

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C IC RSS 102 ISSUE 1 : 1999

FOR

802.11N DUAL BAND CARDBUS ADAPTER

MODEL: AR5BCB-00072

FCC ID: PPD-AR5BCB-00072

REPORT NUMBER: 06U10485-10

ISSUE DATE: AUGUST 22, 2006

Prepared for

ATHEROS COMMUNICATIONS, INC. 5480 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

DATE: August 22, 2006

Revision History

Rev.	Issued date	Revisions	Revised By
	August 22, 2006	Initial issue	HS

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATE	S OF TEST: August 15, 16, 17, 18, 21, and 22, 2006
APPLICANT:	ATHEROS COMMUNICATIONS, INC.
ADDRESS:	5480 GREAT AMERICA PARKWAY, SANTA CLARA, CA 95054, USA
FCC ID:	PPD-AR5BCB-00072
MODEL:	AR5BCB-00072
DEVICE CATEGORY:	Portable Device
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure

802.11n Dual Band (Cardbus Adapter (2x3) is ins	talled in three host laptops.							
Test Sample is a:	Production unit								
Host Laptops:	 HP Pavilion zv6000 Compaq Presario v200 HP Pavilion ze4400 	- Compaq Presario v2000							
Rule Parts	Frequency Range [MHz]	The Highest SAR Values [1g_mW/g]							
FCC 15.247	2412-2462	 HP Pavilion zv6000 Compaq Presario v2000 HP Pavilion ze4400 	0.968 1.014 1.405						
	5745 - 5825	 HP Pavilion zv6000 Compaq Presario v2000 HP Pavilion ze4400 	0.333 0.200 0.371						
FCC 15.401	5180 - 5310	 HP Pavilion zv6000 Compaq Presario v2000 HP Pavilion ze4400 	0.242 0.237 0.382						

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01) and RSS 102.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin Fr. Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services

Tested By:

Winey Dorouch

Ninous Davoudi EMC Engineer Compliance Certification Services

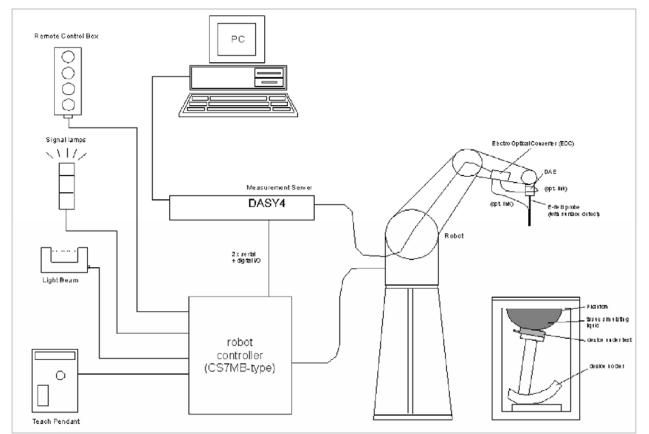
Table Of Contents

1	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	5
2	FACILITIES AND ACCREDITATION	6
3	SYSTEM DESCRIPTION	7
	3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	8
4	SIMULATING LIQUID PARAMETERS CHECK	9
	4.1 SIMULATING LIQUID PARAMETER CHECK RESULT	.11
5	SYSTEM PERFORMANCE CHECK	. 17
	5.1 SYSTEM PERFORMANCE CHECK RESULTS	.19
6	SAR MEASURMENT PROCEDURE	.21
	6.1 DASY4 SAR MEASURMENT PROCEDURE	22
7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	23
8	SAR MEASURMENT RESULTS	26
	8.1 2.4GHZ	-
	8.1.1 HP PAVILION ZV6000	-
	 8.1.2 COMPAQ PRESARIO V2000 8.1.3 HP PAVILION ZE4400 	
	8.2 5.2GHZ	
	8.2.1 HP PAVILION ZV6000	
	8.2.2 COMPAQ PRESARIO V2000	
	8.2.3 HP PAVILION ZE4400	34
	8.3 5.8GHZ	
	8.3.1 HP PAVILION ZV6000	
	 8.3.2 COMPAQ PRESARIO V2000 8.3.3 HP PAVILION ZE4400 	
9	MEASURMENT UNCERTAINTY	
0	9.1 MEASURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	
	9.2 MEASURMENT UNCERTAINTY 3 GHZ – 6 GHZ	
10	9.2 MEASURMENT UNCERTAINTY 3 GHZ - 0 GHZ	
11	PHOTOS	
12	ATTACHMENTS	
-		-

1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

802.11n Dual Band Cardb	us Adapter (2x3) is installed in three host laptops.					
Normal operation:	Lap-held position					
Accessory:	N/A					
Earphone/Headset Jack:	N/A					
Duty cycle:	99%					
Host Device(s):	 HP Pavilion zv6000 Compaq Presario v2000 HP Pavilion ze4400 					
Antenna(s)	Cardbus (2x3) has two Inverted F antennas for Tx and Rx and one PCB antenna for RX only. Cardbus (2x2) has two Inverted F antennas for Tx and Rx.					
Power supply:	Power supplied through the laptop computer (host device).					

