

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003 RSS-102 Issue 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011

SAR EVALUATION REPORT

For

802.11b/g/n 1x1 PCle Minicard Transceiver (Tested inside of Samsung Notebook PC, NP305U1A)

MODEL NUMBER: AR5B95 FCC ID: PPD-AR5B95 IC: 4104A-AR5B95

REPORT NUMBER: 11113882-1 ISSUE DATE: July 20, 2011

Prepared for

ATHEROS COMMUNICATIONS, INC. 1700 TECHNOLOGY DR SAN JOSE, CA 95110

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

> TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	July 20, 2011	Initial Issue	
Α	July 21, 2011	Updated IC #	Sunny Shih

TABLE OF CONTENTS

DATE: July 20, 2011 IC: 4104A-AR5B95

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	6
4.1. MEASURING INSTRUMENT CALIBRATION	ε
4.2. MEASUREMENT UNCERTAINTY	7
5. EQUIPMENT UNDER TEST	8
6. SYSTEM SPECIFICATIONS	g
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8. SIMULATING LIQUID PARAMETERS	11
8.1. SIMULATING LIQUID CHECK RESULTS	12
9. SYSTEM VERIFICATION	13
9.1. SYSTEM CHECK RESULTS	13
10. SAR MEASUREMENT PROCEDURES	14
11. OUTPUT POWER VERIFICATION	15
11.1. RF OUTPUT POWER	
12. SUMMARY OF SAR TEST RESULTS	16
12.1. SUMMARY OF SAR TEST CONFIGURATIONS	16
12.2. SAR TEST RESULTS	17
13. SAR TEST PLOTS	18
14. APPENDIX	20
15. ANTENNA LOCATIONS AND SEPARATION DISTANCES	21
16. TEST SETUP PHOTOS	22
17 HOST DEVICE BUOTO	22

1. ATTESTATION OF TEST RESULTS

Applicant name:	Atheros Com	Atheros Communications, Inc.						
	1700 Technol	1700 Technology Dr						
	San Jose, Ca	San Jose, Ca 95110						
EUT description:	802.11n 1x1 i	PCIe Minicard Transceiver						
	(Tested inside	e of Samsung Notebook PC, NP305U1A)						
Model number:	AR5B95							
Device category:	Portable							
Exposure category:	General Popu	lation/Uncontrolled Exposure						
Date tested:	July 18, 2011	July 18, 2011						
FCC / IC Rule Parts	Freq. Range [MHz]	ine Highest 1g SAR myy/g						
15.247 / RSS-102	15.247 / RSS-102							
	Appli	cable Standards	Test Results					
FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003, RSS-102 Issue 4, March 2010 and RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011								

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:	Tested By:
Suray Shih	D-R-S
Sunny Shih	David Rodgers
Engineering Team Leader	SAR Engineer
Compliance Certification Services (UL CCS)	Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

FCC OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003, RSS-102 Issue 4, March 2010 RSS-102 Supplementary Procedures (SPR)-001, January 1, 2011and the following KDB test procedures:

- KDB 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 616217 D03 SAR Supp. Note and Netbook Laptop V01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

