FCC Test Report

Report No.: AGC00569220204FE03

FCC ID : PP23120

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Multi-mode wireless keyboard

BRAND NAME : RAPOO

MODEL NAME : E9050G, E9700M, E9350G, E9600M, E9550G, E9800M

APPLICANT: ShenZhen Rapoo Technology Co., Ltd.

DATE OF ISSUE : Mar. 05, 2022

STANDARD(S) : FCC Part 15.247

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Report No.: AGC00569220204FE03 Page 2 of 44

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Mar. 05, 2022	Valid	Initial Release

Report No.: AGC00569220204FE03 Page 3 of 44

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. RELATED SUBMITTAL(S)/GRANT(S)	7
2.4. TEST METHODOLOGY	7
2.5. SPECIAL ACCESSORIES	
2.6. EQUIPMENT MODIFICATIONS	
2.7. ANTENNA REQUIREMENT	7
3. MEASUREMENT UNCERTAINTY	8
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF TESTED SYSTEM	10
5.2. EQUIPMENT USED IN TESTED SYSTEM	
5.3. SUMMARY OF TEST RESULTS	
6. TEST FACILITY	11
7. PEAK OUTPUT POWER	12
7.1. MEASUREMENT PROCEDURE	12
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
7.3. LIMITS AND MEASUREMENT RESULT	13
8. BANDWIDTH	15
8.1. MEASUREMENT PROCEDURE	15
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
8.3. LIMITS AND MEASUREMENT RESULTS	15
9. CONDUCTED SPURIOUS EMISSION	19
9.1. MEASUREMENT PROCEDURE	19
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	19
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	19
10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	26

Page 4 of 44

10.1. MEASUREMENT PROCEDURE	26
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	26
10.3. MEASUREMENT EQUIPMENT USED	26
10.4. LIMITS AND MEASUREMENT RESULT	26
11. RADIATED EMISSION	28
11.1. MEASUREMENT PROCEDURE	28
11.2. TEST SETUP	29
11.3. LIMITS AND MEASUREMENT RESULT	30
11.4. TEST RESULT	30
12. LINE CONDUCTED EMISSION TEST	40
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST	40
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	40
12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	41
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	42
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	44
APPENDIX B: PHOTOGRAPHS OF EUT	44

Page 5 of 44

1. VERIFICATION OF COMPLIANCE

Applicant	ShenZhen Rapoo Technology Co., Ltd.		
Address	22, Jinxiu Road East, Pingshan District, Shenzhen, China		
Manufacturer	ShenZhen Rapoo Technology Co., Ltd.		
Address 22, Jinxiu Road East, Pingshan District, Shenzhen, China			
Factory	ShenZhen Rapoo Technology Co., Ltd.		
Address	22, Jinxiu Road East, Pingshan District, Shenzhen, China		
Product Designation	Multi-mode wireless keyboard		
Brand Name	RAPOO		
Test Model	E9050G		
Series Model	E9700M, E9350G, E9600M, E9550G, E9800M		
Declaration of Difference	All the series models are the same as the test model except for the model names.		
Date of test	Feb. 28, 2022 to Mar. 05, 2022		
Deviation	No any deviation from the test method		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-US-BLE/RF		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC part 15.247.

Reviewed By

Calvin Liu
(Reviewer)

Mar. 05, 2022

Page 6 of 44

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as a "Multi-mode wireless keyboard". It is designed by way of utilizing the GFSK technology to achieve the system operation.
A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz		
RF Output Power	2.919dBm (Max)		
Bluetooth Version	V5.0		
Modulation	BR □GFSK, EDR □π /4-DQPSK, □8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps		
Number of channels	40 Channel		
Antenna Designation	FPC Antenna (Comply with requirements of the FCC part 15.203)		
Antenna Gain	4.894dBi		
Hardware Version	V1.1		
Software Version	V1.0		
Power Supply	DC 3.7V by battery or DC 5V by PC		

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band Channel Number		Frequency
2400~2483.5MHz	0	2402 MHz
	1	2404 MHz
	:	:
	38	2478 MHz
	39	2480 MHz

Page 7 of 44

2.3. RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: PP23120** filing to comply with the FCC Part 15.247 requirements.