2 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

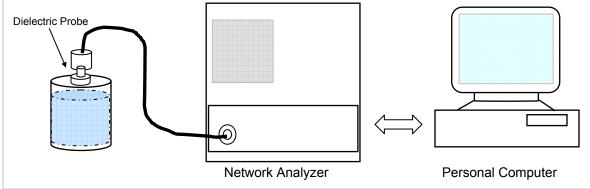
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequency (MHz)					
(% by weight)	45	50	83	35	· 9′	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Bo	dy
rarget i requency (minz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	<mark>52.7</mark>	<mark>1.95</mark>
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Head	Tissue	Body	Tissue	Reference
1 (IVII 12)	rel. permitivity	conductivity	rel. permitivity	conductivity	Reference
3000	38.5	2.40	52.0	2.73	Standard
5800	35.3	5.27	<mark>48.2</mark>	<mark>6.00</mark>	Standard
5000	36.2	1.45	49.3	5.07	Interpolated
5100	36.1	4.55	49.1	5.18	Interpolated
5200	36.0	4.66	<mark>49.0</mark>	<mark>5.30</mark>	Interpolated
5300	35.9	4.76	48.9	5.42	Interpolated
5400	35.8	4.86	48.7	5.53	Interpolated
5500	35.6	4.96	48.6	5.65	Interpolated
5600	35.5	5.07	48.5	5.77	Interpolated
5700	35.4	5.17	48.3	5.88	Interpolated

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

	lating Lio mp. (°C)	quid Depth (cm)			Parameters	Measured	Target	Deviation (%)	Limit (%)
2450	22	15	e'	51.5899	Relative Permittivity (ε_r):	51.5899	52.7	-2.11	± 5
2430	22	15	e"	14.8120	Conductivity (o):	2.01883	1.95	3.53	± 5
Liquid Chec	k								
Ambient ten	nperat	ure: 23.0 d	leg	. C; Liqu	id temperature: 22.0 d	deg C			
August 15, 2	2006 0	9:07 AM							
Frequency		e'			e"				
240000000) .	51	.78	881	14.5875				
241000000).	51	.74	06	14.6287				
242000000) .	51	.70	91	14.6694				
243000000	Э.	51	.66	691	14.6990				
244000000) .	51	.64	29	14.7533				
<mark>2450000000</mark>	Э.	51	.58	899	14.8120				
246000000) .	51	.57	'61	14.8258				
247000000	Э.	51	.51	98	14.8791				
248000000	Э.	51	.49	938	14.9284				
249000000) .	51	.45	62	14.9822				
250000000).	51	.41	25	15.0180				
The conduct	tivity (o	ס) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta} e'' =$	=2πj	^f ε₀e"							
where $f = t$ $\mathcal{E}_{\theta} = \delta$	target f 8.854 *								

Simulating Liquid Dielectric Parameter Check Result @ Muscle 2450 MHz

Room Ambient Temperature = 23°C; Relative humidity = 50%

f (MHz)	imulating Lio Temp. (°C)				Parameters	Measured	Target	Deviation (%)	Limit (%)
2450	22	15	e'	51.3624	Relative Permittivity (ε_r):	51.3624	52.7	-2.54	± 5
2430	22	15	e"	14.9083	Conductivity (σ):	2.03195	1.95	4.20	± 5
Liquid Ch	neck								
•		ure: 23.0 d	leg	. C; Liqu	id temperature: 22.0 o	deg C			
August 1			-			•			
Frequence	су	e'			e"				
2400000	000.	51	.56	607	14.7455				
2410000	000.	51	.51	08	14.7722				
2420000	000.	51	.4822 14.8180						
2430000	000.	51	.4444 14.846						
2440000	000.	51	.39	939	14.9017				
<mark>2450000</mark>	000.	51	.36	624	14.9083				
2460000	000.	51	.31	66	14.9711				
2470000	000.	51	.30)36	14.9933				
2480000	000.	51	.27	47	15.0551				
2490000		51	.22	256	15.1055				
2500000	000.	51	.19	921	15.1256				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e''=2πj	fε₀e"							
where f									
EØ	= 8.854 *	* 10 ⁻¹²							

Room Ambient Temperature = 24°C; Relative humidity = 45%

Sin	nulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz) T	Гетр. (°C)	Depth (cm)			T drameters	Medbured		Deviation (70)	Linit (70)
5200	23	15	e'	48.3204	Relative Permittivity (ε_r):	48.3204	49.0	-1.39	± 5
			e"	18.9368	Conductivity (σ):	5.47809	5.30	3.36	± 5
Liquid Che	eck								
	•		leg	. C; Liqu	id temperature: 23.0 o	deg C			
August 17									
Frequency		e'	_		e"				
46000000				171	17.9574				
46500000				98	18.0709				
47000000				252	18.1157				
47500000)82	18.2562				
48000000				280	18.3063				
48500000				372	18.3832				
49000000)75	18.4630				
49500000				265	18.5163				
50000000				787	18.6346				
50500000 51000000				709 392	18.6910 18.7920				
51500000				692 619	18.8427				
52000000				204	18.9388				
52500000				104 123	18.9946				
53000000)89	19.0402				
535000000				326	19.1243				
54000000				103	19.1623				
54500000				205	19.2574				
55000000)54	19.2963				
55500000				209	19.4258				
56000000	00.	47	.53	816	19.4415				
56500000	00.	47	.40)87	19.5285				
57000000	00.	47	.36	610	19.5699				
57500000	00.	47	.19	951	19.6370				
58000000	00.	47	.16	605	19.7188				
58500000	00.	46	.97	784	19.7404				
59000000	00.	46	.93	336	19.8697				
59500000)91	19.8448				
60000000	00.	46	.69	919	19.9865				
The condu	uctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta} \mathbf{e}$	"= 2 π j	fε₀e"							
where $f =$									
E _0 =	= 8.854 *	* 10 ⁻¹²							