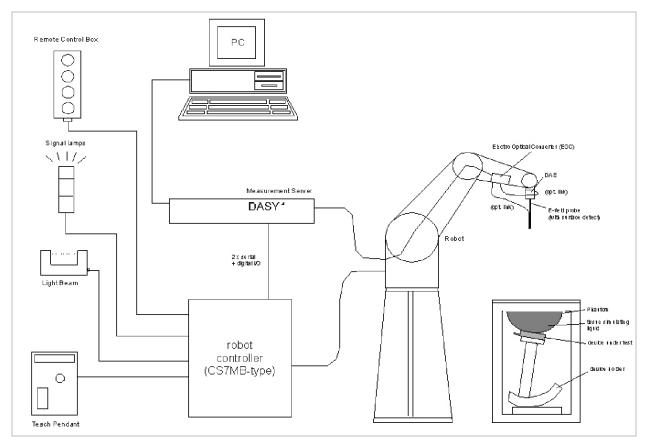
The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	NA	T /N /l - l	Osviel Ne	Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	S-0396			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1246			N/A	
Probe Alignment Unit	SPEAG	LB5/ 80	SE UKS 030 AA			N/A	
SAM Twin Phantom	SPEAG	QDOOOP40CD	1629			N/A	
Oval Flat Phantom (ELI 5.0) A	SPEAG	QDOVA001BB	1120			N/A	
Oval Flat Phantom (ELI 5.0) B	SPEAG	QDOVA001BB	1118			N/A	
Dielectric Probe kit	HP	85070C	N/A	N/A		N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
E-Field Probe	SPEAG	EX3DV4	3773	5	3	2012	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Data Acquisition Electronics	SPEAG	DAE4	1258	5	2	2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9	3	2011	
System Validation Dipole	SPEAG	*D2450V2	706	4	19	2012	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPEAG	M2450	N/A	Withir	1 24 h	rs of first test	
Simulating Liquid	SPEAG	M5GHz	N/A	Withir	24 h	rs of first test	

Note:

Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two year calibration intervals. On an annual basis each measurement dipole is evaluated for compliance with the following criteria:

- 1. There is no physical damage to the dipole.
- 2. System validation with a specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (Appendix 3)
- 4. Impedance is within 5Ω of calibrated measurement (Appendix 3)


4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram					
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1)	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time		Rectangular	1.732	1	0.46
Integration Time		Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections		Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance		Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom		Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)		Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	2.00	Normal	1	0.64	1.28
Liquid Permittivity - deviation from target		Rectangular	1.732	0.6	0.00
Liquid Permittivity - measurement uncertainty	-2.30		1	0.6	-1.38
		ombined Standard		nty Uc(y) =	9.47
Expanded Uncertainty U, Covera				18.94	%
Expanded Uncertainty U, Covera	age Factor	= 2, > 95 % Confid	dence =	1.51	dB

5. EQUIPMENT UNDER TEST

The Atheros AR5B95 is a 802.11b/g/n 1x1 SISO PCIe Minicard Transceiver. (Tested inside of Samsung Notebook PC, NP305U1A)						
Normal operation:	Normal operation: Laptop mode (display open at 90° to the keyboard)					
Antenna tested:	<u>Manufacturer</u>	Part number	2.4 GHz Gain			
	TE	⊠ Aux: 2108192-1	0.47			
		⊠ Main: 2108191-1	2.09			
	Note: All SAR testing was done on TE main antenna as the auxiliary antenna does not transmit.					
Antenna-to-antenna/user separation distances:	See Section 15 for details of antenna locations and separation distances					

6. SYSTEM SPECIFICATIONS

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)									
(% by weight)	45	50	83	835		900		1800 - 1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: >99% Pure Sodium Chloride Sugar: >98% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: >99% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

8. SIMULATING LIQUID PARAMETERS

The simulating liquids are checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies from 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity were within \pm 5% of the target values. For frequencies above 2 GHz the measured conductivity was within \pm 5% of the target values and the measured relative permittivity tolerance was within \pm 10% of the target value.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ead	Body		
rarget Frequency (MHz)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

⁽ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulsifier. Dielectric parameters of these liquids were measured using an HP 8570C Dielectric Probe Kit in conjunction with an HP 8753ES Network Analyzer (30 kHz - 6 GHz). The differences with respect to the interpolated values were well within the desired $\pm 5\%$ for the whole 5 to 5.8 GHz range.

f (MHz)	Body	Reference	
i (ivii-iz)	relative permittivity	conductivity	Kelelelice
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$

8.1. SIMULATING LIQUID CHECK RESULTS

Measured by: David Rodgers

	Date	Freq. (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit ±(%)
	7/18/2011 Bo	11 Body 2450	e'	51.4900	Relative Permittivity (ε_r) :	51.49	52.70	-2.30	5
			Conductivity (σ):	1.99	1.95	2.00	5		

