

Test Report Serial Number: Test Report Date: Project Number: 45461439 R1.0 08 June 2018 1406

SAR Test Report - New Certification

Applicant:

WISYCOM VIA SPIN, 156 ROMANO D EZZELINO (VI) 36060 ITALY

	Maximum Re	ported 1g SAR	
FCC	BODY	1.16	W/kg
Gene	ral Pop. Limit:	1.60	

FCC ID:	
POUMTH400US8	
Product Model Number / HVIN	
MTH400-US8	

In Accordance With:

FCC 47 CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

IC Registration 3874A-1

© 2018 Celltech Labs Inc,

Table of Contents

1.0 DOCUMENT CONTROL	
2.0 CLIENT AND DEVICE INFORMATION	5
3.0 NORMATIVE REFERENCES	6
4.0 STATEMENT OF COMPLIANCE	7
5.0 SAR MEASUREMENT SYSTEM	8
6.0 RF CONDUCTED POWER MEASUREMENT	9
Table 6.0 Conducted Power Measurements	9
7.0 NUMBER OF TEST CHANNELS (N _c) AND CONFIGURATIONS	9
TABLE 7.0 NUMBER OF TEST CHANNELS AND CONFIGURATIONS	9
8.0 ACCESSORIES EVALUATED	
TABLE 8.0 ACCESSORIES EVALUATED	
9.0 SAR MEASUREMENT SUMMARY	
TABLE 9.0: MEASURED RESULTS	11
10.0 SCALING OF MAXIMUM MEASURE SAR	
TABLE 10.0 SAR SCALING	
TABLE 10.1 FLUID SENSITIVITY CALCULATION (1G)	
11.0 SAR EXPOSURE LIMITS	
TABLE 11.0 EXPOSURE LIMITS	
12.0 DETAILS OF SAR EVALUATION	
12.0 Day Log	
12.1 DUT SETUP AND CONFIGURATION	
12.3 General Procedures and Report	
12.4 Fluid Dielectric and Systems Performance Check	
12.5 Scan Resolution 100MHz to 2GHz 12.6 Scan Resolution 2GHz to 3GHz	
12.0 SCAN RESOLUTION 2GHZ TO SGHZ.	
13.0 MEASUREMENT UNCERTAINTIES	20
TABLE 13.0 MEASUREMENT UNCERTAINTY	
TABLE 13.1 CALCULATION OF DEGREES OF FREEDOM	
14.0 FLUID DIELECTRIC PARAMETERS	
TABLE 14.0 FLUID DIELECTRIC PARAMETERS 900MHz BODY TSL TABLE 14.1 FLUID DIELECTRIC PARAMETERS 900MHz BODY TSL	
15.0 SYSTEM VERIFICATION TEST RESULTS	
Table 15.0 System Verification Results 900MHz BODY TSL	
TABLE 15.0 SYSTEM VERIFICATION RESULTS 9000012 BODY TSL TABLE 15.1 SYSTEM VERIFICATION RESULTS 9000000000000000000000000000000000000	
16.0 SYSTEM VALIDATION SUMMARY	
Table 16.0 System Validation Summary	28

©2018 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the expressed written permission of Celltech Labs Inc. Page 2 of 51

17.0 MEASUREMENT SYSTEM SPECIFICATIONS	29
TABLE 17.0 MEASUREMENT SYSTEM SPECIFICATIONS	29
18.0 TEST EQUIPMENT LIST	
TABLE 18.0 EQUIPMENT LIST AND CALIBRATION	
19.0 FLUID COMPOSITION	
TABLE 19.0 FLUID COMPOSITION 900MHz BODY TSL	
APPENDIX A – SYSTEM VERIFICATION PLOTS	
SPC-900B May 23 2018	
APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR	
WISYCOM MTH400-US8 900B MAY 23 2018	
APPENDIX C - SETUP PHOTOS	
APPENDIX D – DUT AND ACCESSORY PHOTOS	
APPENDIX E – PROBE CALIBRATION	
APPENDIX F – DIPOLE CALIBRATION	
APPENDIX G - PHANTOM	

1.0 DOCUMENT CONTROL

Samples Tested By:	Trevor Whillock		
Report Prepared By:	Art Voss		
Report Reviewed By:	Ben Hewson		
Report Issue Number	Description	Ву	Report Issue Date
R0.0	Draft	Art Voss	05 June 2018
R1.0	Initial Release Removed IC reference from report Revised device model name and FCC ID from Report Revised company name and address on cover page and section 2.0	Art Voss	08 June 2018

2.0 CLIENT AND DEVICE INFORMATION

	Client Information					
Applicant Name	WISYCOM					
Applicant Address	VIA SPIN, 156					
Applicant Address	ROMANO D EZZELINO (VI) 36060 ITALY					
	DUT Information					
Device Identifier(s):	FCC ID: POUMTH400US8					
Type of Equipment:	Wireless Handheld Transmitter					
Device Model(s) / HVIN:	MTH400-US8					
Device Marketing Name / PMN:	MTH400-US8					
Test Sample Serial No.:	T/A Sample - Identical Prototype					
Transmit Frequency Range:	940-960 MHz					
Number of Channels:	See Section 7.0					
Manuf. Max. Rated Output Power:	Avg Power: 16.99 dBm(50mW) +/- 1dB					
	FM					
Duty Cycle:	100.0%					
DUT Power Source:	2AA Size cell (Alkaline, rechargeable NiMH or Lithium)					
Deviation(s) from standard/procedure:	None					
Modification of DUT:	None					