Room Ambient Temperature = 24°C; Relative humidity = 45%

S	imulating Lie	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T drameters	Wicasurcu		Deviation (70)	Linne (70)
5200	23	15	e'	47.0333	Relative Permittivity (ε_r):	47.0333	49.0	-4.01	± 5
			e"	18.9346	Conductivity (o):	5.47745	5.30	3.35	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 24.0 c	deg	. C; Liqu	id temperature: 23.0 d	deg C			
•	8, 2006 0	9:08 AM							
Frequence		e'			e"				
4600000				301	18.0264				
4650000				789	18.1032				
4700000				' 46	18.1935				
4750000				'31	18.2637				
4800000				864	18.3539				
4850000				645	18.4262				
4900000				321	18.5156				
4950000)37	18.5944				
5000000				633	18.6550				
5050000				76	18.7295				
5100000				179	18.7856				
5150000				324	18.8715				
5200000				333	18.9346				
5250000				251	19.0161				
5300000				73	19.0654				
5350000				34	19.1204				
5400000				40	19.1770				
5450000)83	19.2597				
5500000				925	19.3130				
5550000				000	19.3867				
5600000)62	19.4283				
5650000				366	19.5067				
5700000)40	19.5590				
5750000				64	19.5934				
5800000				974	19.6704				
5850000				685	19.7116				
5900000				976	19.7958				
5950000				73	19.8127				
6000000	000.	45	.38	364	19.9044				
The cond	ductivity (σ) can be g	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
	f = target j								
EO	= 8.854 *	`10''²							

Room Ambient Temperature = 24°C; Relative humidity = 45%

	imulating Lic				Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)							- (/
5800	23	15	e'	45.9053	Relative Permittivity (ε_r):	45.9053	48.2	-4.76	± 5
			e"	19.3379	Conductivity (σ):	6.23959	6.00	3.99	± 5
Liquid Ch	neck								
	•		leg	j. C; Liqu	id temperature: 23.0 d	deg C			
•	1, 2006 0	9:11 AM							
Frequend		e'			e"				
4600000				674	17.8272				
4650000				569	17.8759				
4700000				760	17.9808				
4750000)21	18.0295				
4800000				351	18.1233				
4850000				18	18.1958				
4900000)31	18.2510				
4950000				670	18.3495				
5000000				353	18.4247				
5050000				714	18.4952				
5100000				380	18.5501				
5150000				798	18.6154				
5200000				756	18.6424				
5250000				730	18.7463				
5300000				362	18.7795				
5350000				710	18.8670				
5400000				315	18.9095				
5450000				61	18.9790				
5500000				795	19.0344				
5550000				333	19.0828				
5600000				346	19.1340				
5650000				980	19.2057				
5700000				161	19.2595				
5750000				914	19.3042				
5800000) <u>53</u>	19.3379				
5850000				255	19.4183				
5900000				125	19.4780				
5950000)99	19.5563				
6000000	000.	45	.51	194	19.6025				
The cond	luctivity (σ) can be	giv	en as:					
	e"=2πj								
	f = target f								
EO	= 8.854 *	* 10 ⁻¹²							

Room Ambient Temperature = 24°C; Relative humidity = 50%

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			1 didificiers	Measureu		Deviation (70)	
5800	23	15	e'	48.5794	Relative Permittivity (ε_r):	48.5794	48.2	0.79	± 5
0000	20	10	e"	19.2680	Conductivity (σ):	6.21704	6.00	3.62	± 5
Liquid Ch	neck								
		ure: 24.0 c	leg	. C; Liqu	id temperature: 23.0 d	deg C			
August 2	2, 2006 0	9:06 AM	-	-		-			
Frequenc		e'			e"				
4600000			.88		17.6515				
4650000			.77		17.7171				
4700000			.70		17.8147				
4750000			.59		17.8868				
4800000			.51		17.9720				
4850000			.40		18.0401				
4900000			.32		18.1177				
4950000			.23		18.2251				
5000000			.09		18.2398				
5050000			.02		18.3449				
5100000			.90		18.3898				
5150000			.80		18.4819				
5200000			.72		18.5256				
5250000			.60		18.6000				
5300000			.52		18.6609				
5350000			.41		18.7268				
5400000			.33		18.7873				
5450000			.22		18.8374				
5500000			.10		18.9124				
5550000			.03		18.9657				
5600000			.95		19.0266				
5650000			.85		19.1148				
5700000			.77 .67		19.1359 19.1970				
5750000 <mark>5800000</mark>				02 '94	19.1970 19.2680				
58500000			.37 .48		19.2080				
5900000			.40		19.3242				
5950000			.30		19.3675				
6000000			.18		19.4555				
					19.0200				
The cond	luctivity (σ) can be	give	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
	f = target f								
€ ₀	= 8.854 *	* 10 ⁻¹²							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
 For 5 GHz band Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	<mark>51.2</mark>	<mark>23.7</mark>	97.6

Note: All SAR values normalized to 1 W forward power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using finite-difference time-domain FDTD method (feed point-impedance set to 50 ohms) and the mechanical dimensions of the D5GHzV2 dipole (manufactured by SPEAG).

f (MHz)	Head ⁻	Fissue	Body Tissue				
1 (IVI112)	SAR _{1g}	SAR 10g	SAR _{1g}	SAR 10g	SAR _{Peak}		
5000	72.9	20.7	68.1	19.2	260.3		
5100	74.6	21.1	78.8	19.6	272.3		
5200	76.5	21.6	<mark>71.8</mark>	<mark>20.1</mark>	284.7		
5800	78.0	21.9	<mark>74.1</mark>	20.5	324.7		

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D2450V2 SN: 706

Date: August 15, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SVD	(m W /g)	Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(11 11 / g)	to 1 W	Target	(%)	(%)
2450	22	15	1 g	13.00	52	51.2	1.56	± 10
2450	22	15	10g	5.95	23.8	23.7	0.42	± 10

