ATTACHMENT E – DIPOLE CALIBRATION DATA TEL: +82 31 639 8518 FAX: +82 31 639 8525 <u>www.hct.co.kr</u> Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client H-CT (Dymstec) Certificate No: CD835V3-1024_Apr05 | Object | CD835V3 - SN: 1024 | | | |--|----------------------------------|---|-------------------------------| | Calibration procedure(s) | QA CAL-20.v3
Calibration proc | | | | Calibration date: | April 27, 2005 | | | | Condition of the calibrated item | In Tolerance | | | | All calibrations have been conduct Calibration Equipment used (M&T | E critical for calibration) | mperature (22 ± 3)°C and humidity < 70%. | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Power meter EPM-442A | GB37480704 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | Power sensor HP 8481A | US37292783 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | 20 dB Attenuator | SN: 5086 (20g) | 10-Aug-04 (METAS, No 251-00402) | Aug-05 | | 0 dB Attenuator | SN: 5047.2 (10r) | 10-Aug-04 (METAS, No 251-00402) | Aug-05 | | econdary Standards | ID# | Check Date (in house) | Scheduled Check | | ower meter EPM-4419B | GB43310788 | 10-Aug-03 (SPEAG, in house check Jan-04) | In house check: Oct-05 | | ower sensor HP 8481A | MY41092312 | 10-Aug-03 (SPEAG, in house check Jan-04) | In house check: Oct-05 | | ower sensor HP 8481A | MY41093315 | 10-Aug-03 (SPEAG, in house check Jan-04) | In house check: Oct-05 | | 100,000 PM 120,000 00 00 00 00 00 00 00 00 00 00 00 0 | US37390585 | 18-Oct-01 (SPEAG, in house check Nov-04) | In house check: Nov-05 | | etwork Analyzer HP 8753E | 1039.2000.06 | 26-Jul-04 (SPEAG, in house check Jul-04) | In house check: Jan-06 | | 300 mm mm | | 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) | Calibration, Jun-05 | | RF generator R&S SMT06 | SN: 901 | | Calibration, Jan-06 | | RF generator R&S SMT06
DAE4 | SN: 901
SN: 2336 | 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) | | | RF generator R&S SMT06
DAE4
Probe ER3DV6 | | 20-Jan-05 (SPEAG, No. ER3-2336_Jan05)
10-Dec-04 (SPEAG, No. H3-6065-Dec04) | Calibration, Dec-05 | | Network Analyzer HP 8753E
RF generator R&S SMT06
DAE4
Probe ER3DV6
Probe H3DV6 | SN: 2336 | | Calibration, Dec-05 Signature | | RF generator R&S SMT06
DAE4
Probe ER3DV6
Probe H3DV6 | SN: 2336
SN: 6065 | 10-Dec-04 (SPEAG, No. H3-6065-Dec04) | | | RF generator R&S SMT06
DAE4
Probe ER3DV6 | SN: 2336
SN: 6065
Name | 10-Dec-04 (SPEAG, No. H3-6065-Dec04) Function Laboratory Technician | Signature | Certificate No: CD835V3-1024_Apr05 Page 1 of 6 accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard) Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland #### References ANSI-PC63.19-2001 (Draft 3.x, 2005) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD835V3-1024_Apr05 Page 2 of 6 #### 1 Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY4 | V4.5 B19 | |------------------------------------|------------------|----------------------| | DASY PP Version | SEMCAD | V1.8 B146 | | Phantom | HAC Test Arch | SD HAC P01 BA, #1002 | | Distance Dipole Top - Probe Center | 10 mm | | | Scan resolution | dx, dy = 5 mm | area = 20 x 180 mm | | Frequency | 835 MHz ± 1 MHz | | | Forward power at dipole connector | 20.0 dBm = 100mW | | | Input power drift | < 0.05 dB | | # 2 Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured | 100 mW forward power | 0.453 A/m | Uncertainty for H-field measurement: 8.2% (k=2) | E-field 10 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured above high end | 100 mW forward power | 166.8 V/m | | Maximum measured above low end | 100 mW forward power | 159.1 V/m | | Averaged maximum above arm | 100 mW forward power | 163.0 V/m | Uncertainty for E-field measurement: 12.8% (k=2) # 3 Appendix # 3.1 Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|----------------------| | 800 MHz | 17.7 dB | (42.3 j9.2) Ohm | | 835 MHz | 24.8 dB | (50.1 + j6.3) Ohm | | 900 MHz | 17.5 dB | (51.1 - j13.5) Ohm | | 950 MHz | 18.4 dB | (56.1 + j11.3) Ohm | | 960 MHz | 13.8 dB | (69.6 + j14.8) Ohm | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1024_Apr05 Page 3 of 6 # 3.3 Measurement Sheets # 3.3.1 Return Loss and Smith Chart Certificate No: CD835V3-1024_Apr05 Page 4 of 6 # 3.3.2 DASY4 H-field result Date/Time: 27.4.2005 12:56:18 Test Laboratory: SPEAG, Zurich, Switzerland DUT: HAC Dipole 835 MHz; Type: D835V3; Serial: 1024 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: H Dipole Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: H3DV6 SN6065; ; Calibrated: 12/10/2004 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 6/29/2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA; Serial: 1002 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146 # H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 0.453 A/m # Hearing Aid Near-Field Category: M2 (AWF 0 dB) | H in | A/m (| Time | averaged | ľ | |------|-------|------|----------|---| | | | | | | | | | 0 | |------------------------|------------------------|---| | Grid 1
0.361 | Grid 2
0.395 | | | Grid 4
0.417 | Grid 5
0.453 | | | Grid 7
0.369 | Grid 8
0.401 | | H in A/m (Slot averaged) | Grid 1
0.361 | Grid 2
0.395 | 200 000 0000 0000 | |------------------------|------------------------|-------------------| | | Grid 5
0.453 | | | | Grid 8
0.401 | | Certificate No: CD835V3-1024_Apr05 Page 5 of 6 # 3.3.3 DASY4 E-Field result Date/Time: 27.4.2005 16:06:42 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1024 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Dipole Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 1/20/2005 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 6/29/2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA; Serial: 1002 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146 # E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 166.8 V/m # Hearing Aid Near-Field Category: M2 (AWF 0 dB) | E in V/m | (Time ave | raged) | |----------|-------------|--------| | Grid 1 | Grid 2 | Grid 3 | | 154.4 | 159.1 | 154.6 | | Grid 4 | Grid 5 | Grid 6 | | 83.3 | 85.9 | 83.2 | | Grid 7 | Grid 8 | Grid 9 | 157.5 | 166.8 | 164.6 E in V/m (Slot averaged) Grid 1 Grid 2 Grid 3 154.4 159.1 154.6 Grid 5 Grid 6 Grid 4 83.3 85.9 83.2 Grid 7 Grid 9 Grid 8 164.6 157.5 166.8 Certificate No: CD835V3-1024_Apr05 Page 6 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client H-CT (Dymstec) Certificate No: CD1880V3-1019_Apr05 | Object | CD1880V3 - SN | I: 1019 | | |---|--|--|---| | | | | | | Calibration procedure(s) | QA CAL-20.v3 Calibration prod | edure for dipoles in air | | | | | | | | Calibration date: | April 28, 2005 | | | | Condition of the calibrated item | In Tolerance | | | | This polibration podificate document | cents the traceability to a | stignal standards, which realize the physical units of | f magguramente (SI) | | | and the state of t | ational standards, which realize the physical units of
emperature (22 ± 3)°C and humidity < 70%. | measurements (51). | | | | | | | Calibration Equipment used (M& | TE critical for calibration) | | | | Drivers Chanderde | ID# | Cal Data (Calibrated by Cadificate Na.) | Scheduled Calibration | | Primary Standards | | Cal Date (Calibrated by, Certificate No.) | | | James motor EDM 4424 | | | | | | GB37480704 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | Power sensor HP 8481A | US37292783 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | Power sensor HP 8481A
20 dB Attenuator | | | | | Power sensor HP 8481A
20 dB Attenuator
10 dB Attenuator | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402) | Oct-05
Aug-05
Aug-05 | | Power sensor HP 8481A
20 dB Attenuator
10 dB Attenuator
Secondary Standards | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
Check Date (in house) | Oct-05
Aug-05
Aug-05
Scheduled Check | | Power sensor HP 8481A
20 dB Attenuator
10 dB Attenuator
Secondary Standards