Liquid Check

Ambient temperature: 25 deg. C; Liquid temperature: 24 deg. C; Relative humidity = 40%

July 18, 2011 08:31 AM

July 10, 2011 00.5		
Frequency	e'	e"
2200000000.	52.3116	13.5353
2210000000.	52.2820	13.5805
2220000000.	52.2514	13.6243
2230000000.	52.2230	13.6660
2240000000.	52.1912	13.7077
2250000000.	52.1593	13.7469
2260000000.	52.1223	13.7873
2270000000.	52.0882	13.8319
2280000000.	52.0492	13.8750
2290000000.	52.0160	13.9206
2300000000.	51.9825	13.9654
2310000000.	51.9532	14.0131
2320000000.	51.9210	14.0532
2330000000.	51.8916	14.0974
2340000000.	51.8592	14.1371
2350000000.	51.8230	14.1791
2360000000.	51.7868	14.2214
2370000000.	51.7511	14.2627
2380000000.	51.7150	14.3044
2390000000.	51.6788	14.3485
2400000000.	51.6471	14.3971
2410000000.	51.6173	14.4407
2420000000.	51.5846	14.4792
2430000000.	51.5535	14.5185
2440000000.	51.5207	14.5592
2450000000.	51.4900	14.6001
2460000000.	51.4585	14.6414
2470000000.	51.4252	14.6853
2480000000.	51.3907	14.7292
2490000000.	51.3599	14.7757
2500000000.	51.3298	14.8200
2510000000.	51.3000	14.8679
2520000000.	51.2709	14.9094
2530000000.	51.2366	14.9494
2540000000.	51.2013	14.9912
2550000000.	51.1632	15.0338
I		

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = \text{target } f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY5 system with an Isotropic E-Field EX3DV4 probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHZ) and 15 mm (below 1GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal.	Cal. Freq.	SAR Avg (mW/g)		
validation dipole	Cai. Certificate #	date	(GHz)	Tissue:	Head	Body
D2450V2	D2450V2-706_Apr10	4/19/10	2.4	1g SAR:	51.6	52.4
			Z. 4	10g SAR:	24.4	24.5

9.1. SYSTEM CHECK RESULTS

System Date Tested		Measured (N	ormalized to 1 W)	Torget	Dolto (0/)	Tolerance
validation dipole	Date Tested	Tissue:	Body	Target	Delta (%)	(%)
D2450V2	07/06/11	1g SAR:	54.3	52.4	3.63	±10
D2450V2	07/06/11	10g SAR:	25.1	24.5	2.45	±10

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY5 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $\geq 7x7x9$ (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, Intel ART R0.9 B34, which enabled the user to control the frequency and output power of the module.

11.1. RF OUTPUT POWER

Mode	Ch. #	Freq.	Original	Actual Measured
ivioue	Cn. #	(MHz)	Target Pwr (dBm)	Pwr (dBm)
	1	2412	17.22	17.25
802.11b	6	2437	17.80	17.85
	11	2462	18.02	18.20
	1	2412	13.82	
802.11g	6	2437	17.08	
	11	2462	14.70	
	1	2412	12.84	
802.11n 20 MHz	6	2437	17.09	
	11	2462	13.76	
	3	2422	9.66	
802.11n 40 MHz	6	2437	13.50	
	9	2452	9.24	

Note(s):

- 1. The modes with highest output power channel were chosen for the conducted output power.
- 2. Original target power is from EMC report. Please refer to original report (FCC ID: PPD-AR5B95) for Average Power information as documented in 12/12/2008 original filing.

12. SUMMARY OF SAR TEST RESULTS

12.1. SUMMARY OF SAR TEST CONFIGURATIONS

Configuration	Antenna-to-User distance	SAR Require	Comments
Lap-held	10 mm From Main antenna-to-user	Yes	
Bystander	15 mm From Main antenna-to- bystanders	Yes	SAR tested 15 mm from the back of the display. Per RSS-102 Supplementary Procedures (SPR)-001 January 1, 2011. IC requires SAR measurements to be performed if the integrated antenna(s) are located in the back side of the display screen.