Date: August 16, 2006

Room Ambient Temperature = 23°C; Relative humidity = 50%

Bod	y Simulating	g Liquid	SAR (mW/q)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 00 / g)	to 1 W	Target	(%)	(%)
2450	22	15	1 g	13.10	52.4	51.2	2.34	± 10
2450	22	15	10g	5.99	23.96	23.7	1.10	± 10

System Validation Dipole: D5GHzV2 SN 1003

Date: August 17, 2006

Room Ambient Temperature = 24°C; Relative humidity = 45%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	JAN	(111 00 / g)	to 1 W	Target	(%)	(%)
5200	23	15	1 g	18.10	72.4	71.8	0.84	± 10
5200	20	10	10g	5.08	20.32	20.1	1.09	± 10

Date: August 18, 2006

Room Ambient Temperature = 24° C; Relative humidity = 45%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	d to 1 W	Target	(%)	(%)
5200	23	15	1 g	18.10	72.4	71.8	0.84	± 10
5200	25	15	10g	5.08	20.32	20.1	1.09	± 10

Date: August 21, 2006

Room Ambient Temperature = 24°C; Relative humidity = 45%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SVD	(m W /g)	Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(111 VV / g)	to 1 W	Target	(%)	(%)
5800	23	15	1 g	17.60	70.4	74.1	-4.99	± 10
3800	25	15	10g	4.91	19.64	20.5	-4.20	± 10

Date: August 22, 2006

Room Ambient Temperature = 24°C; Relative humidity = 50%

Bod	y Sim ulating	g Liquid	SVD	(m W /g)	Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAN	(11 11 / g)	to 1 W	Target	(%)	(%)
5800	23	15	1 g	17.60	70.4	74.1	-4.99	± 10
3800	23	15	10g	4.89	19.56	20.5	-4.59	± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test.

The client provided a special driver and program, Art, which enable a user to control the frequency and output power of the module.

Each chain is measured separately and the combined power is calculated using: Total Power = $10 \log (10^{\circ} (Chain 0 Power / 10) + 10^{\circ} (Chain 2 Power / 10))$

The cable assembly insertion loss of 21.4dB (including 20.2 dB attenuator and 1.2dB connectors) was entered as an offset in the power meter to allow for direct reading of power.

802.11b

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	2412	18.8	18.9	21.9
Middle	2437	21.3	21.1	24.2
High	2462	18.9	19.4	22.2

802.11g

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	2412	17.1	17.0	20.1
Middle	2437	20.1	20.3	23.2
High	2462	17.9	18.3	21.1

802.11n HT20

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	2412	16.4	16.9	19.7
Middle	2437	20.1	20.1	23.1
High	2462	17.4	17.5	20.5

802.11n HT40

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	2422	14.3	14.6	17.5
Middle	2437	20.1	20.2	23.2
High	2452	15.4	15.0	18.2

The cable assembly insertion loss of 21.6dB (including 19.4dB attenuator and 2.2dB connectors) was entered as an offset in the power meter to allow for direct reading of power.

802.11a

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5180	12.0	10.5	14.3
Middle	5260	18.8	17.9	21.4
High	5320	17.6	17.4	20.5

802.11n HT20

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5180	12.8	11.5	15.2
Middle	5260	18.7	17.5	21.2
High	5320	17.5	17.4	20.5

802.11n HT40

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5190	15.0	13.5	17.3
Middle	5260	19.1	16.6	21.0
High	5310	15.1	15.3	18.2

The cable assembly insertion loss of 21.3dB (including 19.1dB attenuator and 2.2dB connectors) was entered as an offset in the power meter to allow for direct reading of power.

802.11a

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5745	17.4	17.8	20.6
Middle	5785	17.7	17.5	20.6
High	5825	17.3	18.6	21.0

802.11n HT20

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5745	17.5	17.7	20.6
Middle	5785	17.6	17.6	20.6
High	5825	17.2	18.2	20.7

802.11n HT40

Channel	Frequency (MHz)	Average Power Chain 0 (dBm)	Average Power Chain 2 (dBm)	Average Power Combined (dBm)
Low	5755	15.2	15.4	18.3
High	5795	18.3	18.8	21.6

8 SAR MEASURMENT RESULTS

8.1 2.4GHZ

8.1.1 HP PAVILION ZV6000

8.1.1.1 802.11bg

-		1		
CTC (MAR) Carrison	MARKAN AS		18mm	
802.11b (1Mb	ps)			
		Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1	f (MHz) 2412	1g (mW/g) 0.563	(dB) -0.102	1g (mW/g) 0.576
Channel 1 6	f (MHz) 2412 2437	1g (mW/g) 0.563 0.952	(dB) -0.102 -0.071	1g (mW/g) 0.576 0.968
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g) 0.563	(dB) -0.102	1g (mW/g) 0.576
Channel 1 6	f (MHz) 2412 2437 2462	1g (mW/g) 0.563 0.952 0.690	(dB) -0.102 -0.071 0.000	1g (mW/g) 0.576 0.968 0.690
Channel 1 6 11 802.11g (6Mb	f (MHz) 2412 2437 2462 ps)	1g (mW/g) 0.563 0.952 0.690 Measured SAR	(dB) -0.102 -0.071 0.000 Power Drift	1g (mW/g) 0.576 0.968 0.690 Extrapolated ¹⁾ SAR
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g) 0.563 0.952 0.690	(dB) -0.102 -0.071 0.000	1g (mW/g) 0.576 0.968 0.690
Channel 1 6 11 802.11g (6Mb Channel	f (MHz) 2412 2437 2462 ps) f (MHz)	1g (mW/g) 0.563 0.952 0.690 Measured SAR	(dB) -0.102 -0.071 0.000 Power Drift	1g (mW/g) 0.576 0.968 0.690 Extrapolated ¹⁾ SAR

