 38

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Nome of Equipment	Monufacturar	Tupe/Medal	Sorial No.	Cal. Due date			
	Manulacturer	rype/woder	Sellar No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Dielectric Probe kit	HP	85070C	N/A			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8 2 2011		2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3749	11	13	2011	
Thermometer	ERTCO	639-1S	1718	7 19 2011		2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3 13 2012		2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A			
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A			
Simulating Liquid	SPEAG	M2450	N/A	Within 24 hrs of first test			
Simulating Liquid	SPEAG	M5800 (5-6GHz)	N/A	Withi	Within 24 hrs of first tes		

Note:

*: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	orror 0/	Broho Distribution	Divisor	Sono itivity	11/Vi) 0/
		FIDDE DISTIDUTION	DIVISOI	Sensitivity	U (^I), %
Desks Oslikestise (k. 4) @ Dasks0450 Mile	5 50	Nie was al	4	4	F F0
Ariel Lestress	5.50	Normai	1 700	0 7071	5.50
	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	2.97	Normal	1	0.64	1.90
Liquid Permittivity - deviation from target		Rectangular	1.732	0.6	0.00
Liquid Permittivity - measurement uncertainty	-3.40	Normal	1	0.6	-2.04
Combined Standard Uncertainty Uc(y) =					
Expanded Uncertainty U, Covera	age Facto	r = 2, > 95 % Confi	dence =	19.38	%
Expanded Uncertainty U, Covera	age Facto	or = 2, > 95 % Confi	dence =	1.54	dB

3 to 6 GHz averaged over 1 gram					
Component	error, %	Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 5GHz	6.55	Normal	1	1	6.55
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	1.00	Normal	1	1	1.00
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	3.90	Rectangular	1.732	1	2.25
Test Sample Related					
Test Sample Positioning	1.10	Normal	1	1	1.10
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	3.96	Normal	1	0.64	2.53
Liquid Permittivity - deviation from target	10.00	Rectangular	1.732	0.6	3.46
Liquid Permittivity - measurement uncertainty	1.99	Normal	1	0.6	1.19
Combined Standard Uncertainty Uc(y), %:					
Expanded Uncertainty U, Coverage Factor	r = 1.96,	> 95 % Confid	dence =	21.21	%
Expanded Uncertainty U, Coverage Factor	r = 1.96,	> 95 % Confid	dence =	1.67	dB

Page 7 of 38

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

5. EQUIPMENT UNDER TEST

AR5BHB116 2x2 802.11n PCIe Module. The radio module is manufactured by Atheros.				
(Tested inside of Samsung N	otebook PC Model Name: XE500C21)			
Normal operation:	Lap-held (with display open at 90° to the keyboard)			
Antennas tested:	Manufacturer Antenna name			
	Wistron (WNC) 81.EHD15.G38			
	for both Main (Chain 0) & Aux (Chain 1) antenna			
Antenna-to-antenna/user separation distances:	See Section 14 for details of antenna locations and separation distances			
Simultaneous transmission:	WiFi can transmit simultaneously with WWAN			
Assessment for SAR	WiFi vs WWAN			
evaluation for Simultaneous transmission:	Due to separation distance is greater than 20 cm from WWAN main antenna-to-user, therefore standalone for WWAN is not required. Thus WiFi and WWAN are not considered as co-located transmitters each other.			

Page 8 of 38

6. SYSTEM SPECIFICATIONS

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		900		1800 - 1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 10 of 38

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
Target Frequency (MHz)	ε _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz) In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

	Body	Poforonco	
	rel. permitivity	conductivity	Reference
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 11 of 38

