

FCC OET BULLETIN 65 SUPPLEMENT Edition C 01-01 Class II Permissive Change IC RSS-102 ISSUE 4

SAR EVALUATION REPORT

For

802.11n 1x1 PCIe Minicard Transceiver (Tested inside of Dell tablet Sparta, Model K08T- K08T001)

MODEL: AR5B95

FCC ID: PPD-AR5B95 IC: 4104A-AR5B95

REPORT NUMBER: 10U13448-1

ISSUE DATE: October 7, 2010

Prepared for

ATHEROS COMMUNICATIONS, INC. 1700 TECHNOLOGY DR SAN JOSE, CA 95110

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS)
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	October 7, 2010	Initial Issue	

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	4
2. TEST METHODOLOGY	5
3. FACILITIES AND ACCREDITATION	5
4. CALIBRATION AND UNCERTAINTY	6
4.1. MEASURING INSTRUMENT CALIBRATION	6
4.2. MEASUREMENT UNCERTAINTY	7
5. EQUIPMENT UNDER TEST	8
6. SYSTEM SPECIFICATIONS	9
7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8. LIQUID PARAMETERS CHECK	11
8.1. LIQUID CHECK RESULTS FOR 2450 MHZ	12
9. SYSTEM VERIFICATION	13
9.1. SYSTEM CHECK RESULTS FOR D2450V2	13
10. RF OUTPUT POWER VERIFICATION	16
11. SUMMARY OF SAR TEST RESULTS	17
12. SAR TEST PLOTS	19
13. ATTACHMENTS	27
14. ANTENNA LOCATIONS AND SEPARATION DISTANCES	28
15. TEST SETUP PHOTOS	30
16 HOST DEVICE BHOTOS	22

1. ATTESTATION OF TEST RESULTS

	T							
Applicant:	ATHEROS COMMUNICATIONS, INC.							
	1700 TECHNOLOGY DR							
	SAN JOSE, CA 95110	0						
EUT description:	802.11n 1x1 PCle Mi	nicard Transceiver						
	(Tested inside of Dell	tablet Sparta, Model	K08T- K08T001)					
Model number:	AR5B95							
Device category:	Portable							
Exposure category:	General Population/U	ncontrolled Exposure						
Date tested:	October 6, 2010							
		The Highest SAR (W/kg)						
FCC / IC rule parts	Freq. range (MHz)	1g	10g	Limit (W/kg)				
45 247 / DCC 402	2412 - 2462	1.13	0.437	1g = 1.6				
15.247 / RSS-102	2412 - 2402	Edge - Seconda	ary Landscape	10g = 2.0				
	Applicable Sta	andards		Test Results				
- FCC OET Bulletin 65	Supplement C Edition							
- IC RSS 102 Issue 4								
- Schedule 2 of Radio	Contradic E of Radiocommunications (Electroniagnotic Radiation Tramain Expectato)							
Standard 2003 incl Amendment No 1, 2007 and Pass								
GHZ IIIG AMENGMENU. 1, 1999.								

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

zunag sin

SUNNY SHIH ENGINEERING TEAM LEADER

Compliance Certification Services (UL CCS)

Tested By:

DEVIN CHANG EMC ENGINEER

Compliance Certification Services (UL CCS)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE Std 1528-2003, and Specific FCC Procedure KDB 248227 SAR Measurement Procedure for 802.11abg Transmitters, KDB 447498 D01 Mobile Portable RF Exposure v04, supplemental to KDB 616217 D03 and IC RSS 102 Issue 4.

And Schedule 2 of Radiocommunications (Electromagnetic Radiation - Human Exposure) Standard 2003 incl Amendment No 1, 2007 and NZS 2772.1:1999 Radiofrequency fields - Maximum exposure levels - 3 kHz to 300 GHz incl Amendment No. 1, 1999.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