 The exact method of extrapolation is Measured SAR x 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.1.2 802.11n

				18mm		
	802.11n HT20	(6.5Mbps)				
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6 11	2412 2437 2462	0.592	0.000	0.592	
	802.11n HT40					
	Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)	
	1 6 11	2422 2437 2452	0.627	-0.036	0.632	
pro me 2) Th	bcess by the DASY easurement proces le SAR measured a <i>N</i> /g), thus testing a	4 system can b s. at the middle cha	e scaled up by the Por annel for this configura annel is optional.	wer drift to determi	R reported at the end of the me ne the SAR at the beginning of 3 lower (0.8 mW/g) than SAR I	f the

8.1.2 COMPAQ PRESARIO V2000

8.1.2.1 802.11bg

			17mm	18mm		
802.111	o (1Mbp	os)				
		-	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR	
Char	nnel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)	
Char 1	nnel	f (MHz) 2412	1g (mW/g) 0.539	(dB) 0.000	1g (mW/g) 0.539	
Char 1 6	nnel	f (MHz) 2412 2437	1g (mW/g) 0.539 0.973	(dB) 0.000 -0.178	1g (mW/g) 0.539 1.014	
Char 1 6 11	nnel	f (MHz) 2412 2437 2462	1g (mW/g) 0.539	(dB) 0.000	1g (mW/g) 0.539	
Char 1 6	nnel	f (MHz) 2412 2437 2462	1g (mW/g) 0.539 0.973 0.560	(dB) 0.000 -0.178 0.000	1g (mW/g) 0.539 1.014 0.560	
Char 1 6 11	nnel 1 1 1 (6Mbp	f (MHz) 2412 2437 2462	1g (mW/g) 0.539 0.973	(dB) 0.000 -0.178	1g (mW/g) 0.539 1.014	
Char 1 6 11 802.11 g	nnel 1 7 (6Mbp nnel	f (MHz) 2412 2437 2462 os)	1g (mW/g) 0.539 0.973 0.560 Measured SAR	(dB) 0.000 -0.178 0.000 Power Drift	1g (mW/g) 0.539 1.014 0.560 Extrapolated ¹⁾ SAR	
Char 1 6 11 802.11 Char	nnel 1 7 (6Mbp nnel	f (MHz) 2412 2437 2462 os) f (MHz)	1g (mW/g) 0.539 0.973 0.560 Measured SAR	(dB) 0.000 -0.178 0.000 Power Drift	1g (mW/g) 0.539 1.014 0.560 Extrapolated ¹⁾ SAR	

8.1.2.2 802.11n

		17mm	18mm	
802 11p HT20) (6 5Mbns)			
802.11n HT20 Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
	f (MHz) 2412 2437			
Channel 1 6	f (MHz) 2412 2437 2462	1g (mW/g)	(dB)	1g (mW/g) 0.584
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g)	(dB)	1g (mW/g)

8.1.3 HP PAVILION ZE4400

8.1.3.1 802.11bg

	and the second s		and the second se	
the second se			14mm	and the second s
-	.0.(T	
Mag and				
Constanting of the local division of the loc	THE PARTY	a particular and a second		the second se
				1980
802.11b (1Mb) ()			
802.11b (1Mb	pps)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
802.11b (1Mb Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1	f (MHz) 2412	1g (mW/g) 1.100	(dB) 0.000	1g (mW/g) 1.100
Channel 1 6	f (MHz) 2412 2437	1g (mW/g) 1.100 1.390	(dB) 0.000 -0.047	1g (mW/g) 1.100 1.405
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g) 1.100	(dB) 0.000	1g (mW/g) 1.100
Channel 1 6	f (MHz) 2412 2437 2462	1g (mW/g) 1.100 1.390 1.140	(dB) 0.000 -0.047 -0.039	1g (mW/g) 1.100 1.405 1.150
Channel 1 6 11 802.11g (6Mb	f (MHz) 2412 2437 2462 ps)	1g (mW/g) 1.100 1.390 1.140 Measured SAR	(dB) 0.000 -0.047 -0.039 Power Drift	1g (mW/g) 1.100 1.405 1.150 Extrapolated ¹⁾ SAR
Channel 1 6 11 802.11g (6Mb Channel	f (MHz) 2412 2437 2462 ps) f (MHz)	1g (mW/g) 1.100 1.390 1.140 Measured SAR 1g (mW/g)	(dB) 0.000 -0.047 -0.039 Power Drift (dB)	1g (mW/g) 1.100 1.405 1.150 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1 6 11 802.11g (6Mb	f (MHz) 2412 2437 2462 ps)	1g (mW/g) 1.100 1.390 1.140 Measured SAR	(dB) 0.000 -0.047 -0.039 Power Drift	1g (mW/g) 1.100 1.405 1.150 Extrapolated ¹⁾ SAR