2.4. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.5. SPECIAL ACCESSORIES

Refer to section 5.2.

2.6. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7. ANTENNA REQUIREMENT

This intentional radiator is designed with a permanently attached antenna of an antenna to ensure that no antenna other than that furnished by the responsible party shall be used with the device. For more information of the antenna, please refer to the APPENDIX B: PHOTOGRAPHS OF EUT.

Page 8 of 44

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 3.1 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 4.0 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.8 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	U _c = ±2 %
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

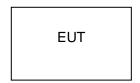
Page 9 of 44

4. DESCRIPTION OF TEST MODES

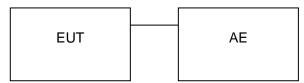
NO.	TEST MODE DESCRIPTION		
1	Low channel TX		
2	Middle channel TX		
3	High channel TX		

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.


Software Setting BK32xx RF Test - V1.9.1_en(Apr 13 2020) File(<u>F</u>) Help(<u>H</u>) RF TEST сомм COM2 Close HW TEST Exit Test mode DateType Enter DUT Config NULL PacketType DateRate 1Mbps **▼** BLE ☐ JPN(TELEC) BLE MODE! CMD RSP: d_mode=1,freq=28,powerlevel=3,p_mode=1,hopping=0 PN9 BLE mode! [CMD] config,d_mode:1,freq:80, power:3, p_mode:1, hopping:0, rx_mode:0, afh:0, jpn:0, ble:1,dr:1Mbps. Serial port COM2 init OK

Page 10 of 44


5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF TESTED SYSTEM

Radiated Emission Configure:

Conducted Emission Configure:

5.2. EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Multi-mode wireless keyboard	E9050G	PP23120	EUT
2	PC	D15	N/A	AE
3	Adapter(PC)	HW-200325cpo	N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(3)	Peak Output Power	Compliant
15.247 (a)(2)	6 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.247 (e)	Maximum Conducted Output Power Density	Compliant
15.209	Radiated Emission	Compliant
15.207	Conducted Emission Complian	

Page 11 of 44

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance (Shenzhen) Co., Ltd is accredited by A2LA		

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

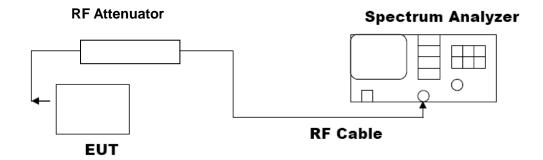
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	May 11, 2021	May 10, 2022
LISN	R&S	ESH2-Z5	100086	Jun. 09, 2021	Jun. 08, 2022
Test software	R&S	ES-K1(Ver.V1.71)	N/A	N/A	N/A

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	May 15,2021	May 14,2022
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Nov. 17, 2021	Nov. 16, 2022
2.4GHz Filter	EM Electronics	2400-2500MHz	N/A	Mar. 23, 2020	Mar. 22, 2022
Attenuator	ZHINAN	E-002	N/A	Sep. 03, 2020	Sep. 02, 2022
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Oct. 31, 2021	Oct. 30, 2023
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	May 22, 2020	May 21, 2022
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	Apr. 23, 2021	Apr. 22, 2023
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Sep. 03, 2020	Sep. 02, 2022
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 08, 2021	Jan. 07, 2023
Test software	Tonscend	JS32-RE (Ver.2.5)	N/A	N/A	N/A

Page 12 of 44

7. PEAK OUTPUT POWER


7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. RBW ≥ DTS bandwidth
- 3. VBW≥3*RBW.
- 4. SPAN≥VBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) PEAK POWER TEST SETUP

Report No.: AGC00569220204FE03 Page 13 of 44

7.3. LIMITS AND MEASUREMENT RESULT

	1101 2111111 0 71112 1112/10011211112111 1120021					
Test Data of Conducted Output Power						
Test Mode	Test Channel Peak Power Limits (MHz) (dBm) Pass or F					
	2402	1.936	≤30	Pass		
GFSK 1M	2440	2.544	≤30	Pass		
	2480	2.919	≤30	Pass		