N (F)	NA 5 1	Turn of Mandal		Cal. Due date			
Name of Equipment	Manufacturer	Type/Model	Serial No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A			N/A	
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
SAM Phantom (SAM1)	SPEAG	QD000P40CA	1185			N/A	
SAM Phantom (SAM2)	SPEAG	QD000P40CA	1050			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003	N/A		N/A	
Dielectric Probe Kit	HP	85070C	N/A		N/A		
S-Parameter Network Analyzer	Agilent	8753ES-6	MY40001647	11	22	2010	
Signal Generator	Agilent	8753ES-6	MY40001647	11	22	2010	
E-Field Probe	SPEAG	EX3DV3	3531	2	23	2011	
Data Acquisition Electronics	SPEAG	DAE3 V1	427	7	21	2011	
System Validation Dipole	SPEAG	D2450V2*	706	4	19	2013	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Amplifier	Mini-Circuits	ZVE-8G	90606	N/A		N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A		N/A	
Simulating Liquid	SPAEG	M2450	N/A	Within 24 hrs of first test			

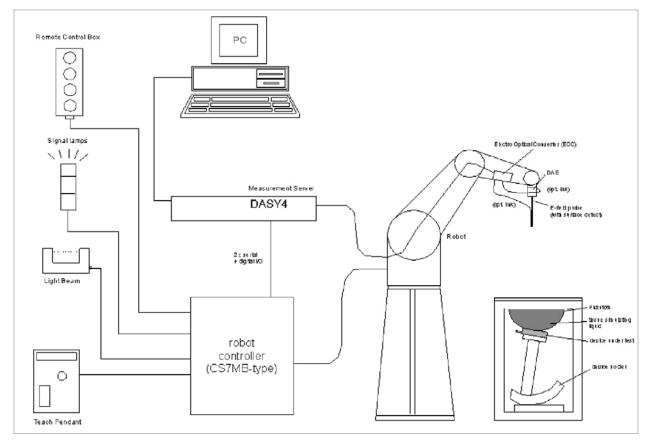
Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted three years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System	, , , ,			, , , , , , , , , , , , , , , , , , ,	- (),
Probe Calibration (k=1) @ Body 2450 MHz	5.50	Normal	1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity	3.45	Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time	0.80	Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.64	1.85
Liquid Conductivity - measurement	0.57	Normal	1	0.64	0.36
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.6	1.73
Liquid Permittivity - measurement	1.82	Normal	1	0.6	1.09
		Combined Standard		inty Uc(y) =	
Expanded Uncertainty U, Cov				19.02	%
Expanded Uncertainty U, Cov	erage Facto	or = 2, > 95 % Confi	dence =	1.51	dB


Measurement uncertainty for 300 MHz to 3 GHz averaged over 10 gram

Measurement uncertainty for 500 MHz to 5 GHz averaged over 10 grain		Darka Birtina Carl	D:	0 11 - 11	11 (3(1) 0/
Component	error, %	Probe Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System					
Probe Calibration (k=1) @ 2450 MHz	5.50		1	1	5.50
Axial Isotropy	1.15	Rectangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rectangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rectangular	1.732	1	0.52
Probe Linearity		Rectangular	1.732	1	1.99
System Detection Limits	1.00	Rectangular	1.732	1	0.58
Readout Electronics	0.30	Normal	1	1	0.30
Response Time		Rectangular	1.732	1	0.46
Integration Time	2.60	Rectangular	1.732	1	1.50
RF Ambient Conditions - Noise		Rectangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rectangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rectangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rectangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rectangular	1.732	1	0.58
Test Sample Related					
Test Sample Positioning	2.90	Normal	1	1	2.90
Device Holder Uncertainty	3.60	Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rectangular	1.732	1	2.89
Phantom and Tissue Parameters					
Phantom Uncertainty (shape and thickness)	4.00	Rectangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rectangular	1.732	0.43	1.24
Liquid Conductivity - measurement	0.57	Normal	1	0.43	0.25
Liquid Permittivity - deviation from target	5.00	Rectangular	1.732	0.49	1.41
Liquid Permittivity - measurement uncertainty	1.82	Normal	1	0.49	0.89
		bined Standard Un		Uc(y), % =	9.33
Expanded Uncertainty U, Covera	age Factor	= 2, > 95 % Confid	dence =	18.67	%
Expanded Uncertainty U, Covera	age Factor	= 2, > 95 % Confid	dence =	1.49	dB