Power meter EPM-4419B | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
Check Date (in house)
10-Aug-03 (SPEAG, in house check Jan-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 | | Power sensor HP 8481A
20 dB Attenuator
10 dB Attenuator
Secondary Standards
Power meter EPM-4419B
Power sensor HP 8481A | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID#
GB43310788
MY41092312 | 12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
Check Date (in house)
10-Aug-03 (SPEAG, in house check Jan-04)
10-Aug-03 (SPEAG, in house check Jan-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID#
GB43310788
MY41092312
MY41093315 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Oct-05 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID #
GB43310788
MY41092312
MY41093315
US37390585 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-08 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID #
GB43310788
MY41092312
MY41093315
US37390585
1039.2000.06 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-06 In house check: Nov-06 In house check: Jan-06 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID #
GB43310788
MY41092312
MY41093315
US37390585
1039.2000.06
SN: 901 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-05 In house check: Nov-05 In house check: Jan-06 Calibration, Jun-05 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID#
GB43310788
MY41092312
MY41093315
US37390585
1039.2000.06
SN: 901
SN: 2336 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-05 In house check: Nov-05 In house check: Jan-06 Calibration, Jun-05 Calibration, Jan-06 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID #
GB43310788
MY41092312
MY41093315
US37390585
1039.2000.06
SN: 901 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-05 In house check: Nov-05 In house check: Jan-06 Calibration, Jun-05 | | Power meter EPM-442A Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 Probe H3DV6 | US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
ID#
GB43310788
MY41092312
MY41093315
US37390585
1039.2000.06
SN: 901
SN: 2336 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-05 In house check: Nov-05 In house check: Jan-06 Calibration, Jun-05 Calibration, Jan-06 | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 Probe H3DV6 | US37292783 SN: 5086 (20g) SN: 5047.2 (10r) ID # GB43310788 MY41092312 MY41093315 US37390585 1039.2000.06 SN: 901 SN: 2336 SN: 6065 | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) 10-Dec-04 (SPEAG, No. H3-6065-Dec04) | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Nov-05 In house check: Nov-05 In house check: Jan-06 Calibration, Jun-05 Calibration, Jan-06 Calibration, Dec-05 Signature | | Power sensor HP 8481A 20 dB Attenuator 10 dB Attenuator Secondary Standards Power meter EPM-4419B Power sensor HP 8481A Power sensor HP 8481A Network Analyzer HP 8753E RF generator R&S SMT06 DAE4 Probe ER3DV6 | US37292783 SN: 5086 (20g) SN: 5047.2 (10r) ID # GB43310788 MY41092312 MY41093315 US37390585 1039.2000.06 SN: 901 SN: 2336 SN: 6065 Name | 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 18-Oct-01 (SPEAG, in house check Nov-04) 26-Jul-04 (SPEAG, in house check Jul-04) 29-Jun-04 (SPEAG, No. DAE4-901_Jun04) 20-Jan-05 (SPEAG, No. ER3-2336_Jan05) 10-Dec-04 (SPEAG, No. H3-6065-Dec04) Function Laboratory Technician | Oct-05 Aug-05 Aug-05 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Oct-05 In house check: Nov-06 In house check: Jan-06 Calibration, Jun-05 Calibration, Dec-05 | Issued: May 30, 2005 This calibration certificate is issued as an intermediate solution until the specific calibration procedure is submitted and accepted in the frame of the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard) Certificate No: CD1880V3-1019_Apr05 Page 1 of 6 Report No.: HCT-SAR06-0209 DATE: February 20, 2006 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland # References ANSI-PC63.19-2001 (Draft 3.x, 