3.0 NORMATIVE REFERENCES

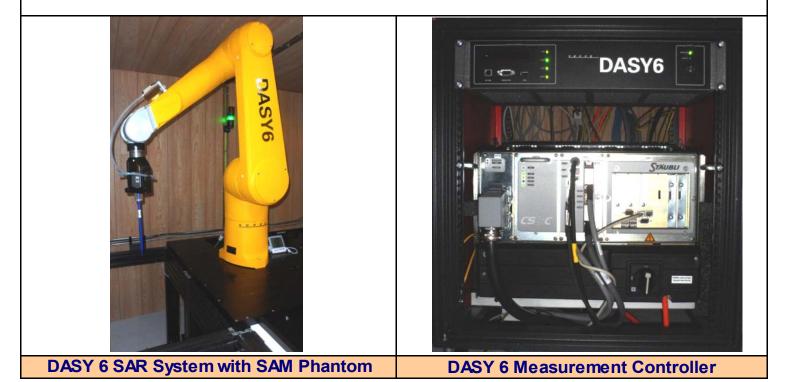
Normative References*						
ANSI / ISO 17025:2017	General Requirements for competence of testing and calibration laboratories					
	Concra requiremente los competence or courig and calibration aboratories					
FCC CFR Title 47 Part 2	Code of Federal Regulations					
Title 47:	Telecommunication					
Part 2.1093:	Radiofrequency Radiation Exposure Evaluation: Portable Devices					
Health Canada						
Safety Code 6 (2015)	Limits of Human Exposure to Radiofrequency Electromagnetic Energy in the Frequency Range					
	from 3kHz to 300GHz					
Industry Canada Spectrum	Management & Telecommunications Policy					
RSS-102 Issue 5:	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)					
IEEE International Committe	ee on Electromagnetic Safety					
IEEE 1528-2013:	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR)					
	in the Human Head from Wireless Communications Devices: Measurement Techniques					
IEC International Standard						
IEC 62209-2 2010	Human exposure to radio frequency fields from hand-held and body-mounted wireless communication					
	devices - Part 2					
FCC KDB						
KDB 865664 D01v01r04	SAR Measurement Requirements for 100MHz to 6GHz					
FCC KDB						
KDB 447498 D01v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies					
* When the issue number	or issue date is omitted, the latest version is assumed.					

4.0 STATEMENT OF COMPLIANCE

This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used.

Applicant:	Model / HVIN:	
WISYCOM	MTH400-US8	
Standard(s) Applied:	Measurement Procedure(s):	
FCC 47 CFR §2.1093	FCC KDB 865664, FCC KDB 447498	
	IEEE Standard 1528-2013, IEC 62209-2	
Reason For Issue:	Use Group:	Limits Applied:
x New Certification	x General Population / Uncontrolled	X 1.6W/kg - 1g Volume
Class I Permissive Change		8.0W/kg - 1g Volume
Class II Permissive Change	Occupational / Controlled	4.0W/kg - 10g Volume
Reason for Change:		Date(s) Evaluated:
Original Filing		May 16-23, 2018

The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report.


out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.	accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance		A. F. VOSS # 31327
--	---	--	-----------------------

5.0 SAR MEASUREMENT SYSTEM

SAR Measurement System

Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic manneguin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

6.0 RF CONDUCTED POWER MEASUREMENT

Table 6.0 Conducted Power Measurements

		Conduc	ted Po	wer M	easur	ement	ts	
		Measured	Rated	Rated			SAR Test	
	Frequency	Power	Power	Power	Delta		Channel	
Channel	(MHz)	(dBm)	(dBm)	(W)	(dBm)	Mode	(Y/N)	Battery Type
1	941.5	16.84	17.99	0.05	-1.15	FM	Y	AA NIMH
2	954	16.51	17.99	0.05	-1.48	FM	Y	AA NIMH
3	959.85	16.50	17.99	0.05	-1.49	FM	Y	AA NIMH
1	941.5	16.56	17.99	0.05	-1.43	FM	Y	AA Alkaline
2	954	16.53	17.99	0.05	-1.46	FM	Y	AA Alkaline
3	959.85	16.54	17.99	0.05	-1.45	FM	Y	AA Alkaline
1	941.5	16.99	17.99	0.05	-1.00	FM	Y	AA Lithium
2	954	16.65	17.99	0.05	-1.34	FM	Y	AA Lithium
3	959.85	16.91	17.99	0.05	-1.08	FM	Y	AA Lithium

The rated power and tolerance are stated for FM transmission mode. Some modes may produce lower than rated conducted power levels. Power measurements were taken with 3 battery types across the various FM channels and did not produce levels in excess of the Rated Average Power plus Tolerance. Power measurements were found to be the highest on Channel 1 than any other test channel. SAR was evaluated using FM mode at with the worst case battery type at the level specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported</u> SAR was not scaled down.

7.0 NUMBER OF TEST CHANNELS (*N_c*) AND CONFIGURATIONS

Table 7.0									
Number of Required Test Channels									
Transmit Frequency Number of Channels Spacing									
f _{LOW} f _{HIGH} f _C KDB 447498 IEC 62209 KDB 447498 IEC 62209 (MHz) (MHz) (MHz) (N _C) (N _C) (MHz) (MHz)									
940 960 950 3 3 10.0 10.0									
KDB 447498: N_c = RoundUp { [100 ($F_{HIGH} - F_{LOW}$)/Fc] ^{0.5} X (F_c /100) ^{0.2} } IEC 62209-1: N_c = 2 X { RoundUp [10 ($F_{HIGH} - F_{LOW}$) / F_c] } + 1									

Table 7.0 Number of Test Channels and Configurations

8.0 ACCESSORIES EVALUATED

Table 8.0 Accessories Evaluated

	Manufacturer's Accessory List							
Test Report	Manufacturer's	Description	UDC	Type II	SAR ⁽⁴⁾	SAR ⁽⁵⁾		
ID Num ber	Part Number	Description	Group ⁽²⁾	Group ⁽³⁾	Evaluated	Tested		
	Ba	attery Accessory						
P1*		AA NiMH Battery , 1.2V, 2300mAh	n/a	n/a	Y	Y		
P2*		AA Alkaline Battery , 1.5V	n/a	n/a	Y	Y		
P3*		AA Lithium, 1.5V	n/a	n/a	Y	Y		
	A	udio Accessory						
A1		Micro-mesh Stainless Steel Microphone Head	n/a	n/a	Y	Y		
	An	itenna Accessory						
T1		Integrated Antenna	n/a	n/a	Y	Y		

* This device is capable of using off-the-shelf batteries. The battery selection used for SAR evaluation was chosen under the guidance of the manufacturer.