5. EQUIPMENT UNDER TEST

802.11n 1x1 PCle Minicard Transceiver. Manufactured by Atheros. (Tested inside of Dell tablet Sparta, Model K08T- K08T001)					
Normal operation:	 - Laptop mode (with display open at 90° to the keyboard) - Tablet bottom face, and - Tablet edges - Multiple display orientations supporting both portrait and landscape configurations 				
Antenna tested:	Install inside of Dell to Manufactured ACON	ablet Sparta, Model K08T- K08T001 Model Number TX/Rx1 (Main): APP8P-700148 Tx/ Rx2 (Aux): APP6P-700455			
Antenna-to-user separation distances:	Refer to Sec. 14 for d	letails			
Antenna-to-antenna separation distances:	Refer to Sec. 14 for details				
Assessment for SAR evaluation for Simultaneous transmission:	WWAN co-located RF exposure assessment will be addressed in a separate FCC application filed under WWAN application.				

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 34

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	45	50	83	35	9′	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

8. LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 300 – 3000 MHz and 5800 MHz)

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	Body					
Target Frequency (MHz)	ϵ_{r}	σ (S/m)				
300	58.20	0.92				
450	56.70	0.94				
835	55.20	0.97				
900	55.00	1.05				
915	55.00	1.06				
1450	54.00	1.30				
1610	53.80	1.40				
1800 – 2000	53.30	1.52				
2450	52.70	1.95				
3000	52.00	2.73				
5800	48.20	6.00				

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. LIQUID CHECK RESULTS FOR 2450 MHZ

Simulating Liquid Dielectric Parameter Check Result @ Body 2450 MHz

	f (MHz)	Liquid Parameters			Measured	Target	Delta (%)	Limit (%)
Ī	2450	e'	53.66	Relative Permittivity (ε_r):	53.661	52.7	1.82	± 5
	2450	e"	14.39	Conductivity (σ):	1.961	1.95	0.57	± 5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 41%

October 06, 2010 11:00 AM

Frequency	e'	e"
2400000000.	53.8084	14.1663
2405000000.	53.7956	14.1903
2410000000.	53.7819	14.2171
2415000000.	53.7702	14.2378
2420000000.	53.7538	14.2628
2425000000.	53.7393	14.2882
2430000000.	53.7250	14.3097
2435000000.	53.7133	14.3304
2440000000.	53.6967	14.3491
2445000000.	53.6796	14.3691
2450000000.	53.6606	14.3883
2455000000.	53.6454	14.4090
2460000000.	53.6264	14.4294
2465000000.	53.6047	14.4493
2470000000.	53.5828	14.4682
2475000000.	53.5660	14.4919
2480000000.	53.5474	14.5116
2485000000.	53.5278	14.5323
2490000000.	53.5119	14.5533
2495000000.	53.4900	14.5741
2500000000.	53.4714	14.5959

The conductivity (σ) can be given as:

 $\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$

where $\mathbf{f} = target f * 10^6$

 $\varepsilon_0 = 8.854 * 10^{-12}$

Measured by: Devin Chang

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the
 center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the
 long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and
 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

System	Cal. certificate #	Cal.	SAR Avg (mW/g)				
validation dipole	Cai. Certificate #	due date	Tissue:	Head	Body		
D2450V2	D2450\/2 706 Apr10	04/19/13	SAR _{1g} :	51.6	52.4		
D2450V2	D2450V2-706_Apr10	04/19/13	SAR _{10g} :	24.4	24.5		

9.1. SYSTEM CHECK RESULTS FOR D2450V2

Ambient Temperature = 24°C; Relative humidity = 38% Measured by: Devin Chang

System	. Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	ole Date Tested	Tissue:	Body			(%)
D2450V2	10/06/10	SAR _{1g} :	50.2	52.4	-4.20	±10
D2450V2	10/06/10	SAR _{10g} :	23.9	24.5	-2.45	ΞIU