12.2. SAR TEST RESULTS

Lap-held

Mode	Channal	f (NALI=)	Antonno	Results (mW/g)	
Mode	Channel	f (MHz)	Antenna	1g-SAR	10g-SAR
	1	2412	Main		
802.11b	6	2437	Main	0.011	0.004
	11	2462	Main		

Bystander w/ 15 mm separation distance

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
				1g-SAR	10g-SAR
	1	2412	Main		
802.11b	6	2437	Main	0.124	0.055
	11	2462	Main		

Note:

According to KDB 248227, SAR is not required for 802.11g/n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

13. SAR TEST PLOTS

Date: 7/18/2011

Test Laboratory: UL CCS SAR Lab B

Lap held

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.972 \text{ mho/m}$; $\epsilon_r = 51.531$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

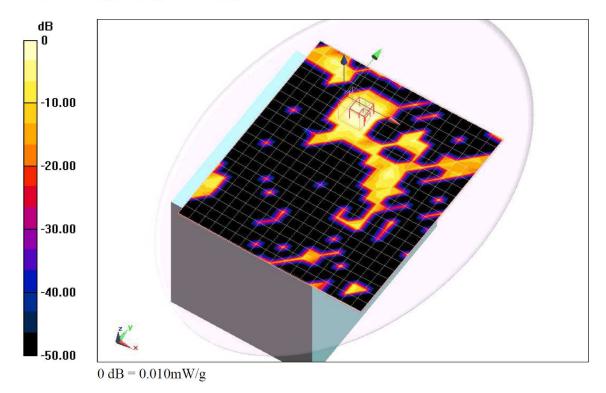
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3773; ConvF(6.87, 6.87, 6.87); Calibrated: 5/3/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1258; Calibrated: 5/2/2011
- Phantom: ELI v5.0 (B); Type: QDOVA001BB; Serial: 1118
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ant A/Ch 6/Area Scan (19x22x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.013 mW/g

Ant A/Ch 6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 2.411 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.011 mW/g; SAR(10 g) = 0.00429 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.015 mW/g

REPORT NO: 11I13882-1 FCC ID: PPD-AR5B95

Date: 7/18/2011

DATE: July 20, 2011

IC: 4104A-AR5B95

Test Laboratory: UL CCS SAR Lab B

Bystanders

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.972$ mho/m; $\epsilon_r = 51.531$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

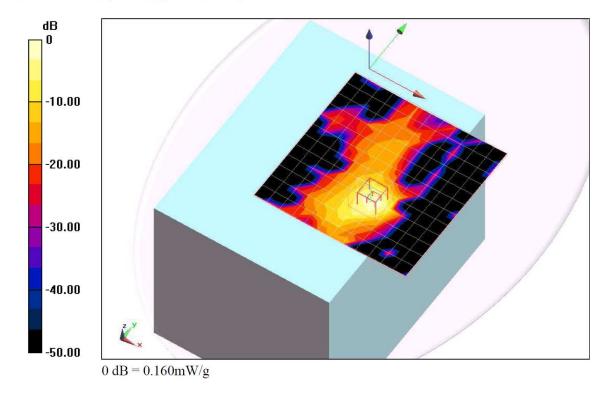
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3773; ConvF(6.87, 6.87, 6.87); Calibrated: 5/3/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1258; Calibrated: 5/2/2011
- Phantom: ELI v5.0 (B); Type: QDOVA001BB; Serial: 1118
- Measurement SW: DASY52, Version 52.6 (2); SEMCAD X Version 14.4.5 (3634)

Ant A/Ant A/Ch 6/Area Scan (13x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.176 mW/g

Ant A/Ant A/Ch 6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 9.479 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.055 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.163 mW/g

14. APPENDIX

<u>No.</u>	<u>Contents</u>	No. of page (s)
1	System Check Plots	2
2	Certificate of E-Field Probe - EX3DV3 SN 3773	11
3	Certificate of System Validation Dipole – D2450 SN:706	11