8.1. TISSUE DIELECTRIC PARAMETERS RESULTS

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
2/25/2011	Rody 2450	e'	50.9092	Relative Permittivity (ε_r):	50.91	52.70	-3.40	5
3/23/2011	D00y 2450	e"	14.7387	Conductivity (σ):	2.01	1.95	2.97	5
Liquid Check								
Ambient terr	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%							
March 25, 2	011 02:16 PM							
Frequency	e'			e"				
241000000). 5	51.0)489	14.5761				
241500000). 5	51.0)305	14.5947				
242000000). 5	51.0)157	14.6165				
242500000). 5	50.9	962	14.6367				
243000000). 5	50.9	9816	14.6572				
2435000000). 5	50.9	9635	14.6776				
244000000). 5	50.9	9474	14.6993				
244500000). 5	50.9	9271	14.7164				
245000000). (50.9	092	14.7387				
2455000000). 5	50.8	3912	14.7575				
246000000). 5	50.8	3717	14.7761				
2465000000). 5	50.8	3502	14.7977				
247000000). 5	50.8	3333	14.8158				
247500000). 5	50.8	3144	14.8351				
248000000). 5	50.7	7938	14.8567				
2485000000). 5	50.7	721	14.8753				
The conduc	tivity (σ) can b	e gi	ven as:					
$\sigma = \omega \varepsilon_0 e'$	$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$							
where $f = t$	where $\mathbf{f} = target f * 10^6$							
E _0 = 0	8.854 * 10 ⁻¹²							

Page 12 of 38

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
2/28/2011	Decky 5000		47.7955	Relative Permittivity (ε_r):	47.80	49.02	-2.50	10
3/20/2011	B00y 5200	e"	17.9379	Conductivity (o):	5.19	5.29	-2.04	5
2/20/2011	Pady 5500	e'	47.1940	Relative Permittivity (ε_r):	47.19	48.61	-2.92	10
3/20/2011	Body 5500 e"		18.3741	Conductivity (σ):	5.62	5.64	-0.45	5
2/20/2011	3/28/2011 Body 5800		46.6097	Relative Permittivity (ε_r):	46.61	48.20	-3.30	10
3/20/2011			18.8011	Conductivity (σ):	6.06	6.00	1.06	5

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 39% March 28, 2011 03:04 PM

11120, 2011 00	.04110	
Frequency	e'	e''
460000000.	48.9683	16.8361
4650000000.	48.8868	16.9201
4700000000.	48.7876	17.0278
4750000000.	48.7151	17.1160
480000000.	48.6093	17.2141
4850000000.	48.4997	17.3011
4900000000.	48.4164	17.4049
4950000000.	48.3044	17.4787
5000000000.	48.2135	17.5895
5050000000.	48.1113	17.6621
5100000000.	48.0044	17.7686
5150000000.	47.9150	17.8351
520000000.	47.7955	17.9379
5250000000.	47.7271	18.0032
5300000000.	47.5882	18.0848
5350000000.	47.5262	18.1633
5400000000.	47.4022	18.2288
5450000000.	47.3056	18.3069
550000000.	47.1940	18.3741
5550000000.	47.1036	18.4503
5600000000.	46.9863	18.5168
5650000000.	46.9085	18.5970
5700000000.	46.7799	18.6542
5750000000.	46.7060	18.7592
580000000.	46.6097	18.8011
5850000000.	46.4992	18.8831
5900000000.	46.4199	18.9431
5950000000.	46.2940	19.0115
600000000.	46.2048	19.0911

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

Page 13 of 38

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
3/30/2011	Death: 5000		49.9962	Relative Permittivity (ε_r):	50.00	49.02	1.99	10
3/30/2011	B00y 5200	e"	18.4924	Conductivity (σ):	5.35	5.29	0.98	5
2/20/2011	Darty 5500		49.3966	Relative Permittivity (ε_r):	49.40	48.61	1.61	10
3/30/2011	BOUY 5500	e"	18.9191	Conductivity (σ):	5.79	5.64	2.50	5
3/30/2011	30/2011 Body 5800		48.7615	Relative Permittivity (ε_r):	48.76	48.20	1.16	10
3/30/2011			19.3412	Conductivity (σ):	6.24	6.00	3.96	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40% March 30, 2011 10:20 AM