SYSTEM CHECK PLOT

Date/Time: 10/6/2010 11:19:00 AM

Test Laboratory: Compliance Certification Services

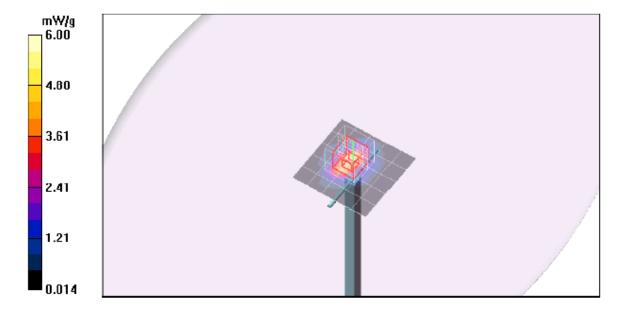
System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 53.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C


DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

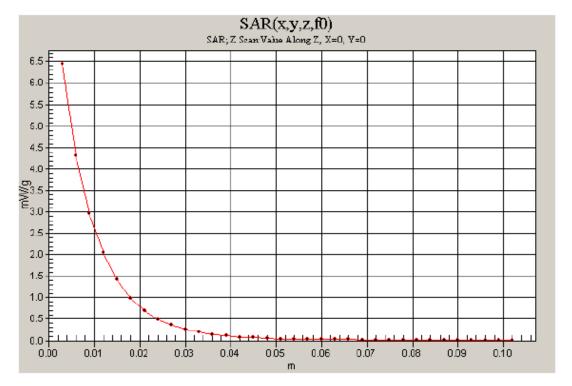
d=10mm, Pin=100mW/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 6.00 mW/g

d=10mm, Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.2 V/m; Power Drift = 0.101 dB Peak SAR (extrapolated) = 9.98 W/kg

SAR(1 g) = 5.02 mW/g; SAR(10 g) = 2.39 mW/g Maximum value of SAR (measured) = 6.48 mW/g

SYSTEM CHECK – Z Plot

Date/Time: 10/6/2010 11:34:54 AM


Test Laboratory: Compliance Certification Services

System Performance Check - D2450V2

DUT: Dipole; Type: D2450V2; Serial: 706

Communication System: System Check Signal - CW; Frequency: 2450 MHz; Duty Cycle: 1:1

d=10mm, Pin=100mW/Z Scan (1x1x34): Measurement grid: dx=20mm, dy=20mm, dz=3mm Maximum value of SAR (measured) = 6.45 mW/g

10. RF OUTPUT POWER VERIFICATION

Results

802.11b						
Channel #	F (MIII-)	Conducted Avg Power				
	Freq. (MHz)	(dBm)	(mW)			
1	2412	17.24	53.0			
6	2437	18.07	64.1			
11	2462	17.40	55.0			
802.11g						
1	2412	14.09	25.6			
6	2437	17.14	51.8			
11	2462	14.66	29.2			
802.11n HT2	0					
1	2412	12.90	19.5			
6	2437	17.17	52.1			
11	2462	13.88	24.4			
802.11n HT4	0					
3	2422	9.72	9.4			
6	2437	13.87	24.4			
9	2452	9.40	8.7			

Note: KDB 248227 - SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

11. SUMMARY OF SAR TEST RESULTS

According to KDB 447498 4) b) ii) (2). SAR is required only for the edge with the most conservative exposure conditions.

1. Laptop - Lap-held (with the display open at 90° to the keyboard)

Separation distance: 18.4 cm from Main antenna-to-phantom

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
Wiode				1g-SAR	10g-SAR
	1	2412	Main		
802.11b	6	2437	Main	0.012	0.00607
	11	2462	Main		

2. Tablet – Bottom face

Separation distance: <u>1.935 cm</u> from Main antenna-to-phantom

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
Mode				1g-SAR	10g-SAR
	1	2412	Main		
802.11b	6	2437	Main	0.210	0.113
	11	2462	Main		

3. Edge - Primary Landscape (No SAR)

Separation distance: <u>16.77 cm</u> from Main antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

4. Edge - Secondary Landscape

Separation distance: 2.183 mm from Main antenna-to-phantom

Mode	Channel f (f (MIII-)	Antenna	Results (mW/g)	
Mode		f (MHz)		1g-SAR	10g-SAR
	1	2412	Main	0.550	0.216
802.11b	6	2437	Main	0.755	0.294
	11	2462	Main	1.130	0.437

5. Edge - Primary Portrait (No SAR)

Separation distance: 20.23 cm from Main antenna-to-phantom

This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.