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.1.3.2 802.11n

and the second se			14mm	and the second sec
		O		
	1			
802.11n HT2	0 (6.5Mbps)			
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
Channel 1	f (MHz) 2412	1g (mW/g) 0.533	(dB) 0.000	1g (mW/g) 0.533
Channel 1 6	f (MHz) 2412 2437	1g (mW/g) 0.533 0.859	(dB) 0.000 -0.145	1g (mW/g) 0.533 0.888
Channel 1 6 11	f (MHz) 2412 2437 2462	1g (mW/g) 0.533 0.859 0.457	(dB) 0.000	1g (mW/g) 0.533
Channel 1 6	f (MHz) 2412 2437 2462	1g (mW/g) 0.533 0.859 0.457	(dB) 0.000 -0.145 0.000	1g (mW/g) 0.533 0.888 0.457
Channel 1 6 11 802.11n HT4	f (MHz) 2412 2437 2462 0 (13.5Mbps)	1g (mW/g) 0.533 0.859 0.457 Measured SAR	(dB) 0.000 -0.145 0.000 Power Drift	1g (mW/g) 0.533 0.888 0.457 Extrapolated ¹⁾ SAR
Channel 1 6 11 802.11n HT4 Channel	f (MHz) 2412 2437 2462 0 (13.5Mbps) f (MHz)	1g (mW/g) 0.533 0.859 0.457 Measured SAR 1g (mW/g)	(dB) 0.000 -0.145 0.000 Power Drift (dB)	1g (mW/g) 0.533 0.888 0.457 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 1 6 11 802.11n HT4	f (MHz) 2412 2437 2462 0 (13.5Mbps)	1g (mW/g) 0.533 0.859 0.457 Measured SAR	(dB) 0.000 -0.145 0.000 Power Drift	1g (mW/g) 0.533 0.888 0.457 Extrapolated ¹⁾ SAR

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2 5.2GHZ

8.2.1 **HP PAVILION ZV6000**

and the second s				
- Lawrence				
			18mm	
र्केंट 🖾				
CX+VIS+3V	wi-eu/selas +			U
802.11a (6 ML	ops)			
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 36	f (MHz) 5180	1g (mW/g)	(dB)	1g (mW/g)
Channel 36 52 64	f (MHz) 5180 5260 5320			
Channel 36 52	f (MHz) 5180 5260 5320	1g (mW/g) 0.211	(dB) -0.136	1g (mW/g) 0.218
Channel 36 52 64 802.11n HT20	f (MHz) 5180 5260 5320 (6.5 Mbps)	1g (mW/g) 0.211 Measured SAR	(dB) -0.136 Power Drift	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR
<u>Channel</u> 36 52 64 802.11n HT20 Channel	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz)	1g (mW/g) 0.211	(dB) -0.136	1g (mW/g) 0.218
<u>Channel</u> 36 52 64 802.11n HT20 Channel 36	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180	1g (mW/g) 0.211 Measured SAR 1g (mW/g)	(dB) -0.136 Power Drift (dB)	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g)
<u>Channel</u> 36 52 64 802.11n HT20 Channel	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260	1g (mW/g) 0.211 Measured SAR	(dB) -0.136 Power Drift	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR
<u>Channel</u> 36 52 64 802.11n HT20 Channel 36 52	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320	1g (mW/g) 0.211 Measured SAR 1g (mW/g) 0.195	(dB) -0.136 Power Drift (dB)	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g)
<u>Channel</u> 36 52 64 802.11n HT20 <u>Channel</u> 36 52 64	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320	1g (mW/g) 0.211 Measured SAR 1g (mW/g) 0.195	(dB) -0.136 Power Drift (dB)	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40 Channel	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320 (13.5 Mbps) f (MHz)	1g (mW/g) 0.211 Measured SAR 1g (mW/g) 0.195 Measured SAR 1g (mW/g)	(dB) -0.136 Power Drift (dB) 0.000 Power Drift (dB)	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g) 0.195 Extrapolated ¹⁾ SAR 1g (mW/g)
<u>Channel</u> 36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40 Channel 38	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320 (13.5 Mbps) f (MHz) 5190	1g (mW/g) 0.211 Measured SAR 1g (mW/g) 0.195 Measured SAR 1g (mW/g) 0.059	(dB) -0.136 Power Drift (dB) 0.000 Power Drift (dB) 0.000	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g) 0.195 Extrapolated ¹⁾ SAR 1g (mW/g) 0.059
Channel 36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40 Channel	f (MHz) 5180 5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320 (13.5 Mbps) f (MHz)	1g (mW/g) 0.211 Measured SAR 1g (mW/g) 0.195 Measured SAR 1g (mW/g)	(dB) -0.136 Power Drift (dB) 0.000 Power Drift (dB)	1g (mW/g) 0.218 Extrapolated ¹⁾ SAR 1g (mW/g) 0.195 Extrapolated ¹⁾ SAR 1g (mW/g)

measurement process.

The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 2) mW/g), thus testing at low & high channel is optional.