	.20 / 101	
Frequency	e'	e''
460000000.	51.2908	17.4551
4650000000.	51.1628	17.5146
4700000000.	51.0841	17.6450
4750000000.	50.9552	17.7019
480000000.	50.8744	17.8310
4850000000.	50.7607	17.8934
490000000.	50.6603	17.9986
4950000000.	50.5528	18.0684
5000000000.	50.4466	18.1669
5050000000.	50.3334	18.2340
5100000000.	50.2180	18.3323
5150000000.	50.1080	18.3921
520000000.	49.9962	18.4924
5250000000.	49.8956	18.5478
5300000000.	49.7950	18.6351
5350000000.	49.6794	18.6951
540000000.	49.5984	18.7791
5450000000.	49.4668	18.8296
550000000.	49.3966	18.9191
5550000000.	49.2464	18.9653
560000000.	49.1933	19.0653
5650000000.	49.0407	19.0939
5700000000.	48.9671	19.2116
5750000000.	48.8568	19.2410
580000000.	48.7615	19.3412
5850000000.	48.6666	19.3855
5900000000.	48.5617	19.4766
5950000000.	48.4784	19.5284
600000000.	48.3532	19.6159

The conductivity (σ) can be given as:

$\sigma = \omega \varepsilon_0 \, e'' = 2 \, \pi \, f \, \varepsilon_0 \, e''$

where $\mathbf{f} = target f * 10^6$

 $\boldsymbol{\varepsilon}_0 = 8.854 * 10^{-12}$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm.
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal cortificato #	Cal.	Cal. Freq.	SAR Avg (mW/g)		
validation dipole		date	(GHz)	Tissue:	Head	Body
D2450V2	D2450\/2 706 Apr10	4/19/10	2.4	SAR _{1g} :	51.6	52.4
SN 706	D2450V2-700_Apr10		2.4	SAR _{10g} :	24.4	24.5
		9/3/09	5.0	SAR _{1g} :		79.0
			5.2	SAR _{10g} :		22.0
D5GHzV2	D5GHzV2-1075_Sep09		5 5	SAR _{1g} :		85.4
SN 1075			5.5	SAR _{10g} :		23.5
			5.8	SAR _{1g} :		73.2
				SAR _{10g} :		20.1

Page 15 of 38

9.1. SYSTEM CHECK RESULTS

System	Data Tastad	Measured (N	ormalized to 1 W)	Target	Dolto (%)	Tolerance	
validation dipole	Date Testeu	Tissue:	Body	Taiyei		(%)	
D2450\/2	02/25/11	1g SAR:	52.3	52.4	-0.19	+10	
D2400V2	03/25/11	10g SAR:	24.2	24.5	-1.22	±10	

System	Data Testad	Measured (N	ormalized to 1 W)	Target	Dolta (%)	Tolerance	
validation dipole	Date Tested	Tissue:	Body	Taiyet		(%)	
D5GHzV2	03/28/11	1g SAR:	74.30	79.0	-5.95	+10	
(5.2GHz)	03/20/11	10g SAR:	21.50	22.0	-2.27	±10	
D5GHzV2	02/29/11	1g SAR:	85.40	85.4	0.00	+10	
(5.5GHz)	03/26/11	10g SAR:	24.10	23.5	2.55	±10	
D5GHzV2	03/28/11	1g SAR:	74.00	73.2	1.09	+10	
(5.8GHz)	03/20/11	10g SAR:	21.00	20.1	4.48	±10	
D5GHzV2	02/20/11	1g SAR:	86.20	85.4	0.94	+10	
(5.5GHz)	03/30/11	10g SAR:	24.60	23.5	4.68	±10	
D5GHzV2	02/20/11	1g SAR:	71.30	73.2	-2.60	+10	
(5.8GHz)	03/30/11	10g SAR:	20.30	20.1	1.00	±10	

Page 16 of 38

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. **RF OUTPUT POWER VERIFICATION**

