

ANNEX C: PROBE CERTIFICATE

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

ETC (Auden)

Accreditation No.: SCS 108

Certificate No: EX3-3555_Sep10

CALIBRATION CERTIFICATE EX3DV4 - SN:3555 Object QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes September 22, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013 Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Function Signature Calibrated by: Katja Pokovic Technical Manager Approved by: Fin Bomholt R&D Director Issued: September 22, 2010 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3555 Sep10

Page 1 of 11

Cerpass Technology Corp.

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Issued Date

: Dec. 08, 2011

Page No.

: 48 of 64

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

ConvF DCP CF

diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A, B, C Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3555 Sep10

Page 2 of 11

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No.

: 49 of 64

September 22, 2010

Probe EX3DV4

SN:3555

Manufactured:

July 13, 2004

Last calibrated:

September 22, 2009

Recalibrated:

September 22, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3555_Sep10

Page 3 of 11

Cerpass Technology Corp.

Issued Date . .

Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No.

: 50 of 64

September 22, 2010

DASY/EASY - Parameters of Probe: EX3DV4 SN:3555

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.42	0.40	0.42	± 10.1%
DCP (mV) ^B	90.2	93.2	90.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300	± 1.5%
			Υ	0.00	0.00	1.00	300	
			Z	0.00	0.00	1.00	300	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3555_Sep10

Page 4 of 11

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200 Pag

Page No. : 51 of 64

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E $^{\rm 2}$ -field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 SN:3555

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	$41.5 \pm 5\%$	0.97 ± 5%	7.90	7.90	7.90	0.59	0.71 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	7.10	7.10	7.10	0.62	0.70 ± 11.0%
1950	± 50 / ± 100	$40.0 \pm 5\%$	$1.40 \pm 5\%$	6.60	6.60	6.60	0.60	0.68 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	6.23	6.23	6.23	0.39	0.86 ± 11.0%

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3555_Sep10 Page 5 of 11

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200 Page No. : 52 of 64

DASY/EASY - Parameters of Probe: EX3DV4 SN:3555

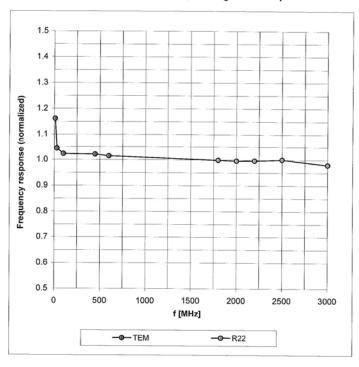
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Cor	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
900	± 50 / ± 100	55.0 ± 5%	1.05 ± 5%	8.03	8.03	8.03	0.57	0.73 ± 11.0%
1750	± 50 / ± 100	$53.4 \pm 5\%$	$1.49 \pm 5\%$	6.67	6.67	6.67	0.59	0.72 ± 11.0%
1950	± 50 / ± 100	$53.3 \pm 5\%$	$1.52 \pm 5\%$	6.66	6.66	6.66	0.62	0.70 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	6.34	6.34	6.34	0.45	0.85 ± 11.0%
5200	± 50 / ± 100	$49.0 \pm 5\%$	$5.30 \pm 5\%$	3.91	3.91	3.91	0.58	1.95 ± 13.1%
5300	± 50 / ± 100	$48.9 \pm 5\%$	$5.42 \pm 5\%$	3.71	3.71	3.71	0.58	1.95 ± 13.1%
5600	± 50 / ± 100	$48.5 \pm 5\%$	$5.77 \pm 5\%$	3.17	3.17	3.17	0.65	1.95 ± 13.1%
5800	± 50 / ± 100	48.2 ± 5%	$6.00 \pm 5\%$	3.51	3.51	3.51	0.65	1.95 ± 13.1%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: EX3-3555_Sep10

Page 6 of 11


Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

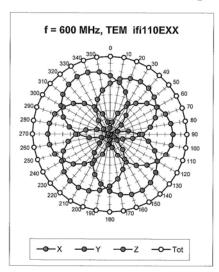
Page No. : 53 of 64

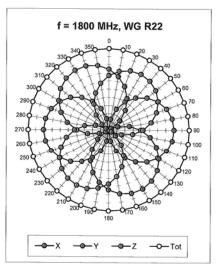
Frequency Response of E-Field

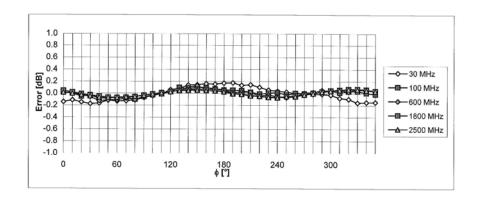
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3555_Sep10


Page 7 of 11


Cerpass Technology Corp. Issued Date : Dec. 08, 2011


Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No. : 54 of 64

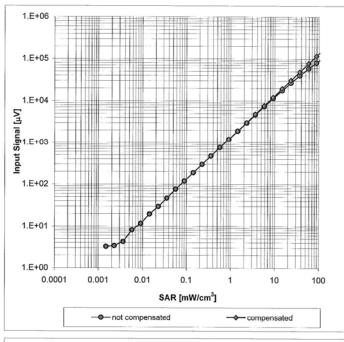
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