6. Edge - Secondary Portrait (Main Antenna)

Separation distance: 2.75 cm from Main antenna-to-phantom

Mode	Channel	f (MHz)	Antenna	Results (mW/g)	
Wode				1g-SAR	10g-SAR
	1	2412	Main		
802.11b	6	2437	Main	0.680	0.292
	11	2462	Main	0.552	0.235

12. SAR TEST PLOTS

Laptop - Lap-held

Date/Time: 10/6/2010 8:39:37 PM

Test Laboratory: Compliance Certification Services

Laptop Mode_Lap-hepd

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_{\nu} = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

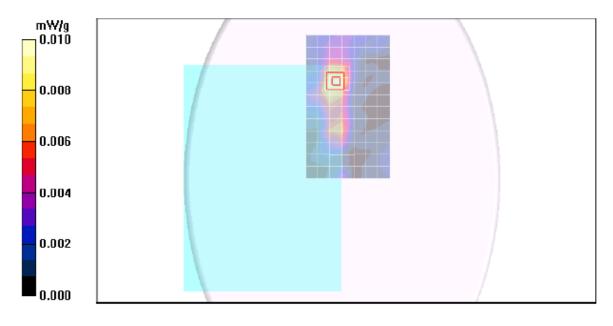
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.010 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 1.53 V/m; Power Drift = -0.233 dB

Peak SAR (extrapolated) = 0.026 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00607 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.015 mW/g

Tablet – Bottom face

Date/Time: 10/6/2010 7:37:01 PM

Test Laboratory: Compliance Certification Services

Tablet - Bottom face

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; σ = 1.94 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

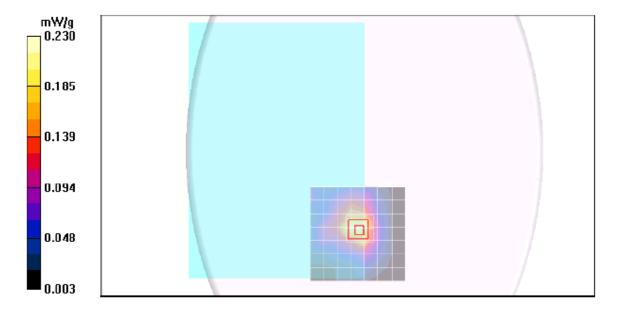
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 \$N3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (8x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.230 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 3.08 V/m; Power Drift = -0.165 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.113 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.258 mW/g

Edge - Secondary Landscape

Date/Time: 10/6/2010 1:35:42 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.91 \text{ mho/m}$; $\epsilon_r = 53.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

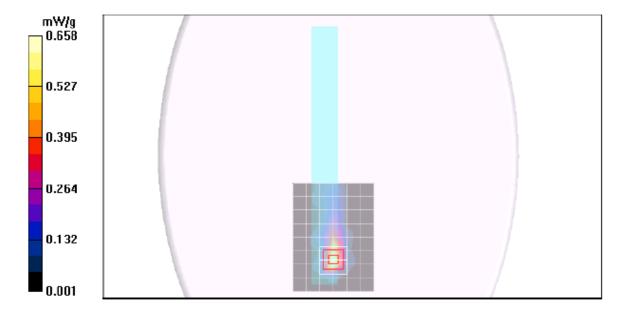
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b L-ch Mian Ant/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.658 mW/g

802.11b L-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 5.67 V/m; Power Drift = 0.232 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.550 mW/g; SAR(10 g) = 0.216 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.773 mW/g

Edge - Secondary Landscape

Date/Time: 10/6/2010 1:08:41 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

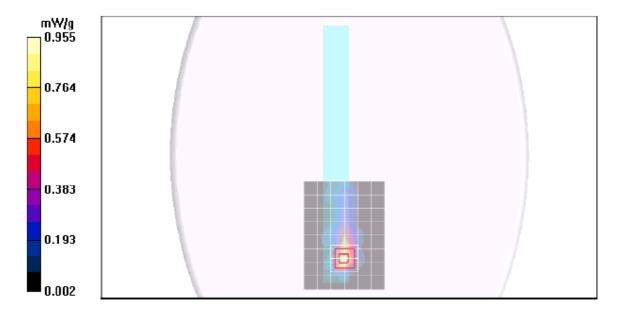
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Mian Ant/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.955 mW/g