11.1. RF OUTPUT POWER FOR 2.4 GHZ BAND

		Erog	Avg RF Output Pwr (dBm)					
Mode	Ch. #	ттеч. /мш)	Target Pwr for	m EMC report	Actual Measured			
			Chain 0	Chain 1	Chain 0	Chain 1		
	1	2412	16.84	16.80	17.10	16.80		
802.11b	6	2437	17.12	16.98	17.50	17.30		
	11	2462	17.05	16.60	17.45	16.60		
	1	2412	11.05	10.60				
802.11g	6	2437	16.90	16.68				
	11	2462	10.63	10.05				
802 11n	1	2412	11.33	11.08				
	6	2437	16.12	15.92				
11120	11	2462	10.26	9.76				
902 11n	3	2422	9.84	9.42				
002.1111 НТ/О	6	2437	13.00	12.90				
H140	9	2452	9.52	9.35				

Notes:

- 1. RF output power verified on the highest output power channels only.
- 2. According to the KDB 248227, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.
- 3. Chain 0 = Main antenna, Chain 1 = Aux antenna

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

11.2. RF OUTPUT POWER FOR 5 GHZ BANDS

5.2 GHz Band								
		Frog	Avg RF Output Pwr (dBm)					
Mode	Ch. #		Target Pwr fo	orm EMC report	Actual M	leasured		
		(IVI⊓Z)	Chain 0	Chain 1	Chain 0	Chain 1		
	36	5180	11.94	11.31	12.00	11.40		
802.11a	40	5200	11.66	11.08	12.00	11.33		
	48	5240	11.74	11.71	11.85	11.82		
	36	5180	11.86	11.74				
802.11n HT20	40	5200	12.31	12.31				
	48	5240	14.33	12.21	14.34	12.60		
000 11 m LIT 10	38	5190	11.06	10.41				
802.11h H140	46	5230	14.77	12.75	14.90	13.10		
5.3 GHz Band			•					
		E		Avg RF Outpu	t Pwr (dBm)			
Mode	Ch. #	⊢req. (MHz)	Target Pwr fo	orm EMC report	Actual Measured			
			Chain 0	Chain 1	Chain 0	Chain 1		
	52	5260	14.82	14.72	15.00	14.80		
802.11a	60	5300	15.21	13.44	15.28	13.80		
	64	5320	14.37	12.95	14.60	13.30		
	52	5260	14.62	13.23				
802.11n HT20	60	5300	15.30	13.54				
	64	5320	14.31	13.13				
902 11p UT40	54	5270	13.11	11.51				
002.11111140	62	5310	8.71	8.19				
5.5 GHz Band								
		Free		Avg RF Outpu	t Pwr (dBm)			
Mode	Ch. #		Target Pwr fo	orm EMC report	Actual N	leasured		
			Chain 0	Chain 1	Chain 0	Chain 1		
	100	5500	14.84	14.92	14.85	15.20		
802.11a	120	5600	13.59	14.07	13.70	14.50		
	140	5700	13.12	15.89	13.40	15.90		
	100	5500	15.33	14.59				
802.11n HT20	120	5600	13.63	14.19				
	140	5700	13.17	15.92	13.50	15.93		
	102	5510	13.83	14.06				
802.11n HT40	118	5590	13.94	14.21				
	134	5670	14.02	16.40	14.40	16.50		

Notes:

- 1. RF output power verified on the highest output power channels only.
- 2. According to the KDB 248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a channels.
- 3. Chain 0 = Main antenna, Chain 1 = Aux antenna

Page 19 of 38

5.8 GHz Band								
		Frog	Avg RF Output Pwr (dBm)					
Mode	Ch. #	///⊔)	Target Pwr for	rm EMC report	Actual Measured			
		(IVITZ)	Chain 0	Chain 1	Chain 0	Chain 1		
	149	5745	14.92	16.33	15.4	16.4		
802.11a	157	5785	14.90	14.62	14.9	15.0		
	165	5825	14.30	14.69	14.3	15.1		
802.11n	149	5745	14.98	16.28				
UT20	157	5785	15.10	15.13				
11120	165	5825	14.30	14.68				
802.11n	151	5755	15.70	15.68				
HT40	159	5795	15.39	14.92				