9.0 SAR MEASUREMENT SUMMARY

Table 9.0: Measured Results

	Measured SAR Results (1g) - BODY/FACE Configuration (FCC)													
		DUT	Test			Accessor	ies		DUT	Spacing	Conducted	Measured SAR (1g)	SAR	
Date	Plot	Test Type	001	Frequency	Modulation	Antenna	Battery	Body	Audio	DUT	Antenna	Power	100% DC	Drift
	ID		M/N	(MHz)		ID	ID	ID	ID	(mm)	(mm)	(dBm)	(W/kg)	(<i>dB</i>)
						BOD	Y							
16 May 2018	B1	BODY-Pos 1	MTH4000	941.5	FM	T1	P1	n/a	n/a	14	0	16.84	0.715	0.720
16 May 2018	B2	BODY-Pos 1	MTH4000	954	FM	T1	P1	n/a	n/a	14	0	16.51	0.664	0.350
16 May 2018	B3	BODY-Pos 1	MTH4000	959.85	FM	T1	P1	n/a	n/a	14	0	16.50	0.657	0.590
17 May 2018	B4	BODY-Pos 2	MTH4000	941.5	FM	T1	P1	n/a	n/a	14	0	16.84	0.774	0.080
17 May 2018	B5	BODY-Pos 3	MTH4000	941.5	FM	T1	P1	n/a	n/a	14	0	16.84	0.643	0.260
17 May 2018	B6	BODY-Pos 4	MTH4000	941.5	FM	T1	P1	n/a	n/a	14	0	16.84	0.624	1.870
17 May 2018	B7*	BODY-Pos 5	MTH4000	941.5	FM	T1	P1	n/a	n/a	144	0	16.84	0.073	-0.140
17 May 2018	B8	BODY-Pos 2	MTH4000	941.5	FM	T1	P2	n/a	n/a	14	0	16.56	0.739	0.130
17 May 2018	B9	BODY-Pos 2	MTH4000	941.5	FM	T1	P3	n/a	n/a	14	0	17.01	0.777	0.470
23 May 2018	B10	BODY-Pos 2	MTH4000	941.5	FM	T1	P3	n/a	n/a	14	0	17.01	0.881	0.040
	SAR Limit						Spat	ial Peal	(B	ODY	RF	Exposure Category	
		FCC 4	7 CFR 2.109	3			1 Gran	n Avera	ge	1.6	W/kg	G	eneral Population	

10.0 SCALING OF MAXIMUM MEASURE SAR

Table 10.0 SAR Scaling

			Scali	ng of Ma	ximum M	easured	SAR ⁽¹⁾				
	Measured*					Measured Mea			Meas	sured	Measured
		Freq	Fluid D	Fluid Deviation			Conducted Power			rift	SAR (1g)
Plot ID	Configuration	(MHz)	Permittivity	Cond	uctivity		(dBm)		(d	B)	(W/kg)
B10	Body	941.5	-2.09%		60%		17.0		0.0	,)40	0.881
					Step 1						
				Fluid	l Sensitivity Adju	ustment					
		Scal	e				Measured				Step 1 Adjusted
		Facto	or				SAR				SAR (1g)
Plot ID		(%)		x			(W/kg)			=	(W/kg)
B10		4.62%	%	Х			0.881			=	0.922
					Step 2						
				Manufac	cturer's Tune-Up	Tolerance					
	Measu	red	Ra	ted				Stop 1 Adjug	tod SAP		Step 2 Adjusted
	Conducted	Power	Por	wer		Delta Step 1 Adjusted SAR				SAR (1g)	
Plot ID	(dBm	I)	(dE	(dBm) (dB) + (W/kg)					g)	=	(W/kg)
B10	17.0		18	3.0		1.0	+	0.92	2	=	1.160
					Step 3 (ISED)					
					Drift Adjustme	nt					
		Measu	red			Ste	p 2 Adjusted	SAR			Step 3 Adjusted
		Drift	t			010	p z Aujusteu (OAIX			SAR (1g)
Plot ID		(dB)		+			(W/kg)			=	(W/kg)
B10		0.040	0	+			1.160			=	1.160
					Step 4 (FCC))					
			Sin	nultaneous Tra	ansmission - Bl	uetooth and/o	r WiFi	-			
	Rated Output		Separation		Estin	nated		Step 2 Adjus	ted SAR		Step 4 Adjusted
	Power (Pmax)	Freq	Distance		S/	R					SAR (1g)
Plot ID	(mW)	(MHz)	(mm)		(W/	kg)	+	(W/k	g)	=	(W/kg)
B10			0				+	1.16)	=	1.160
					Step 5						
			FCC		Reported SAF	२					
		ISED									
			From Steps 1 through 2			From Steps 1 through 3					
Plot ID			1g SAR (W/kg)			1g SAR (W/kg)					
B10			1.160					1.	160		

NOTES to Table 10.0

(1) Scaling of the Maximum Measured SAR is based on the highest, 100% duty cycle, Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face and Body SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in Annex A of this report. NOTE: Some of the scaling factors in Steps 1 through 4 may not apply and are identified by light gray text. Step 1 Per IEC-62209-1 and FCC KDB 865664. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 9.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+).

Step 2

Per KDB 447498. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR. Step 3 Per IEC 62209-1. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported or Simultaneous Reported SAR.

Step 4 Per KDB 447498 4.3.2. The SAR, either measured or calculated, of ANY and ALL simultaneous transmitters must be added together and includes all contributors. Step 5

The Reported SAR is the Maximum Final Adjusted Cumulative SAR from the applicable Steps 1 through 4 and are reported on Page 1 of this report.

Table 10.1 Fluid Sensitivity Calculation (1g)

Fluid Sensitivity Calculation (1g) Delta SAR = Ce * Delta Er + C(sigma)*Delta Sigma								
Frequency (GHz)	Plot ID							
0.9415	B10							
Ce	-0.2207							
Сσ	0.7424							
ΔE	-2.09%							
Δσ	5.60%							
ΔSAR	4.62%							
Scale Factor Is P	ositive. Scaling Required							

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

Trevor Whillock Test Lab Engineer Celltech Labs Inc.

> 05 June 2018 Date

11.0 SAR EXPOSURE LIMITS

Table 11.0 Exposure Limits

SAR RF EXPOSURE LIMITS								
FCC 47 CFR§2.1093	Health Canada Safety Code 6	General Population /	Occupational /					
10047 011(32.1000		Uncontrolled Exposure ⁽⁴⁾	Controlled Exposure ⁽⁵⁾					
Spa	tial Average ⁽¹⁾	0.08 W/kg	0.4 W/kg					
(averaged	over the whole body)	eree rung						
Sp	atial Peak ⁽²⁾	1.6 W/kg	8.0 W/kg					
(Head and Trunk ave	eraged over any 1 g of tissue)	n.o wing	o.o wing					
Sp	atial Peak ⁽³⁾	4.0 W/kg	20.0 W/kg					
(Hands/Wrists/Fee	t/Ankles averaged over 10 g)	1.0 Wing	20.0 Wing					
(1) The Spatial Average	e value of the SAR averaged over	the whole body.						
	alue of the SAR averaged over a ver the appropriate averaging tim		ed as a tissue volume in the					
(3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time.								
(4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure.								
(5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure.								

12.0 DETAILS OF SAR EVALUATION

12.0 Day Log

	DA	Dielectric					
Date	Ambient Temp °C	Fluid Temp [°] C	Humidity	TSL	Fluid	SPC	Test
14 May 2018	27	22.1	27%	900B	X	Х	
16 May 2018	26	22.8	29%	900B			X
17 May 2018	23	22.9	26%	900B			X
23 May 2018	23	23.3	26%	900B	X	Х	X

12.1 DUT Setup and Configuration

	DUT Setup and Configuration								
1	The DUT was evaluated for SAR in accordance with the procedures described in IEEE 1528, FCC KDB 865646, 447498, and RSS- 102. The device was evaluated at a phantom separation distance of 0mm for Body configuration								
2	The MTH400-US8 was evaluated for Body SAR at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in FM modulated transmit operation.								