802.11b M-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 6.41 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 0.755 mW/g; SAR(10 g) = 0.294 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.07 mW/g

Edge - Secondary Landscape

Date/Time: 10/6/2010 5:39:50 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.98 \text{ mho/m}$; $\epsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

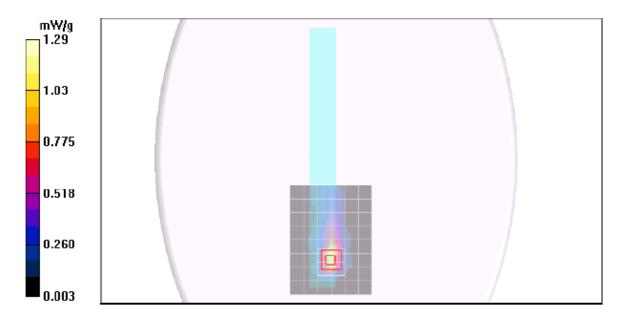
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b H-ch Mian Ant/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.29 mW/g

802.11b H-ch Mian Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm


Reference Value = 8.03 V/m; Power Drift = 0.155 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.437 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

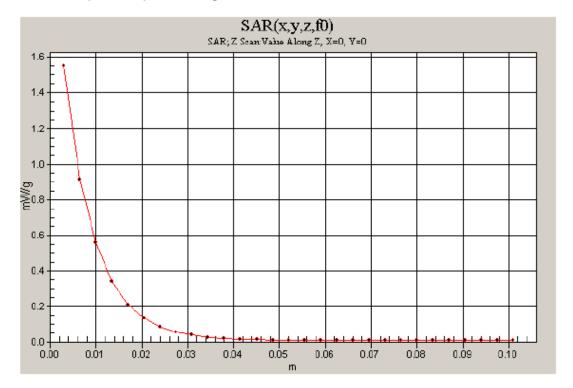
Maximum value of SAR (measured) = 1.56 mW/g

Z-Axial Plot from worst-case data

Date/Time: 10/6/2010 6:01:42 PM

Test Laboratory: Compliance Certification Services

Secondary Landscape


DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

802.11b H-ch Mian Ant/Z Scan (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=3.5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.55 mW/g

Edge - Secondary Portrait

Date/Time: 10/6/2010 6:42:17 PM

Test Laboratory: Compliance Certification Services

Secondary Portrait

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.94 \text{ mho/m}$; $\epsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

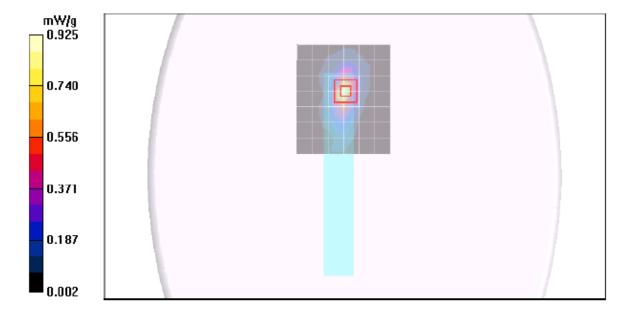
DASY4 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b M-ch Main Ant/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.925 mW/g


802.11b M-ch Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 2.48 V/m; Power Drift = 0.105 dB

Peak SAR (extrapolated) = 1.66 W/kg

SAR(1 g) = 0.680 mW/g; SAR(10 g) = 0.292 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Edge - Secondary Portrait

Date/Time: 10/6/2010 6:21:12 PM

Test Laboratory: Compliance Certification Services

Secondary Portrait

DUT: Atheros; Type: AR5B95; Serial: NA

Communication System: 802.11b/g 2.4GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2462 MHz; σ = 1.98 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³

Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY4 Configuration:

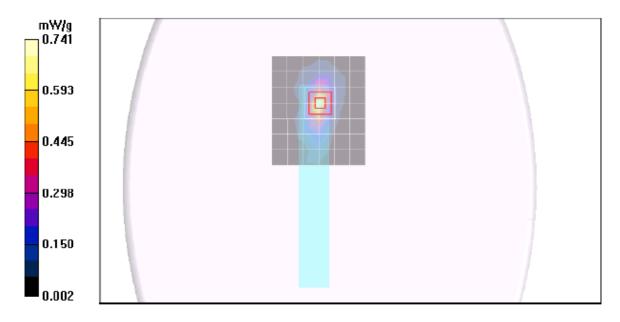
- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV3 SN3531; ConvF(7.58, 7.58, 7.58); Calibrated: 2/23/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn427; Calibrated: 7/21/2010
- Phantom: Flat Phantom ELI4.0; Type: QDOVA001BA; Serial: SN:1003
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

802.11b H-ch Main Ant/Area Scan (7x8x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.741 mW/g

802.11b H-ch Main Ant/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

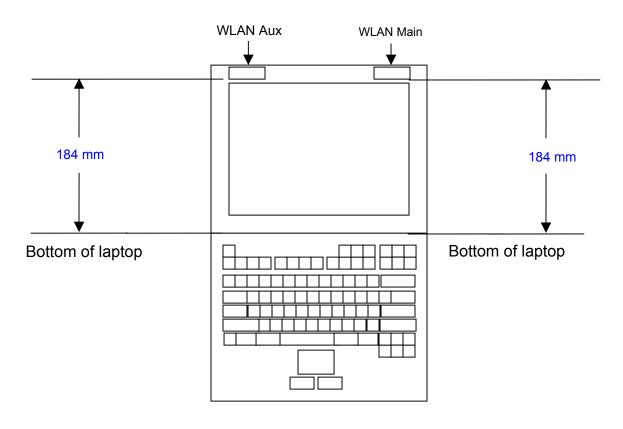

Reference Value = 2.21 V/m; Power Drift = 0.150 dB

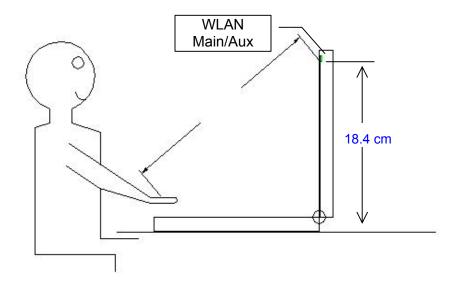
Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.552 mW/g; SAR(10 g) = 0.235 mW/g

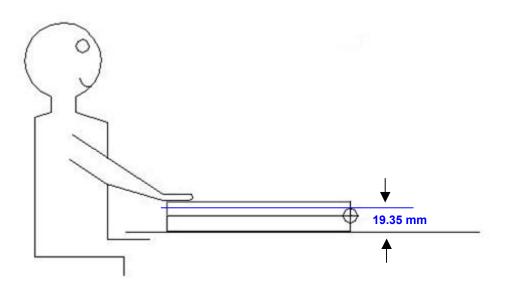
Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.765 mW/g

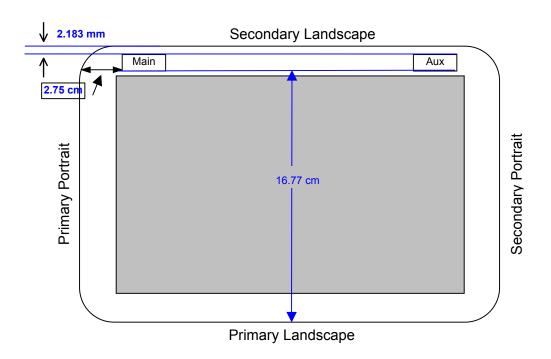

13. ATTACHMENTS


<u>No.</u>	Contents	No. of page (s)
1	Certificate of E-Field Probe - EX3DV3 SN 3531	11
2	Certificate of System Validation Dipole - D2450 SN:706	9

14. ANTENNA LOCATIONS AND SEPARATION DISTANCES


Laptop Mode

(with display open at 90° to the keyboard)



Tablet - Bottom Face

<u>Tablet – Edges (Landscape & Portrait)</u>