Notes:

- 1. RF output power verified on the highest output power channels only.
- 2. According to the KDB 248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a channels.
- 3. Chain 0 = Main antenna, Chain 1 = Aux antenna

12. SUMMARY OF SAR TEST RESULTS

Configuration	Antenna-to-User distance	SAR Require	Comments
Laptop mode: Lap-held	1.1 cm From Main/Aux Antenna-to-user	Yes	SAR evaluation
Laptop mode: By Stander (Back side)		No	This configuration does not require SAR assessment as the closest antenna-to-user configuration was covered by 'Lap-help' test configuration above and is within 2.5 cm from By Stander.

Page 21 of 38

12.1. SAR TEST RESULT FOR 2.4 GHZ

Lap-held

Mode	Channel	f (MHz)	Output Power (dBm)		1g SAR	
			Chain 0	Chain 1	Chain 0	Chain 1
802.11b	1	2412				
	6	2437	17.50	17.30	0.343	0.189
	11	2462				

Notes:

- 1. SAR on the highest output power channels only.
- According to the KDB 248227, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.
- 3. Chain 0 = Main antenna, Chain 1 = Aux antenna

12.2. SAR TEST RESULTS FOR 5 GHZ BANDS

Lap-held

5.2 GHz Band						
Mada	Channel	f (MHz)	Output Power (dBm)		1g SAR	
iviode			Chain 0	Chain 1	Chain 0	Chain 1
	36	5180				
802.11a	40	5200	12.00	11.33	0.172	0.141
	48	5240				
	36	5180				
802.11n HT20	40	5200				
	48	5240	14.34	12.60	0.355	0.363
	38	5190				
802.11n H140	46	5230	14.90	13.10	0.697	0.775
5.3 GHz Band						
	Channel	f (MHz)	Output Power (dBm)		1g SAR	
Mode			Chain 0	Chain 1	Chain 0	Chain 1
	52	5260	15.00	14.80	0.766	0.641
802.11a	60	5300	15.28	13.80	0.843	0.714
	64	5320	14 60	13.30	0.637	0 479
	52	5260	11.00	10.00	0.001	0.170
802.11n HT20	60	5300				
	64	5320				
	54	5270				
802.11n HT40	62	5310				
5 5 GHz Band	02	0010				
0.0 OT 12 Dana		f (MHz)	Output Power (dBm) 1g SAR			SAR
Mode	Channel		Chain 0	Chain 1	Chain 0	Chain 1
802.11a	100	5500	14.85	15.20	0.638	0.477
	120	5600	13.70	14.60	0.573	0.369
	140	5700	13.80	15.90	0.364	0.286
	100	5500			0.001	0.200
802.11n HT20	120	5600				
	140	5700	13.85	15.93	0.438	0.385
	140 102	5700 5510	13.85	15.93	0.438	0.385
802.11n HT40	140 102 118	5700 5510 5590	13.85	15.93	0.438	0.385
802.11n HT40	140 102 118 134	5700 5510 5590 5670	13.85	15.93	0.438	0.385
802.11n HT40 5.8 GHz Band	140 102 118 134	5700 5510 5590 5670	13.85	15.93 16.50	0.438	0.385
802.11n HT40 5.8 GHz Band	140 102 118 134	5700 5510 5590 5670	13.85 14.40 Output Po	15.93 16.50 wer (dBm)	0.438 0.575	0.385 0.481 SAR
802.11n HT40 5.8 GHz Band Mode	140 102 118 134 Channel	5700 5510 5590 5670 f (MHz)	13.85 14.40 Output Po Chain 0	15.93 16.50 wer (dBm) Chain 1	0.438 0.575 1g S	0.385 0.481 SAR Chain 1
802.11n HT40 5.8 GHz Band Mode	140 102 118 134 Channel 149	5700 5510 5590 5670 f (MHz) 5745	13.85 14.40 Output Po Chain 0 15.4	15.93 16.50 wer (dBm) Chain 1 16.4	0.438 0.575 1g S Chain 0 0.362	0.385 0.481 SAR Chain 1 0.310
802.11n HT40 5.8 GHz Band Mode 802.11a	140 102 118 134 Channel 149 157	5700 5510 5590 5670 f (MHz) 5745 5785	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250
802.11n HT40 5.8 GHz Band Mode 802.11a	140 102 118 134 Channel 149 157 165	5700 5510 5590 5670 f (MHz) 5745 5785 5825	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250
802.11n HT40 5.8 GHz Band Mode 802.11a	140 102 118 134 Channel 149 157 165 149	5700 5510 5590 5670 f (MHz) 5745 5785 5825 5745	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250
802.11n HT40 5.8 GHz Band Mode 802.11a 802.11n HT20	140 102 118 134 Channel 149 157 165 149 157	5700 5510 5590 5670 f (MHz) 5745 5785 5825 5745 5785	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250
802.11n HT40 5.8 GHz Band Mode 802.11a 802.11n HT20	140 102 118 134 Channel 149 157 165 149 157 165	5700 5510 5590 5670 f (MHz) 5745 5785 5785 5825 5745 5785 5785 5785	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250
802.11n HT40 5.8 GHz Band Mode 802.11a 802.11n HT20	140 102 118 134 Channel 149 157 165 149 157 165 151	5700 5510 5590 5670 f (MHz) 5745 5785 5785 5785 5785 5785 5785 5785	13.85 14.40 Output Po Chain 0 15.4 14.9	15.93 16.50 wer (dBm) Chain 1 16.4 15.0	0.438 0.575 1g S Chain 0 0.362 0.330	0.385 0.481 SAR Chain 1 0.310 0.250