12.2 DUT Positioning

DUT Positioning								
Positioning								
The DUT Positioner was securely fastened to the Phantom Platform. Registration marks were placed on the DUT and the Positioner to ensure consistent positioning of the DUT for each test evaluation.								
FACE Configuration								
Due to the transmitter location and the distance of the transmit antenna to the users face, the device was not tested in the FACE configuration with HEAD TSL. The DUT was evaluated in a worst case FACE configuration with the top side of the microphone head at a phantom separation distance of 0mm using BODY TSL.SAR levels in and around the microphone head for this type configuration were minimal. See section 9.0 plot B7 for test results.								
BODY Configuration								
The DUT, with its accessories, were securely clamped into the device holder with the surface of the DUT normally in contact with the body in direct contact with the bottom of the phantom, or 0mm separation from the DUT's accessory to the phantom.								
HEAD Configuration								
This device is not intended to	be held to the ear and was not tested in the HEAD configuration.							

12.3 General Procedures and Report

General Procedures and Reporting

General Procedures

The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 1.0^{\circ}$ C throughout the test series. TSL analysis and SPC were repeated when the Active TSL use exceeded 84 hours.

An Area Scan exceeding the length and width of the DUT projection was performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately prior to the Area Scan. A Z-Scan from the <u>Maximum Distance to Phantom Surface</u> to the fluid surface was performed following the power drift measurement.

Reporting

The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the 100% DC (Duty Cycle) column are the SAR values reported by the SAR Measurement Server with the DUT operating at 100% transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance.

In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are <u>ONLY</u> scaled up, not down. The final results of this scaling is the *reported SAR* which appears on the Cover Page of this report.

12.4 Fluid Dielectric and Systems Performance Check

Fluid Dielectric and Systems Performance Check

Fluid Dielectric Measurement Procedure

The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of \pm 100MHz for frequencies > 300MHz and \pm 50MHz for frequencies \leq 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC OET Bulletin 65 Supplement C targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to \leq 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used.

Systems Performance Check

The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals.

A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate.

The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed ± 1°C of the initial fluid analysis.

12.5 Scan Resolution 100MHz to 2GHz

Scan Resolution 100MHz to 2GHz						
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm					
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX , ΔY	15 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	7.5 mm					
Zoom Scan Spatial Resolution ∆Z (Uniform Grid)	5 mm					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.						
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used						
to determine the 1-gram and 10-gram peak spatial-average SAR						

12.6 Scan Resolution 2GHz to 3GHz

Scan Resolution 2GHz to 3GHz						
Maximum distance from the closest measurement point to phantom surface: (Geometric Center of Probe Center)	4 ± 1 mm					
Maximum probe angle normal to phantom surface. (Flat Section ELI Phantom)	5° ± 1°					
Area Scan Spatial Resolution ΔX , ΔY	12 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	5 mm					
Zoom Scan Spatial Resolution ∆Z (Uniform Grid)	5 mm					
Zoom Scan Volume X, Y, Z	30 mm					
Phantom	ELI					
Fluid Depth	150 ± 5 mm					
An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima.						
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used						
to determine the 1-gram and 10-gram peak spatial-average SAR						

12.7 Scan Resolution 5GHz to 6GHz

Scan Resolution 5GHz to 6GHz						
Maximum distance from the closest measurement point to phantom surface:	4 ± 1 mm					
(Geometric Center of Probe Center)						
Maximum probe angle normal to phantom surface.						
5° ± ·						
Area Scan Spatial Resolution ΔX , ΔY	10 mm					
Zoom Scan Spatial Resolution ΔX , ΔY	4 mm					
Zoom Scan Spatial Resolution ΔZ	2 mm					
(Uniform Grid)	2					
Zoom Scan Volume X, Y, Z	22 mm					
Phantom	ELI					
Fluid Depth	100 ± 5 mm					
An Area Scan with an area extending beyond the device was used to locate the cano within 2dB of the global maxima.	didate maximas					
A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan	was used					
to determine the 1-gram and 10-gram peak spatial-average SAR						

13.0 MEASUREMENT UNCERTAINTIES

Table 13.0 Measurement Uncertainty

UNCERTAINTY BUDGET FOR DEVICE EVALUATION (IEEE 1528-2013 Table 9)									
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration*	E.2.1	6.6	Normal	1	1	1	6.60	6.60	×
Axial Isotropy*	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	×
Hemispherical Isotropy*	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	×
Boundary Effect*	E.2.3	8.3	Rectangular	1.732050808	1	1	4.8	4.8	×
Linearity*	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	8
System Detection Limits*	E.2.4	1.0	Rectangular	1.732050808	1	1	0.6	0.6	8
Modulation Response	E.2.5	4.0	Rectangular	1.732050808	1	1	2.3	2.3	8
Readout Electronics*	E.2.6	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time*	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	8
Integration Time*	E.2.8	1.4	Rectangular	1.732050808	1	1	0.8	0.8	×
RF Ambient Conditions - Noise	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	8
RF Ambient Conditions - Reflection	E.6.1	0.0	Rectangular	1.732050808	1	1	0.0	0.0	8
Probe Positioner Mechanical Tolerance*	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	8
Probe Positioning wrt Phantom Shell*	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	œ
Extrapolation, interpolation & integration algorithms for max. SAR evaluation*	E.5	3.9	Rectangular	1.732050808	1	1	2.3	2.3	8
Test Sample Related									
Test Sample Positioning	E.4.2	0.3	Normal	1	1	1	0.3	0.3	5
Device Holder Uncertainty*	E.4.1	3.6	Normal	1	1	1	3.6	3.6	×
SAR Drift Measurement**	E.2.9	0.0	Rectangular	1.732050808	1	1	0.0	0.0	×
SAR Scaling***	E.6.5	2.0	Rectangular	1.732050808	1	1	1.2	1.2	×
Phantom and Tissue Parameters									
Phantom Uncertainty*	E.3.1	4.0	Rectangular	1.732050808	1	1	2.3	2.3	~
SAR Correction Uncertainty	E.3.2	1.2	Normal	1	1	0.84	1.2	1.0	∞
Liquid Conductivity (measurement)	E.3.3	6.8	Normal	1	0.78	0.71	5.3	4.8	10
Liquid Permittivity (measurement)	E.3.3	5.3	Normal	1	0.23	0.26	1.2	1.4	10
Liquid Conductivity (Temperature)	E.3.2	0.1	Rectangular	1.732050808	0.78	0.71	0.1	0.0	×
Liquid Permittivity Temperature)	E.3.2	0.0	Rectangular	1.732050808	0.23	0.26	0.0	0.0	8
Effective Degrees of Freedom ⁽¹⁾								V _{eff} =	873.2
Combined Standard Uncertainty			RSS				12.59	12.40	
Expanded Uncertainty (95% Confidence Interval) k=2 25.18 24.80									
Mea	surement L	Incertainty Tab	ole in accordan	ce with IEEE St	andard	1528-2	003		

(1) The Effective Degrees of Freedom is > 30 therefore a coverage factor of k=2 represents an approximate confidence level of 95%.