Test Graphs of Conducted Output Power

Page 14 of 44

Page 15 of 44

8. BANDWIDTH

8.1. MEASUREMENT PROCEDURE

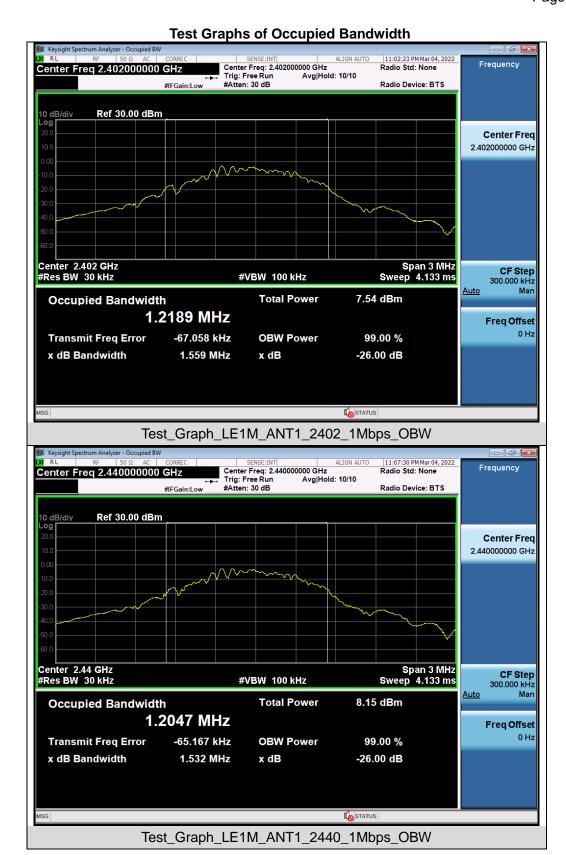
6dB bandwidth:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 kHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

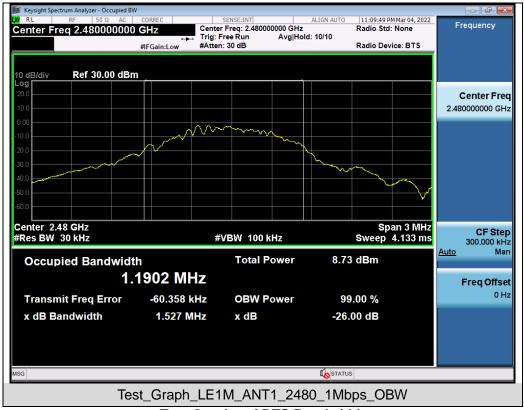
Occupied bandwidth:

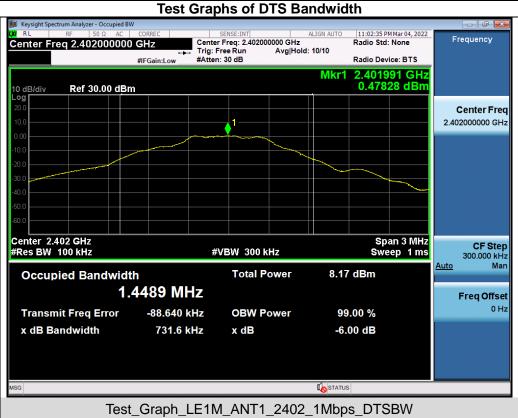
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.


8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.


8.3. LIMITS AND MEASUREMENT RESULTS


Test Data of Occupied Bandwidth and DTS Bandwidth						
Test Mode	Test Channel (MHz)	· ·				
	2402	1.219	0.732	≥0.5	Pass	
GFSK 1M	2440	1.205	0.723	≥0.5	Pass	
	2480	1.190	0.730	≥0.5	Pass	

Page 16 of 44

Page 17 of 44

Page 18 of 44

Page 19 of 44

9. CONDUCTED SPURIOUS EMISSION

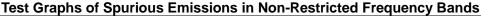
9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 for compliance to FCC PART 15.247 requirements.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