2005) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD1880V3-1019 Apr05 Page 2 of 6 Report No.: HCT-SAR06-0209 FCC ID: PP4PN-315 DATE: February 20, 2006 #### 1 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.5 B19 | |------------------------------------|------------------|----------------------| | DASY PP Version | SEMCAD | V1.8 B146 | | Phantom | HAC Test Arch | SD HAC P01 BA, #1002 | | Distance Dipole Top - Probe Center | 10 mm | | | Scan resolution | dx, dy = 5 mm | area = 20 x 90 mm | | Frequency | 1880 MHz ± 1 MHz | | | Forward power at dipole connector | 20.0 dBm = 100mW | | | Input power drift | < 0.05 dB | | #### 2 Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured | 100 mW forward power | 0.455 A/m | Uncertainty for H-field measurement: 8.2% (k=2) | E-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured above high end | 100 mW forward power | 139.6 V/m | | Maximum measured above low end | 100 mW forward power | 136.3 V/m | | Averaged maximum above arm | 100 mW forward power | 138.0 V/m | Uncertainty for E-field measurement: 12.8% (k=2) ### 3 Appendix # 3.1 Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|---------------------| | 1710 MHz | 23.1 dB | (55.9 + j4.5) Ohm | | 1880 MHz | 20.0 dB | (56.0 + j8.7) Ohm | | 1900 MHz | 20.6 dB | (57.9 + j6.2) Ohm | | 1950 MHz | 25.1 dB | (55.7 - j1.4) Ohm | | 2000 MHz | 24.1 dB | (49.2 + i6.1) Ohm | # 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. etherator MacCo West Veste from appropriate and actual High actual High actual High Certificate No: CD1880V3-1019_Apr05 # 3.3 Measurement Sheets #### 3.3.1 Return Loss and Smith Chart Certificate No: CD1880V3-1019_Apr05 Page 4 of 6 TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr # 3.3.2 DASY4 H-field result Date/Time: 28.4.2005 09:52:17 Test Laboratory: SPEAG, Zurich, Switzerland DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1019 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: H Dipole Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: Probe: H3DV6 - SN6065; Calibrated: 10.12.2004 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 29.06.2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146 # H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 0.455 A/m # Hearing Aid Near-Field Category: M2 (AWF 0 dB) H in A/m (Time averaged) H in A/m (Slot averaged) | Grid 1 | Grid 2 | Grid 3 | |--------------|--------------|--------------| | 0.383 | 0.417 | 0.402 | | Grid 4 | Grid 5 | Grid 6 | | 0.421 | 0.455 | 0.441 | | Grid 7 | Grid 8 | Grid 9 | | 0.386 | 0.415 | 0.402 | | Grid 1 | Grid 2 | Grid 3 | |--------------|--------------|--------------| | 0.383 | 0.417 | 0.402 | | Grid 4 | Grid 5 | Grid 6 | | 0.421 | 0.455 | 0.441 | | Grid 7 | Grid 8 | Grid 9 | | 0.386 | 0.415 | 0.402 | Certificate No: CD1880V3-1019_Apr05 Page 5 of 6 #### 3.3.3 DASY4 E-Field result Date/Time: 28.04.2005 08:27:51 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1019 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: E Dipole Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: - Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 20.01.2005 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 29.06.2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146 # E Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm Maximum value of Total field (slot averaged) = 139.6 V/m # Hearing Aid Near-Field Category: M2 (AWF 0 dB) E in V/m (Time averaged) E in V/m (Slot averaged) | Grid 1 | Grid 2 | Grid 3 | |--------|--------|-------------| | 132.2 | 136.3 | 130.9 | | Grid 4 | Grid 5 | Grid 6 | | 91.4 | 93.1 | 88.0 | | Grid 7 | Grid 8 | Grid 9 | | 133.8 | 139.6 | 133.5 | | Grid 1 | Grid 2 | Grid 3 | |--------|--------|-------------| | 132.2 | 136.3 | 130.9 | | Grid 4 | Grid 5 | Grid 6 | | 91.4 | 93.1 | 88.0 | | Grid 7 | Grid 8 | Grid 9 | | 133.8 | 139.6 | 133.5 | 0 415 157.0 171 Certificate No: CD1880V3-1019_Apr05 Page 6 of 6