* Provided by SPEAG

Table 13.1 Calculation of Degrees of Freedom

Calculation of the Degrees and Effective Degrees of Freedom								
		u_c^4						
	v _{eff} =	m						
v _i = <i>n</i> - 1		$\sum \frac{c_i^* u_i^*}{u_i^*}$	_					
		∠ v _i i=1						

14.0 FLUID DIELECTRIC PARAMETERS

Table 14.0 Fluid Dielectric Parameters 900MHz BODY TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Mon 14/May/2018 13:50:48 Freq Frequency(GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM								
******************				*****				
Freq			3 Test_e					
0.8000	55.34	0.97	55.12	0.99				
0.8100	55.30			0.99				
0.8200	55.26			1.00 1.01				
0.8300	55.22		54.91					
0.8400 0.8500	55.18 55.15	0.98 0.99	54.89 54.83	1.01 1.03				
0.8600	55.15 55.12	0.99	55.18	1.03				
0.8700	55.09		54.66	1.04				
0.8800	55.09 55.06		54.00 54.72					
0.8900	55.00	1.03	54.72					
0.9000	55.00	1.04	54.25	1.07				
0.9100	55.00	1.05	54.32	1.09				
0.9200	54.99	1.00	54.12	1.11				
0.9300	54.97	1.07	54.01	1.11				
0.9400	54.95	1.07	53.82	1.12				
0.9500	54.93	1.08	53.96	1.13				
0.9600	54.92	1.08	53.82	1.15				
0.9700	54.90	1.08	53.48	1.17				
0.9800	54.88	1.09	53.60	1.17				
0.9900	54.86	1.09	53.51	1.19				
1.0000	54.84	1.10	53.38	1.18				

FLUID DIELECTRIC PARAMETERS								
Date:	14 May 2018	Fluid Te	emp:	22.1	Frequency:	900 MHz	Tissue:	Body
Freq (MHz)	Test_e	Tes	st_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
800.0000		55.1200	0.9	900	55.3400	0.97	-0.40%	2.06%
810.0000		55.0200	0.9	900	55.3000	0.97	-0.51%	2.06%
820.0000		55.2000	1.0	000	55.2600	0.97	-0.11%	3.09%
830.0000		54.9100	1.0	100	55.2200	0.97	-0.56%	4.12%
840.0000		54.8900	1.0	100	55.1800	0.98	-0.53%	3.06%
850.0000		54.8300	1.0	300	55.1500	0.99	-0.58%	4.04%
860.0000		55.1800	1.0	400	55.1200	1.00	0.11%	4.00%
870.0000		54.6600	1.0	600	55.0900	1.01	-0.78%	4.95%
880.0000		54.7200	1.0	600	55.0600	1.03	-0.62%	2.91%
890.0000		54.2500	1.0	600	55.0300	1.04	-1.42%	1.92%
900.0000		54.7100	1.0	700	55.0000	1.05	-0.53%	1.90%
910.0000		54.3200	1.0	900	55.0000	1.06	-1.24%	2.83%
920.0000		54.1200	1.1	100	54.9900	1.06	-1.58%	4.72%
930.0000		54.0100	1.1	100	54.9700	1.07	-1.75%	3.74%
940.0000		53.8200	1.1	200	54.9500	1.07	-2.06%	4.67%
941.5000	*	53.8410	1.1	215	54.9470	1.07	-2.01%	4.67%
950.0000		53.9600	1.1	300	54.9300	1.08	-1.77%	4.63%
954.0000	*	53.9040	1.1	380	54.9260	1.08	-1.86%	5.37%
959.8500	*	53.8221	1.1	497	54.9202	1.08	-2.00%	6.45%
960.0000		53.8200	1.1	500	54.9200	1.08	-2.00%	6.48%
970.0000		53.4800	1.1	700	54.9000	1.08	-2.59%	8.33%
980.0000		53.6000	1.1	700	54.8800	1.09	-2.33%	7.34%
990.0000		53.5100	1.1	900	54.8600	1.09	-2.46%	9.17%
1000.0000		53.3800	1.1	800	54.8400	1.10	-2.66%	7.27%

*Channel Frequency Tested

Table 14.1 Fluid Dielectric Parameters 900MHz BODY TSL

Aprel Laboratory Test Result for UIM Dielectric Parameter Wed 23/May/2018 11:06:53 Freq Frequency(GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eBFCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test e Epsilon of UIM Test s Sigma of UIM ***** ***** Freq FCC eBFCC sBTest e Test s 0.8000 55.34 55.32 0.97 0.97 0.8100 55.30 0.97 55.47 0.98 0.8200 55.26 0.97 55.19 1.00 55.22 0.8300 0.97 54.97 1.01 55.18 0.8400 0.98 55.10 1.03 0.8500 55.15 0.99 54.65 1.03 0.8600 55.12 1.00 54.73 1.04 0.8700 55.09 1.01 54.69 1.06 0.8800 55.06 1.03 54.38 1.06 0.8900 55.03 1.04 54.52 1.07 0.9000 55.00 1.05 54.20 1.09 0.9100 55.00 1.06 54.25 1.09 54.10 0.9200 54.99 1.06 1.11 54.04 0.9300 54.97 1.07 1.12 0.9400 54.95 53.86 1.07 1.13 54.93 0.9500 53.45 1.08 1.14 54.92 53.68 0.9600 1.08 1.17 1.08 0.9700 54.90 53.68 1.18 0.9800 54.88 1.09 53.66 1.15 0.9900 54.86 1.09 53.30 1.18 1.0000 54.84 53.39 1.10 1.19