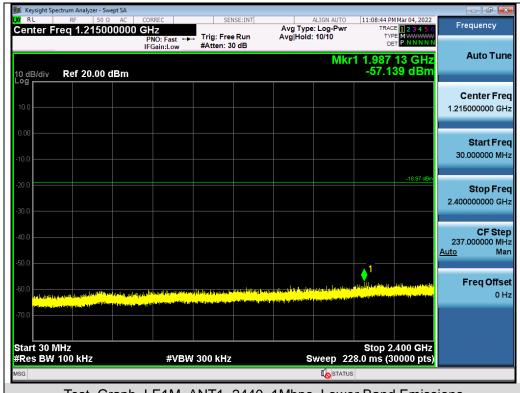

9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT					
Annilla abda di insida	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 kHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.	At least -20dBc than the reference level	PASS			

Page 20 of 44

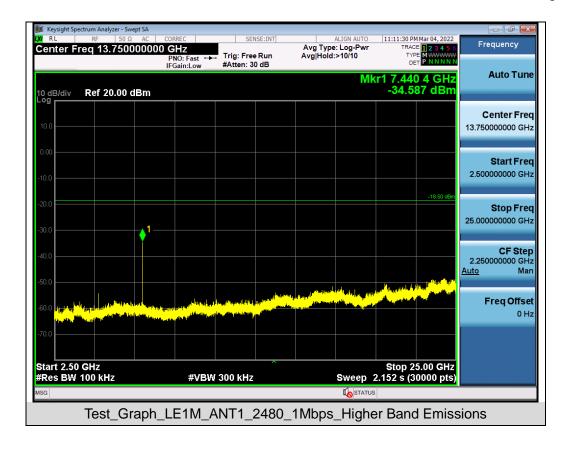

Page 21 of 44

Test_Graph_LE1M_ANT1_2402_1Mbps_Higher Band Emissions

Page 22 of 44

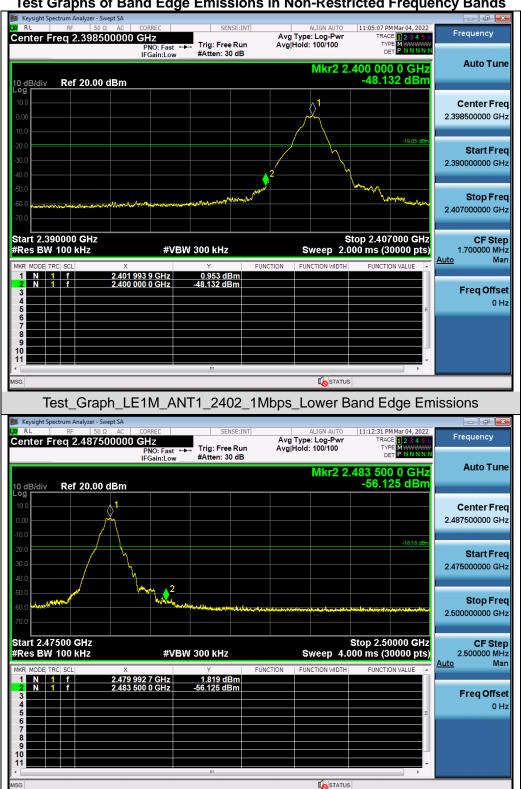
Test_Graph_LE1M_ANT1_2440_1Mbps_Lower Band Emissions
rum Analyzer - Swept SA

Page 23 of 44


Reyarging Ref S0 Ω AC Conter Freq 1.215000000 GHz

PNO: Fast → IFGain:Low 11:11:03 PM Mar 04, 2022

TRACE 1 2 3 4 5 6


TYPE MWWWWW Frequency Avg Type: Log-Pwr Avg|Hold: 10/10 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 2.123 73 GHz -57.234 dBm 10 dB/div Ref 20.00 dBm Center Freq 1.215000000 GHz Start Freq 30.000000 MHz Stop Freq 2.400000000 GHz **CF Step** 237.000000 MHz Man <u>Auto</u> **Freq Offset** Stop 2.400 GHz Sweep 228.0 ms (30000 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Test_Graph_LE1M_ANT1_2480_1Mbps_Lower Band Emissions

Page 24 of 44

Page 25 of 44

Test_Graph_LE1M_ANT1_2480_1Mbps_Higher Band Edge Emissions

Page 26 of 44

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

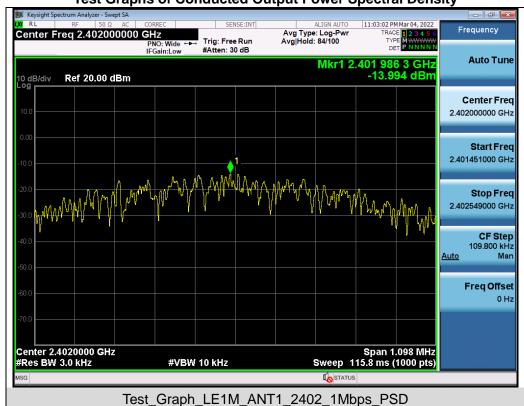
10.1. MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set the SPA Trace 1 Max hold, then View.