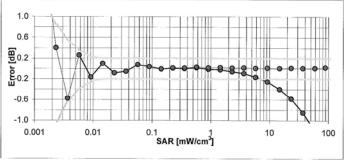
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3555_Sep10

Page 8 of 11

Cerpass Technology Corp. Issued Date : Dec. 08, 2011


Tel:886-2-2655-8100 Fax:886-2-2655-8200


Page No. : 55 of 64

September 22, 2010

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

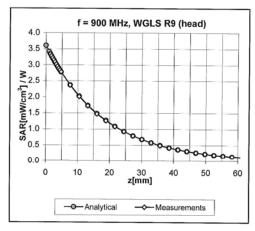
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

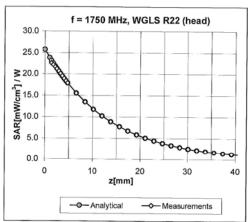
Certificate No: EX3-3555_Sep10

Page 9 of 11

Cerpass Technology Corp.

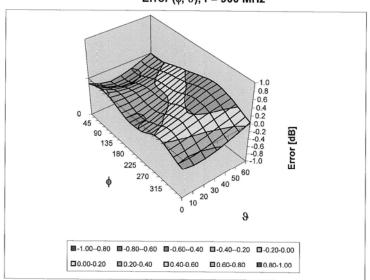
Tel:886-2-2655-8100 Fax:886-2-2655-8200


Issued Date : D


te : Dec. 08, 2011

Page No. : 56 of 64

September 22, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3555 Sep10

Page 10 of 11

Cerpass Technology Corp.

200

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Issued Date : Dec. 08, 2011

Page No.

: 57 of 64

September 22, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3555_Sep10

Page 11 of 11

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No. : 58 of 64

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Cerpass Technology Corp.

Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No. : 59 of 64

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client ETC (Auden)		Ce	rtificate No: DAE4-629_Sep10
CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D	04 BJ - SN: 629	
Calibration procedure(s)	QA CAL-06.v22 Calibration proces	dure for the data acquisi	tion electronics (DAE)
Calibration date:	September 17, 20	10	
The measurements and the uncertain	ainties with confidence pro	obability are given on the following	physical units of measurements (SI). g pages and are part of the certificate.
All calibrations have been conducte	d in the closed laboratory	facility: environment temperatur	e (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	1-Oct-09 (No: 9055)	Oct-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11
	Name	Function	Signature
Calibrated by:	Dominique Steffen	Technician	V
Approved by:	Fin Bomholt	R&D Director	7. Berchall
This calibration certificate shall not l	be reproduced except in f	ull without written approval of the	Issued: September 17, 2010 laboratory.

Certificate No: DAE4-629_Sep10

Page 1 of 5

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Page No. : 60 of 64

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-629_Sep10 Page 2 of 5

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200 Page No. : 61 of 64

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1μV, 1LSB = Low Range: 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.336 ± 0.1% (k=2)	404.208 ± 0.1% (k=2)	404.081 ± 0.1% (k=2)
Low Range	3.98391 ± 0.7% (k=2)	3.96777 ± 0.7% (k=2)	3.97695 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	153.0 ° ± 1 °

Certificate No: DAE4-629_Sep10

Page 3 of 5

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199995.7	-5.34	-0.00
Channel X	+ Input	20000.71	0.51	0.00
Channel X	- Input	-19997.58	1.72	-0.01
Channel Y	+ Input	199994.6	-1.46	-0.00
Channel Y	+ Input	19999.09	-1.01	-0.01
Channel Y	- Input	-19997.51	2.79	-0.01
Channel Z	+ Input	199994.2	-1.40	-0.00
Channel Z	+ Input	20000.77	0.67	0.00
Channel Z	- Input	-19999.11	1.29	-0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.5	-0.55	-0.03
Channel X + Input	199.96	0.06	0.03
Channel X - Input	-199.89	0.11	-0.05
Channel Y + Input	1997.0	-3.01	-0.15
Channel Y + Input	199.74	-0.06	-0.03
Channel Y - Input	-200.51	-0.51	0.25
Channel Z + Input	2000.2	0.13	0.01
Channel Z + Input	199.28	-0.62	-0.31
Channel Z - Input	-200.79	-0.79	0.40

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-0.69	-1.66
	- 200	3.67	1.89
Channel Y	200	2.70	2.36
	- 200	-2.99	-3.31
Channel Z	200	0.31	1.02
	- 200	-1.97	-2.05

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.72	0.39
Channel Y	200	1.27	-	3.35
Channel Z	200	0.73	0.15	-

Certificate No: DAE4-629_Sep10

Page 4 of 5

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16029	16581
Channel Y	15984	17313
Channel Z	16305	16385

5. Input Offset Measurement

DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.63	-0.21	3.79	0.49
Channel Y	-0.71	-2.49	1.23	0.48
Channel Z	-0.65	-1.48	1.24	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-629_Sep10

Page 5 of 5

Cerpass Technology Corp. Issued Date : Dec. 08, 2011

Tel:886-2-2655-8100 Fax:886-2-2655-8200