Page 23 of 38

12.3. WORST-CASE SAR PLOTS

<u>2.4 GHz</u>

Date/Time: 3/25/2011 8:47:06 PM

Test Laboratory: Compliance Certification Services (UL CCS)

2.4 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.99 mho/m; ϵ_r = 51; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3749; ConvF(6.9, 6.9, 6.9); Calibrated: 12/13/2010

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch M&A Ant/Area Scan (7x21x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.388 mW/g

802.11b M-ch M&A Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.0 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 0.638 W/kg SAR(1 g) = 0.343 mW/g; SAR(10 g) = 0.174 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.425 mW/g

802.11b M-ch M&A Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 14.0 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 0.371 W/kg SAR(1 g) = 0.189 mW/g; SAR(10 g) = 0.098 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.241 mW/g

Page 24 of 38

Z-axis Plot

Date/Time: 3/25/2011 9:33:34 PM

Test Laboratory: Compliance Certification Services (UL CCS)

2.4 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

802.11b M-ch M&A Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.427 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 25 of 38

5.2 GHz Band

Date/Time: 3/28/2011 9:47:31 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.2 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5230 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5230 MHz; σ = 5.23 mho/m; ϵ_r = 47.8; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(4.07, 4.07, 4.07); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11n HT40_ch 46_M&A Ant/Area Scan (9x29x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.21 mW/g

802.11n HT40_ch 46_M&A Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 16.4 V/m; Power Drift = 0.141 dB Peak SAR (extrapolated) = 1.94 W/kg SAR(1 g) = 0.697 mW/g; SAR(10 g) = 0.245 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.16 mW/g

802.11n HT40_ch 46_M&A Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 16.4 V/m; Power Drift = 0.141 dB Peak SAR (extrapolated) = 2.12 W/kg SAR(1 g) = 0.775 mW/g; SAR(10 g) = 0.295 mW/g Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.26 mW/g

Page 26 of 38

Z-axis Plot

Date/Time: 3/28/2011 10:37:12 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.2 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5230 MHz; Duty Cycle: 1:1

802.11n HT40_ch 46_M&A Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.15 mW/g