Note: The method of PKPSD in the KDB 558074 item 8.4 was used in this testing.

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer to Section 7.2.


10.3. MEASUREMENT EQUIPMENT USED

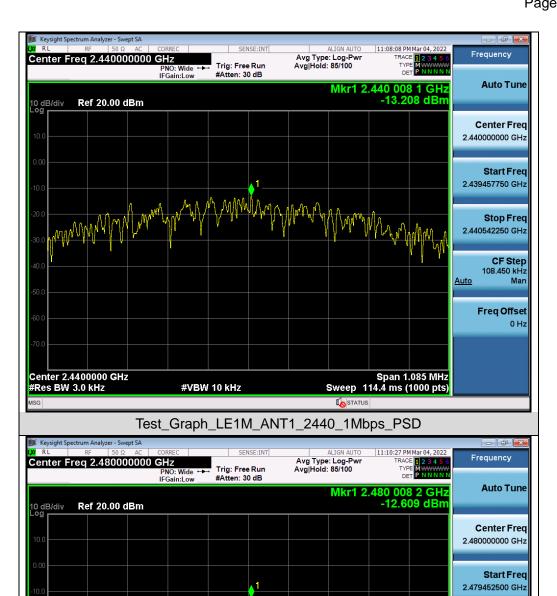
Refer to Section 6.

10.4. LIMITS AND MEASUREMENT RESULT

Test Data of Conducted Output Power Spectral Density						
Test Mode	Test Channel Power density Limit (MHz) (dBm/3kHz) Pass					
	2402	-13.994	≤8	Pass		
GFSK 1M	2440	-13.208	≤8	Pass		
	2480	-12.609	≤8	Pass		

Report No.: AGC00569220204FE03 Page 27 of 44

Stop Freq 2.480547500 GHz


CF Step 109.500 kHz

Freq Offset

Man

<u>Auto</u>

Span 1.095 MHz Sweep 115.5 ms (1000 pts)

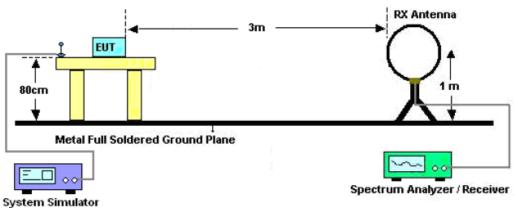
Center 2.4800000 GHz #Res BW 3.0 kHz

#VBW 10 kHz

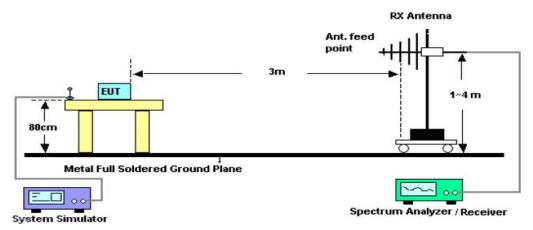
Test_Graph_LE1M_ANT1_2480_1Mbps_PSD

Page 28 of 44

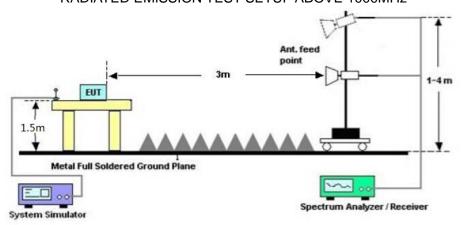
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