8.2.2 COMPAQ PRESARIO V2000

802.11a (6 Mi	bps)			1)
Channel	f (NAL 1-)	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz) 5180	1g (mW/g) 0.026	(dB) -0.162	1g (mW/g) 0.027
			-0.128	0.237
36		0.230		
36 52	5260	0.230 0.174		
36 52 64	5260 5320	0.230 0.174	-0.024	0.175
36 52	5260 5320	0.174	-0.024	0.175
36 52 64	5260 5320 0 (6.5 Mbps)	0.174 Measured SAR	-0.024 Power Drift	0.175 Extrapolated ¹⁾ SAR
36 52 64 802.11n HT2 0	5260 5320	0.174	-0.024	0.175
36 52 64 802.11n HT20 Channel	5260 5320 0 (6.5 Mbps) f (MHz)	0.174 Measured SAR	-0.024 Power Drift	0.175 Extrapolated ¹⁾ SAR 1g (mW/g)
36 52 64 802.11n HT20 Channel 36 52	5260 5320 7 (6.5 Mbps) f (MHz) 5180 5260	0.174 Measured SAR 1g (mW/g)	-0.024 Power Drift (dB)	0.175 Extrapolated ¹⁾ SAR
36 52 64 802.11n HT20 Channel 36 52 64	5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320	0.174 Measured SAR 1g (mW/g) 0.179	-0.024 Power Drift (dB)	0.175 Extrapolated ¹⁾ SAR 1g (mW/g)
36 52 64 802.11n HT20 Channel 36 52	5260 5320 (6.5 Mbps) f (MHz) 5180 5260 5320	0.174 Measured SAR 1g (mW/g) 0.179	-0.024 Power Drift (dB) 0.000	0.175 Extrapolated ¹⁾ SAR 1g (mW/g) 0.179
36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40	5260 5320 0 (6.5 Mbps) f (MHz) 5180 5260 5320 0 (13.5 Mbps)	0.174 Measured SAR 1g (mW/g) 0.179 Measured SAR	-0.024 Power Drift (dB) 0.000 Power Drift	0.175 Extrapolated ¹⁾ SAR 1g (mW/g) 0.179 Extrapolated ¹⁾ SAR
36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40 Channel	5260 5320 0 (6.5 Mbps) f (MHz) 5180 5260 5320 0 (13.5 Mbps) f (MHz)	0.174 Measured SAR 1g (mW/g) 0.179	-0.024 Power Drift (dB) 0.000	0.175 Extrapolated ¹⁾ SAR 1g (mW/g) 0.179
36 52 64 802.11n HT20 Channel 36 52 64 802.11n HT40	5260 5320 0 (6.5 Mbps) f (MHz) 5180 5260 5320 0 (13.5 Mbps)	0.174 Measured SAR 1g (mW/g) 0.179 Measured SAR	-0.024 Power Drift (dB) 0.000 Power Drift	0.175 Extrapolated ¹⁾ SAR 1g (mW/g) 0.179 Extrapolated ¹⁾ SAR

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.2.3 HP PAVILION ZE4400

	.0.		14mm	
August			C.	
	-			
	\$			
802.11a (6 Mk	nos)			
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
36 52 64	5180 5260 5320	0.325	-0.059	0.329
802.11n HT20	(6.5 Mbps)			
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
36 52 64	5180 5260 5320	0.324	-0.078	0.330
)		
802.11n HT40		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
802.11n HT40	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
802.11n HT40 Channel		0.088	-0.151	0.092
	5190	1	0.440	0.382
Channel	5190 5260 5310	0.372 0.160	-0.113 -0.086	0.302

2) The SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 mW/g) than SAR limit (1.6 mW/g), thus testing at low & high channel is optional.

8.3 5.8GHZ

8.3.1 HP PAVILION ZV6000

and a state of the				
	-		18mm	
न्त्र 💷		C RETRO		
Qirici-un		(200 - Damas	THE R. L.	U
			14	
802.11a (6 Mt	ops)			
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 149	f (MHz) 5745	1g (mW/g)	(dB)	1g (mW/g)
Channel 149 157	f (MHz) 5745 5785			
Channel 149	f (MHz) 5745 5785 5825	1g (mW/g)	(dB)	1g (mW/g)
Channel 149 157 165	f (MHz) 5745 5785 5825	1g (mW/g) 0.210	(dB)	1g (mW/g) 0.210
Channel 149 157 165	f (MHz) 5745 5785 5825	1g (mW/g)	(dB) 0.000	1g (mW/g)
Channel 149 157 165 802.11n HT20	f (MHz) 5745 5785 5825 0 (6.5 Mbps)	1g (mW/g) 0.210 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR
Channel 149 157 165 802.11n HT20 Channel 149 157	f (MHz) 5745 5785 5825 (6.5 Mbps) f (MHz) 5745 5785	1g (mW/g) 0.210 Measured SAR	(dB) 0.000 Power Drift	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR
Channel 149 157 165 802.11n HT20 Channel 149 157 165	f (MHz) 5745 5785 5825 6.5 Mbps) f (MHz) 5745 5785 5785 5825	1g (mW/g) 0.210 Measured SAR 1g (mW/g) 0.187	(dB) 0.000 Power Drift (dB)	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 149 157 165 802.11n HT20 Channel 149 157	f (MHz) 5745 5785 5825 6.5 Mbps) f (MHz) 5745 5785 5785 5825	1g (mW/g) 0.210 Measured SAR 1g (mW/g) 0.187	(dB) 0.000 Power Drift (dB) -0.043	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR 1g (mW/g) 0.189
Channel 149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40	f (MHz) 5745 5785 5825 (6.5 Mbps) f (MHz) 5745 5785 5825 (13.5 Mbps)	1g (mW/g) 0.210 Measured SAR 1g (mW/g) 0.187 Measured SAR	(dB) 0.000 Power Drift (dB) -0.043 Power Drift	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR 1g (mW/g) 0.189 Extrapolated ¹⁾ SAR
Channel 149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40 Channel	f (MHz) 5745 5785 5825 (6.5 Mbps) f (MHz) 5745 5785 5825 (13.5 Mbps) f (MHz)	1g (mW/g) 0.210 Measured SAR 1g (mW/g) 0.187 Measured SAR 1g (mW/g)	(dB) 0.000 Power Drift (dB) -0.043 Power Drift (dB)	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR 1g (mW/g) 0.189 Extrapolated ¹⁾ SAR 1g (mW/g)
Channel 149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40	f (MHz) 5745 5785 5825 (6.5 Mbps) f (MHz) 5745 5785 5825 (13.5 Mbps)	1g (mW/g) 0.210 Measured SAR 1g (mW/g) 0.187 Measured SAR	(dB) 0.000 Power Drift (dB) -0.043 Power Drift	1g (mW/g) 0.210 Extrapolated ¹⁾ SAR 1g (mW/g) 0.189 Extrapolated ¹⁾ SAR

mW/g), thus testing at low & high channel is optional.Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.