FLUID DIELECTRIC PARAMETERS								
Date:	23 May 2018	Fluid Te	emp:	23.3	Frequency:	0BodMHz	Tissue:	Head
Freq (MHz)	Test_e	Tes	st_s	Target_e	Target_s	Deviation Permittivity	Deviation Conductivity
800.0000		55.3200	0.9	700	55.3400	0.97	-0.04%	0.00%
810.0000		55.4700	0.9	800	55.3000	0.97	0.31%	1.03%
820.0000		55.1900	1.0	000	55.2600	0.97	-0.13%	3.09%
830.0000		54.9700	1.0	100	55.2200	0.97	-0.45%	4.12%
840.0000		55.1000	1.0	300	55.1800	0.98	-0.14%	5.10%
850.0000		54.6500	1.0	300	55.1500	0.99	-0.91%	4.04%
860.0000		54.7300	1.0	400	55.1200	1.00	-0.71%	4.00%
870.0000		54.6900	1.0	600	55.0900	1.01	-0.73%	4.95%
880.0000		54.3800	1.0	600	55.0600	1.03	-1.24%	2.91%
890.0000		54.5200	1.0	700	55.0300	1.04	-0.93%	2.88%
900.0000		54.2000	1.0	900	55.0000	1.05	-1.45%	3.81%
910.0000		54.2500	1.0	900	55.0000	1.06	-1.36%	2.83%
920.0000		54.1000	1.1	100	54.9900	1.06	-1.62%	4.72%
930.0000		54.0400	1.1	200	54.9700	1.07	-1.69%	4.67%
940.0000		53.8600	1.1	300	54.9500	1.07	-1.98%	5.61%
941.5000	*	53.7985	1.1	315	54.9470	1.07	-2.09%	5.60%
950.0000		53.4500	1.1	400	54.9300	1.08	-2.69%	5.56%
954.0000	*	53.5420	1.1	520	54.9260	1.08	-2.52%	6.67%
959.8500	*	53.6766	1.1	696	54.9202	1.08	-2.26%	8.29%
960.0000		53.6800	1.1	700	54.9200	1.08	-2.26%	8.33%
970.0000		53.6800	1.1	800	54.9000	1.08	-2.22%	9.26%
980.0000		53.6600	1.1	500	54.8800	1.09	-2.22%	5.50%
990.0000		53.3000	1.1	800	54.8600	1.09	-2.84%	8.26%
1000.0000		53.3900	1.1	900	54.8400	1.10	-2.64%	8.18%

*Channel Frequency Tested

15.0 SYSTEM VERIFICATION TEST RESULTS

Table 15.0 System Verification Results 900MHz BODY TSL

	Sys	tem Verifica	tion Test Res	ults			
Data		Frequency	requency Validation Source				
Date		(MHz)	P/N		S/N		
May 14 20	18	900MHz	D900V	2	54		
Fluid Type	Fluid Temp °C	Ambient Temp °C	Ambient Forward Humidity Power (%) (mW)		Source Spacing (mm)		
Body	22.1	27	27%	250	15		
Fluid Parameters							
	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
54.71	55.00	-0.53%	1.07	1.09	-1.83%		
		Measu	red SAR				
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
2.71	2.86	-5.24%	1.74	1.85	-5.94%		
		Measured SAR N	ormalized to 1.0W				
	1 gram		10 gram				
Normalized	Target	Deviation	Normalized	Target	Deviation		
10.84	11.50	-5.74%	6.96	7.42	-6.20%		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

Table 15.1 System Verification Results 900MHz BODY TSL

System Verification Test Results							
Data		Frequency	Validation Source				
Date	Date		P/N		S/N		
May 23 20	18	900MHz	D900V	2	54		
	Fluid	Ambient	Ambient	Forward	Source		
Fluid Type	Temp	Temp	Humidity	Power	Spacing		
	°C	°C	(%)	(mW)	(mm)		
Body	23.4	23	26% 250		15		
Fluid Parameters							
1	Permittivity		Conductivity				
Measured	Target	Deviation	Measured	Target	Deviation		
54.2000	55.0000	-1.45%	1.09	1.05	3.81%		
		Measu	red SAR				
	1 gram			10 gram			
Measured	Target	Deviation	Measured	Target	Deviation		
2.89	2.86	1.04%	1.86	1.85	0.05%		
		Measured SAR N	ormalized to 1.0W				
	1 gram		10 gram				
Normalized	Target	Deviation	Normalized Target		Deviation		
11.56	11.50	-0.52%	7.44	7.42	2.68%		
	-	-			·		

Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224 and IEC 62209-1.

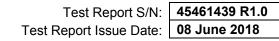
The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer.

The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value.

The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source.

16.0 SYSTEM VALIDATION SUMMARY

Table 16.0 System Validation Summary


	System Validation Summary										
Frequency	Validation	Probe	Probe	Validation	Source	Tissue Dielectrics		electrics	Validation Results		
(MHz)	Date	Model	S/N	Source	S/N	Tissue	Permittivity	Conductivity	Sensitivity	Linearity	Isotropy
30		EX3DV4	3600	CLA-30	1005	Head					
150	03-May-17	EX3DV4	3600	CLA-150	4007	Body	66.48	0.79	Pass	Pass	Pass
150	04-May-17	EX3DV4	3600	CLA-150	4007	Head	51.51	0.81	Pass	Pass	Pass
450	08-May-17	EX3DV4	3600	D450V3	1068	Body	54.65	0.95	Pass	Pass	Pass
450	16-May-17	EX3DV4	3600	D450V3	1068	Head	43.70	0.83	Pass	Pass	Pass
835	03-May-18	EX3DV4	3600	D835V2	4d075	Body	53.31	1.00	Pass	Pass	Pass
835	19-May-17	EX3DV4	3600	D835V2	4d075	Head	42.01	0.89	Pass	Pass	Pass
900	08-May-18	EX3DV4	3600	D900V2	045	Body	54.46	1.10	Pass	Pass	Pass
900	02-Aug-17	EX3DV4	3600	D900V2	045	Head	39.10	0.93	Pass	Pass	Pass
1640	06-Feb-18	EX3DV4	3600	1620-S-2	207-00102	Body	39.87	1.27	Pass	Pass	Pass
1640	07-Feb-18	EX3DV4	3600	1620-S-2	207-00102	Head	39.87	1.27	Pass	Pass	Pass
1800	21-Jul-17	EX3DV4	3600	D1800V2	247	Body	54.77	1.53	Pass	Pass	Pass
1800	18-Jul-17	EX3DV4	3600	D1800V2	247	Head	40.70	1.33	Pass	Pass	Pass
2450	24-Jul-17	EX3DV4	3600	D2450V2	825	Body	49.51	1.92	Pass	Pass	Pass
2450	24-Jul-17	EX3DV4	3600	D2450V2	825	Head	37.95	1.87	Pass	Pass	Pass
5250	24-Jul-17	EX3DV4	3600	D5GHzV2	1031	Body	46.42	5.69	Pass	Pass	Pass
5250	24-Jul-17	EX3DV4	3600	D5GHzV2	1031	Head	35.96	4.99	Pass	Pass	Pass