Page 29 of 44

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 30 of 44

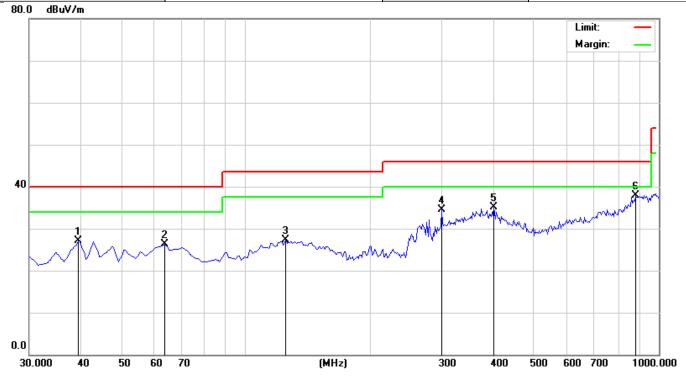
11.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

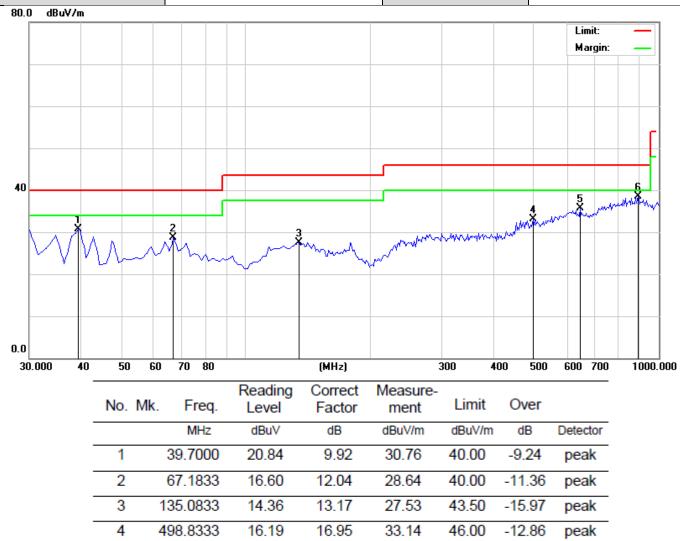
11.4. TEST RESULT


Radiated emission below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

Report No.: AGC00569220204FE03 Page 31 of 44

Radiated emission from 30MHz to 1000MHz


EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		39.7000	17.11	9.92	27.03	40.00	-12.97	peak
2		63.9500	14.63	11.73	26.36	40.00	-13.64	peak
3		125.3833	14.36	12.88	27.24	43.50	-16.26	peak
4		299.9833	18.13	16.43	34.56	46.00	-11.44	peak
5		400.2167	16.42	18.67	35.09	46.00	-10.91	peak
6	*	881.9833	15.72	22.25	37.97	46.00	-8.03	peak

Page 32 of 44

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

20.04

22.62

35.75

38.49

-10.25

-7.51

peak

peak

46.00

46.00

RESULT: PASS Note:

1. Factor=Antenna Factor + Cable loss, Over=Measurement-Limit.

645.9500

890.0667

5

6 *

2. All test modes had been tested. The mode 3 is the worst case and recorded in the report.

15.71

15.87

Page 33 of 44

Radiated emission above 1GHz

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	43.38	0.08	43.46	74	-30.54	peak
4804.000	35.31	0.08	35.39	54	-18.61	AVG
7206.000	38.67	2.21	40.88	74	-33.12	peak
7206.000	31.25	2.21	33.46	54	-20.54	AVG
Remark:	•		•		•	•

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.000	44.41	0.08	44.49	74	-29.51	peak
4804.000	34.86	0.08	34.94	54	-19.06	AVG
7206.000	38.28	2.21	40.49	74	-33.51	peak
7206.000	30.65	2.21	32.86	54	-21.14	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Report No.: AGC00569220204FE03 Page 34 of 44

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4880.000	44.62	0.14	44.76	74	-29.24	peak	
4880.000	35.75	0.14	35.89	54	-18.11	AVG	
7320.000	39.69	2.36	42.05	74	-31.95	peak	
7320.000	31.55	2.36	33.91	54	-20.09	AVG	
Remark:							
- actor = Anter	na Factor + Cabl	e Loss – Pre-	amplifier.				