8.3.2 COMPAQ PRESARIO V2000

		17mm	18mm	
			SAL	
			Current Curren	
802.11a (6 MI	bps)			1)
		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
	5745			
149	5745	0 158	-0.012	0 158
149 157	5745 5785	0.158	-0.012	0.158
149	5745 5785 5825	0.158	-0.012	0.158
149 157 165	5745 5785 5825	0.158 Measured SAR	-0.012 Power Drift	0.158 Extrapolated ¹⁾ SAR
149 157 165 802.11n HT20 Channel	5745 5785 5825 0 (6.5 Mbps) f (MHz)			
149 157 165 802.11n HT20 Channel 149	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785	Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
149 157 <u>165</u> 802.11n HT20 Channel 149 157 165	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785 5785 5825	Measured SAR 1g (mW/g) 0.132	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
149 157 165 802.11n HT20 Channel 149 157	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785 5785 5825	Measured SAR 1g (mW/g) 0.132	Power Drift (dB) -0.151	Extrapolated ¹⁾ SAR 1g (mW/g) 0.137
149 157 802.11n HT20 Channel 149 157 165 802.11n HT40	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785 5785 5825 0 (13.5 Mbps)	Measured SAR 1g (mW/g) 0.132 Measured SAR	Power Drift (dB) -0.151 Power Drift	Extrapolated ¹⁾ SAR 1g (mW/g) 0.137 Extrapolated ¹⁾ SAR
149 157 165 802.11n HT20 Channel 149 157 165 802.11n HT40 Channel	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785 5825 0 (13.5 Mbps) f (MHz)	Measured SAR 1g (mW/g) 0.132 Measured SAR 1g (mW/g)	Power Drift (dB) -0.151 Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g) 0.137 Extrapolated ¹⁾ SAR 1g (mW/g)
149 157 802.11n HT20 Channel 149 157 165 802.11n HT40	5745 5785 5825 0 (6.5 Mbps) f (MHz) 5745 5785 5785 5825 0 (13.5 Mbps)	Measured SAR 1g (mW/g) 0.132 Measured SAR	Power Drift (dB) -0.151 Power Drift	Extrapolated ¹⁾ SAR 1g (mW/g) 0.137 Extrapolated ¹⁾ SAR

8.3.3 HP PAVILION ZE4400

Contraction of the local division of the loc	and the second		14mm	
0	.0.0		1 Contraction	
1	Lit. Co			
The second s				
	ì			
802.11a (6 Mb	ops)			
<u> </u>		Measured SAR	Power Drift	Extrapolated ¹⁾ SAR
Channel	f (MHz)	1g (mW/g)	(dB)	1g (mW/g)
149 157 165	5745 5785 5825	0.236	0.000	0.236
802.11n HT20) (6.5 Mbps)			
Ohannal	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
Channel	5745 5785	0.196	0.000	0.196
149 157 165	5825			
149 157	5825			
149 157 165	5825	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)
149 157 165 802.11n HT40	5825) (13.5 Mbps)	Measured SAR		

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncertainty component	Tol. (±%)	Probe	Div.	Ci(1a)	Ci (10g)	Std. Unc.(±%)	
Uncertainty component	TOI. (±%)	Dist.	Div.	Ci (1g)	CI (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	N	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS		-	11.44	10.49
Expanded Uncertainty (95% Confidence Interval)			K=2			22.87	20.98
Notesfor table 1. Tol tolerance in influence quaitity 2. N - Nomal							
3. R - Rectangular							
4 Div - Divisor used to obtain standard uncertainty							

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

9.2 MEASURMENT UNCERTAINTY 3 GHz – 6 GHz

Uncertainty component	Tol. (±%)	Probe	Div.	$C:(4\pi)$	C: (10m)	Std. Ur	nc.(±%)
Uncertainty component	101. (±%)	Dist.	Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	3.00	R	1.732	1	1	1.73	1.73
RF Ambient Conditions - Reflections	3.00	R	1.732	1	1	1.73	1.73
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	N	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	N	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	N	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty			RSS			11.66	10.73
Expanded Uncertainty (95% Confidence Interval)			K=2			23.32	21.46
Notesfor table 1. Tol tolerance in influence quaitity 2. N. Nomal	•						•

2. N - Nomal

3. R - Rectangular

4. Div. - Divisor used to obtain standard uncertainty

5. Ci - is te sensitivity coefficient

10 EQUIPMENT LIST AND CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	2/9/07
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV4	3552	5/30/07
Thermometer	ERTCO	639-1S	1718	1/11/07
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	558	1/20/07
System Validation Dipole	SPEAG	D2450V2	706	4/27/08
System Validation Dipole	SPEAG	D5GHzV2	1003	11/22/07
Power Meter	Giga-tronics	8651A	8651404	12/27/06
Power Sensor	Giga-tronics	80701A	1834588	12/27/07
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	3/21/07
Signal Generator	HP	83732B	US34490599	10/5/2006
Simulating Liquid	CCS	M2450	N/A	Within 24 hrs of first test
Simulating Liquid	SPEAG	M5200-5800	N/A	Within 24 hrs of first test

11 PHOTOS

802.11n Dual Band Cardbus Adapter (2X3)

802.11n Dual Band Cardbus Adapter (2X2)

HP Pavilion zv6000

Compaq Presario v2000

HP Pavilion ze4400

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	12
2-1	SAR Test Plots-2.4GHz	27
2-2	SAR Test Plots-5.2GHz	18
2-3	SAR Test Plots-5.8GHz	15
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D2450 SN:706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN:1003	10
6	Material Specification Data Sheet of Body Simulating Liquid (5GHz)	3

END OF REPORT