17.0 MEASUREMENT SYSTEM SPECIFICATIONS

Table 17.0 Measurement System Specifications

Measurement System Specification					
Specifications					
Positioner	Stäubli Unimation Corp. Robot Model: TX90XL				
Repeatability	+/- 0.035 mm				
No. of axis	6.0				
Data Acquisition Electronic (DA	AE) System				
Cell Controller					
Processor	Intel(R) Core(TM) i7-7700				
Clock Speed	3.60 GHz				
Operating System	Windows 10 Professional				
Data Converter					
Features	Signal Amplifier, multiplexer, A/D converter, and control logic				
Software	Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.1.1476				
Soltware	Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build)				
Connecting Lines	Optical downlink for data and status info., Optical uplink for commands and clock				
DASY Measurement Server					
Function	Real-time data evaluation for field measurements and surface detection				
Hardware	Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM				
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface				
E-Field Probe					
Model	EX3DV4				
Serial No.	3600				
Construction	Triangular core fiber optic detection system				
Frequency	10 MHz to 6 GHz				
Linearity	±0.2 dB (30 MHz to 3 GHz)				
Phantom					
Туре	ELI Elliptical Planar Phantom				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				
Phantom					
Туре	SAM				
Shell Material	Fiberglass				
Thickness	2mm +/2mm				
Volume	> 30 Liter				

	Measurement System Specification							
Probe Specification								
Construction:	Symmetrical design with triangular core; Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, glycol)							
Calibration:	In air from 10 MHz to 2.5 GHz In head simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)							
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)							
Directivity:	± 0.2 dB in head tissue (rotation around probe axis) ± 0.4 dB in head tissue (rotation normal to probe axis)							
Dynamic Range:	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB							
Surface Detect:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces							
Dimensions:	Overall length: 330 mm; Tip length: 16 mm; Body diameter: 12 mm; Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm							
Application:	General dosimetry up to 3 GHz; Compliance tests of mobile phone	EX3DV4 E-Field Probe						
, ipplication	Phantom Specification							
2.0mm +/2mm at t	The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2.							
	Phantom Specification							
The SAM V4.0 phan of 2.0mm +/2mm a Supplement C, IEEE	SAM Phantom							
Device Positioner Specification The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Image: Colspan="2">Device Posi Device Posi								

18.0 TEST EQUIPMENT LIST

Table 18.0 Equipment List and Calibration

	Test Ec	uipment List		
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE CALIBRATED	CALIBRATION INTERVAL
Schmid & Partner DASY 6 System	-	-	-	-
-DASY Measurement Server	00158	1078	CNR	CNR
-Robot	00046	599396-01	CNR	CNR
-DAE4	00019	353	20-Apr-18	Annual
-EX3DV4 E-Field Probe	00213	3600	25-Apr-18	Annual
-CLA 30 Validation Dipole	00300	1005	23-Nov-17	Triennial
-CLA150 Validation Dipole	00251	4007	27-Apr-17	Triennial
-D450V3 Validation Dipole	00221	1068	23-Apr-18	Triennial
-D835V2 Validation Dipole	00217	4D075	20-Apr-18	Triennial
-D900V2 Validation Dipole	00020	54	24-Apr-17	Triennial
-D1640/1620-S-2 Validation Dipole	00299	207-00102	07-Nov-17	Triennial
-D2450V2 Validation Dipole	00219	825	24-Apr-18	Triennial
-D5GHzV2 Validation Dipole	00126	1031	26-Apr-18	Triennial
ELI Phantom	00247	-	CNR	CNR
HP 85070C Dielectric Probe Kit	00033	none	CNR	CNR
Gigatronics 8652A Power Meter	00110	1835801	29-Feb-16	Triennial
Gigatronics 80701A Power Sensor	00248	1833687	29-Feb-16	Triennial
HP 8753ET Network Analyzer	00134	US39170292	29-Dec-17	Triennial
Rohde & Schwarz SMR20 Signal Generator	00006	100104	29-May-17	Triennial
Amplifier Research 10W1000C Power Amplifier	00041	27887	CNR	CNR
Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Narda Directional Coupler 3020A	00064	-	COU	COU
Traceable VWR Thermometer	00291	-	19-Nov-16	Triennial
Traceable VWR Jumbo Humidity/Thermometer	00295	170120555	17-Feb-17	Triennial
HP Calibration Kit	00145	-	10-Feb-17	Triennial

CNR = Calibration Not Required

COU = Calibrate on Use

19.0 FLUID COMPOSITION

Table 19.0 Fluid Composition 900MHz BODY TSL

Tissue Simulating Liquid (TSL) Composition							
Component by Percent Weight							
Water	Water Sugar Salt ⁽¹⁾ HEC ⁽²⁾ Ba			Bacteriacide ⁽³⁾			
40.71	56.63	1.48	0.99	0.19			

(1) Non-lodinized

(2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g

(3) Dow Chemical Dowicil 75 Antimicrobial Perservative

APPENDIX A – SYSTEM VERIFICATION PLOTS

Date/Time: 5/14/2018 2:34:23 PM, Date/Time: 5/14/2018 2:37:55 PM

Test Laboratory: Celltech Labs

SPC-900B May 14 2018

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:054

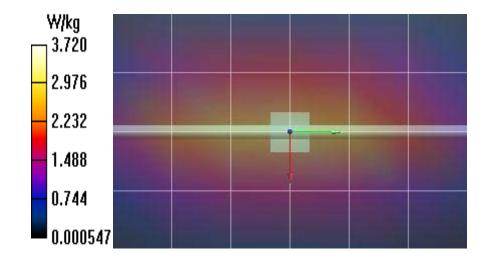
Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 900 MHz; Communication System PAR: 0 dB; PMF: 1

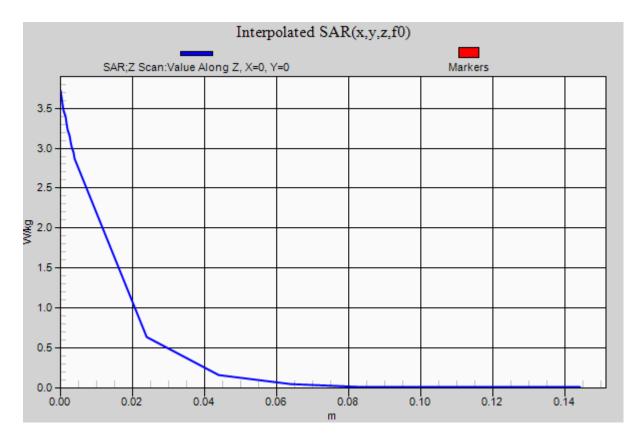
 $\begin{array}{l} \mbox{Medium: TSL_900Body[14MY18]} \\ \mbox{Medium parameters used: } f = 900 \mbox{ MHz; } \sigma = 1.07 \mbox{ S/m; } \epsilon_r = 54.71; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section} \\ \mbox{Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)} \\ \end{array}$

DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018, ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018, ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018;
 - Modulation Compensation:
 - Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 4/20/2018
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax;
- DASY52 52.10.1(1476);

Frequency: 900 MHz


SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.97 W/kg


SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 53.27 V/m; Power Drift = -0.20 dB Peak SAR (extrapolated) = 4.09 W/kg SAR(1 g) = 2.71 W/kg; SAR(10 g) = 1.74 W/kg Maximum value of SAR (measured) = 2.93 W/kg

SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 13.24) [mm]

Maximum value of SAR (interpolated) = 3.72 W/kg

Date/Time: 5/23/2018 11:58:26 AM

Test Laboratory: Celltech Labs

SPC-900B May 23 2018

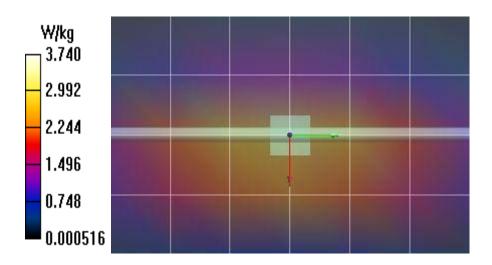
DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:054

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 900 MHz; Communication System PAR: 0 dB; PMF: 1

Medium: TSL_900Body[23MY18] Medium parameters used: f = 900 MHz; σ = 1.09 S/m; ϵ_r = 54.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

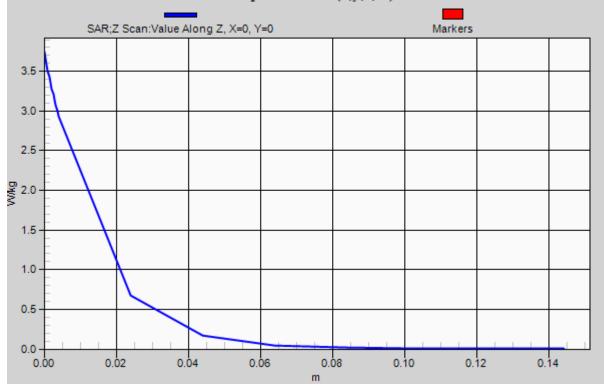
DASY Configuration:

.


- Probe: EX3DV4 SN3600; ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018, ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018, ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018;
 Medulation Componentiation:
 - Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 4/20/2018
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax;
- DASY52 52.10.1(1476);

Frequency: 900 MHz

SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.91 W/kg


SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 51.49 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 4.35 W/kg SAR(1 g) = 2.89 W/kg; SAR(10 g) = 1.86 W/kg Maximum value of SAR (measured) = 3.12 W/kg

SPC/SPC 900B,Target=2.86W/kg,Input 250mW/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 13.58) [mm] Maximum value of SAR (interpolated) = 3.74 W/kg

Interpolated SAR(x,y,z,f0)

APPENDIX B – MEASUREMENT PLOTS OF MAXIMUMUM MEASURED SAR

Plot B10

Date/Time: 5/23/2018 1:05:32 PM

Test Laboratory: Celltech Labs

WISYCOM MTH400-US8 900B May 23 2018

DUT: MTH400-US8-with Stainless Steel Head; Type: Wireless Mic

Communication System: UID 0, CW (0); Communication System Band: FullSpan (0.0 - 6000.0 MHz); Frequency: 941.5 MHz; Communication System PAR: 0 dB; PMF: 1

Medium: TSL_900Body[23MY18] Medium parameters used (interpolated): f = 941.5 MHz; σ = 1.131 S/m; ϵ_r = 53.799; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

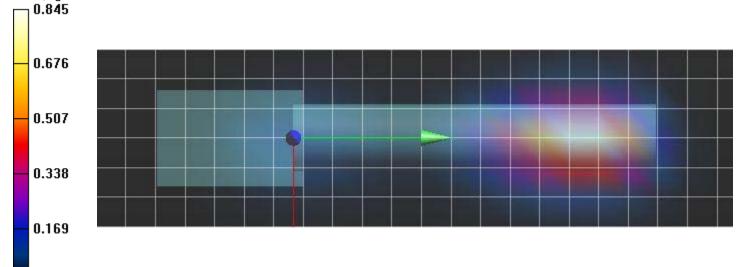
DASY Configuration:

- Probe: EX3DV4 SN3600; ConvF(8.01, 8.01, 8.01); Calibrated: 4/25/2018;
 Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = -1.5, 31.0, 151.0
- Electronics: DAE4 Sn353; Calibrated: 4/20/2018
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax;
- DASY52 52.10.1(1476);

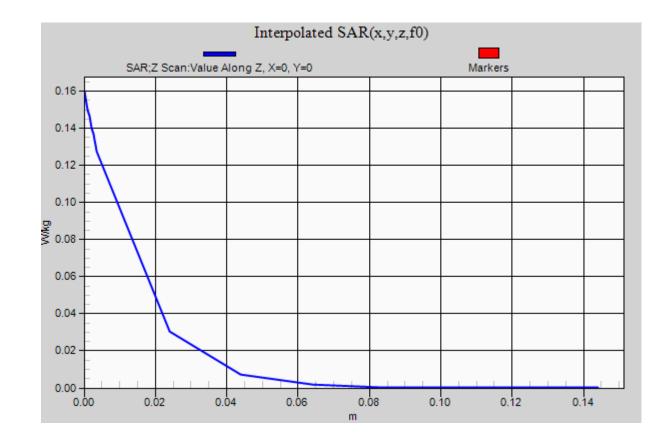
Frequency: 941.5 MHz

900B/B10-MTH400-US8, 941.5MHz Body Pos 2, Ant T1, Lithium/Area Scan (7x23x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.845 W/kg


900B/B10-MTH400-US8, 941.5MHz Body Pos 2, Ant T1, Lithium/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 10.49 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.69 W/kg SAR(1 g) = 0.881 W/kg; SAR(10 g) = 0.477 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.05 W/kg


900B/B10-MTH400-US8, 941.5MHz Body Pos 2, Ant T1, Lithium/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Info: Interpolated medium parameters used for SAR evaluation. Penetration depth = n/a (n/a, 14.09) [mm] Maximum value of SAR (interpolated) = 0.160 W/kg

0