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4880.000	45.12	0.14	45.26	74	-28.74	peak
4880.000	38.08	0.14	38.22	54	-15.78	AVG
7320.000	40.43	2.36	42.79	74	-31.21	peak
7320.000	32.47	2.36	34.83	54	-19.17	AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 35 of 44

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

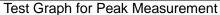
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	44.69	0.22	44.91	74	-29.09	peak	
4960.000	35.44	0.22	35.66	54	-18.34	AVG	
7440.000	38.69	2.64	41.33	74	-32.67	peak	
7440.000	29.47	2.64	32.11	54	-21.89	AVG	
Remark:							
Factor = Anten	Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

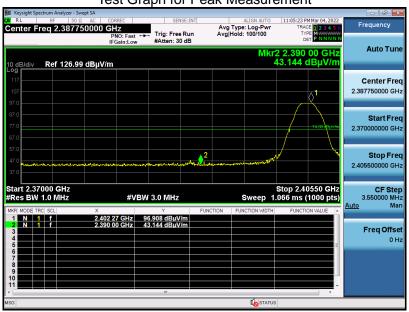
EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4960.000	42.89	0.22	43.11	74	-30.89	peak	
4960.000	34.07	0.22	34.29	54	-19.71	AVG	
7440.000	38.65	2.64	41.29	74	-32.71	peak	
7440.000	29.73	2.64	32.37	54	-21.63	AVG	
Remark:							
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

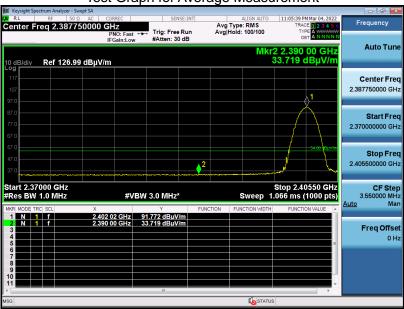
RESULT: PASS

The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

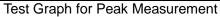

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin=Level-Limit.

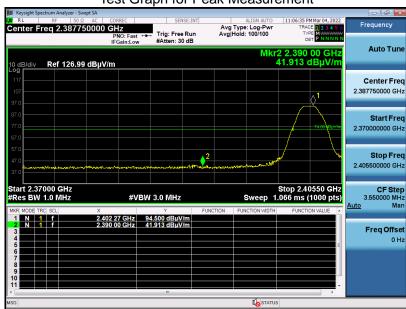

The "Factor" value can be calculated automatically by software of measurement system.

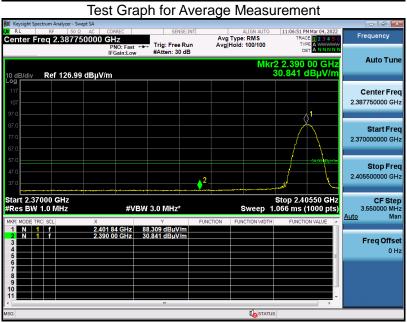
Page 36 of 44

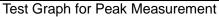

Test result for band edge emission at restricted bands

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal





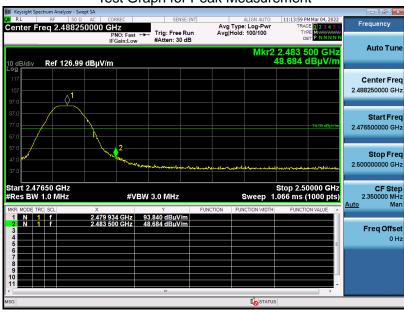


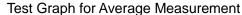

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Test Graph for Average Measurement © RL RF | SO Q AC | CORREC |


Center Freq 2.488250000 GHz


PNO: Fast → Free Run


FGain:Low #Atten: 30 dB ALIGN AUTO
Avg Type: RMS
Avg|Hold: 100/100 Frequency Mkr2 2.483 500 GH; 35,860 dBµV/n Auto Tune Ref 126.99 dBμV/m Center Freq 2.488250000 GHz Start Freq 2.476500000 GHz Stop Freq 2.500000000 GHz Stop 2.50000 GHz Sweep 1.066 ms (1000 pts) Start 2.47650 GHz #Res BW 1.0 MHz **CF Step** 2.350000 MHz Man #VBW 3.0 MHz* 2.480 076 GHz 92.725 dBµV/m 2.483 500 GHz 35.860 dBµV/m Freq Offset