Page 27 of 38

5.3 GHz Band

Date/Time: 3/28/2011 10:43:08 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.3 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.33 mho/m; ϵ_r = 47.6; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.88, 3.88, 3.88); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 60_M&A Ant/Area Scan (10x31x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.21 mW/g

802.11a_ch 60_M&A Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 16.4 V/m; Power Drift = -0.109 dB Peak SAR (extrapolated) = 2.33 W/kg SAR(1 g) = 0.843 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 1.38 mW/g

802.11a_ch 60_M&A Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 16.4 V/m; Power Drift = -0.109 dB Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 0.714 mW/g; SAR(10 g) = 0.256 mW/g Maximum value of SAR (measured) = 1.15 mW/g

Page 28 of 38

Z-axis Plot

Date/Time: 3/28/2011 11:37:01 PM

Test Laboratory: Compliance Certification Services (UL CCS)

5.3 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5300 MHz; Duty Cycle: 1:1

802.11a_ch 60_M&A Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Maximum value of SAR (measured) = 1.37 mW/g

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 29 of 38

5.5 GHz Band

Date/Time: 3/30/2011 1:46:32 PM

Test Laboratory: UL CCS

5.5 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5500 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5500 MHz; σ = 5.79 mho/m; ϵ_r = 49.4; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.53, 3.53, 3.53); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 100_M&A Ant/Area Scan (9x26x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.849 mW/g

802.11a_ch 100_M&A Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 13.5 V/m; Power Drift = 0.134 dB Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.638 mW/g; SAR(10 g) = 0.283 mW/g

Maximum value of SAR (measured) = 0.970 mW/g

802.11a_ch 100_M&A Ant/Zoom Scan (7x7x9)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 13.5 V/m; Power Drift = 0.134 dB

Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.236 mW/g Maximus value of SAR (measured) = 0.727 mW/g

Maximum value of SAR (measured) = 0.727 mW/g

Z-axis Plot

Date/Time: 3/30/2011 2:34:51 PM

Test Laboratory: UL CCS

5.5 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5500 MHz;Duty Cycle: 1:1

802.11a_ch 100_M&A Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Maximum value of SAR (measured) = 0.982 mW/g

Page 31 of 38

5.8 GHz Band

Date/Time: 3/30/2011 9:56:29 PM

Test Laboratory: UL CCS

5.8 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; σ = 6.15 mho/m; ϵ_r = 48.9; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3749; ConvF(3.65, 3.65, 3.65); Calibrated: 12/13/2010
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11a_ch 149_M&A Ant/Area Scan (9x26x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.585 mW/g

802.11a_ch 149_M&A Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 10.6 V/m; Power Drift = 0.153 dB Peak SAR (extrapolated) = 1.09 W/kg SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.127 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.610 mW/g

802.11a_ch 149_M&A Ant/Zoom Scan 1 (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 10.6 V/m; Power Drift = 0.153 dB

Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.310 mW/g; SAR(10 g) = 0.117 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.511 mW/g

Page 32 of 38

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL CCS. FORM NO: CCSUP4031B TEL: (510) 771-1000 FAX: (510) 661-0888

Z-axis Plot

Date/Time: 3/30/2011 9:02:13 PM

Test Laboratory: UL CCS

5.8 GHz_Laptop Mode

DUT: Samsung; Type: NA; Serial: CZGU93CB200090M

Communication System: 802.11abgn; Frequency: 5785 MHzFrequency: 5745 MHz;Duty Cycle: 1:1

802.11a_ch 149_M&A Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.622 mW/g

 COMPLIANCE CERTIFICATION SERVICES (UL CCS)
 FORM NO: CCSUP4031B

 47173 BENICIA STREET, FREMONT, CA 94538, USA
 TEL: (510) 771-1000
 FAX: (510) 661-0888

 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 33 of 38

13. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1	System Check Plots	9
2	SAR Test Plots	19
3	Certificate of E-Field Probe - EX3DV4 SN 3749	11
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN:1075	11
	(with extended calibration verification data)	

Page 34 of 38