Page 39 of 44

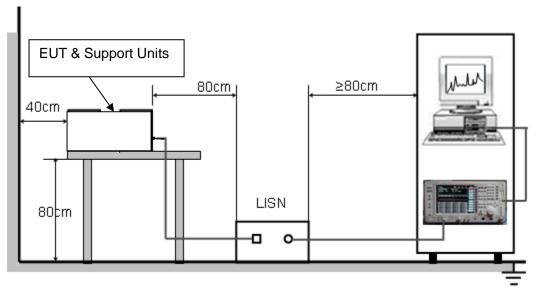
EUT	Multi-mode wireless keyboard	Model Name	E9050G
Temperature	25° C	Relative Humidity	55%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

Page 40 of 44

12. LINE CONDUCTED EMISSION TEST


12.1. LIMITS OF LINE CONDUCTED EMISSION TEST

Francis	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.50\,\mathrm{MHz}$.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

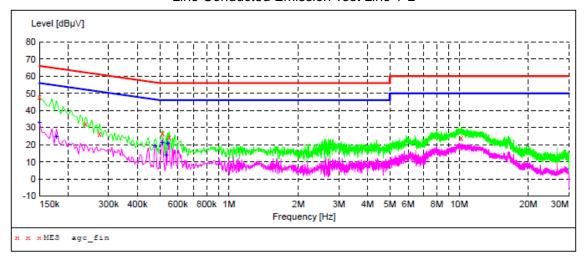
Page 41 of 44

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.


12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

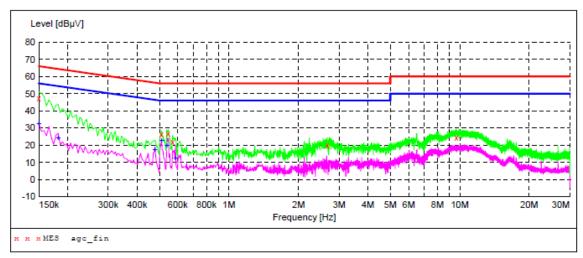
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

Page 42 of 44

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "agc_fin"


2022/3/3 14 Frequency MHz	Level	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.150000	47.60	6.9	66	18.4	QP	L1
0.238000	32.20	6.3	62	30.0	QP	L1
0.274000	26.50	6.1	61	34.5	QP	L1
0.514000	27.00	5.4	56	29.0	QP	L1
0.550000	24.20	5.4	56	31.8	QP	L1
10.206000	23.90	6.9	60	36.1	QP	L1

MEASUREMENT RESULT: "agc_fin2"

2022/3/3 14:2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line
0.150000	33.20	6.9	56	22.8	AV	L1
0.178000	24.90	6.7	55	29.7	AV	L1
0.478000	19.30	5.5	46		AV	L1
0.514000	21.60	5.4	46	24.4	AV	L1
0.534000	14.10	5.4	46	31.9	AV	L1
0.542000	20.80	5.4	46	25.2	AV	L1

Page 43 of 44

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "agc_fin"

2022/3/3 14:2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line
0.150000	47.30	6.9	66	18.7	QP	N
0.510000	26.40	5.4	56	29.6	QP	N
0.546000	26.70	5.4	56	29.3	QP	N
0.570000	21.90	5.4	56	34.1	QP	N
2.666000	19.80	6.5	56	36.2	QP	N
9.654000	24.40	6.9	60	35.6	QP	N

MEASUREMENT RESULT: "agc_fin2"

2022/3/3 14:2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line
0.150000	32.90	6.9	56	23.1	AV	N
0.182000	24.40	6.7	54	30.0	AV	N
0.478000	17.70	5.5	46		AV	N
0.510000	22.90	5.4	46	23.1	AV	N
0.538000	19.80	5.4	46	26.2	AV	N
0.586000	12.50	5.4	46	33.5	AV	N

RESULT: PASS

Note: All the test modes had been tested, the mode 3 was the worst case. Only the data of the worst case would be record in this test report.

Page 44 of 44

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC00569220204AP01

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to the Report No.: AGC00569220204AP02

----END OF REPORT----