CALIBRATION DATA PROBE CALIBRATION DATA

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Z		S C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accre The Swiss Accreditation Ser Multilateral Agreement for th	vice is one of the signatories	s to the EA	creditation No.: SCS 0108
Client AGC (Auden			: ES3-3337_Jul19
CALIBRATION	CERTIFICATE	E	
Object	ES3DV3 - SN:33	37	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA dure for dosimetric E-field probes	∖ CAL-25.v7
Calibration date:	July 23, 2019		
The measurements and the un	ncertainties with confidence pro	nal standards, which realize the physical units obability are given on the following pages and r facility: environment temperature (22 ± 3)°C i	are part of the certificate.
The measurements and the un	ncertainties with confidence pro ducted in the closed laboratory	obability are given on the following pages and	are part of the certificate.
The measurements and the un	ncertainties with confidence pro ducted in the closed laboratory	subability are given on the following pages and facility: environment temperature $(22 \pm 3)^{\circ}C$	are part of the certificate. and humidity < 70%.
The measurements and the ur All calibrations have been com- Calibration Equipment used (M	Acertainties with confidence producted in the closed laboratory	obability are given on the following pages and	are part of the certificate.
The measurements and the ur All calibrations have been com Calibration Equipment used (N Primary Standards	Acertainties with confidence producted in the closed laboratory	cal Date (Certificate No.)	are part of the certificate. and humidity < 70%.
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	Acertainties with confidence producted in the closed laboratory #&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	cal Date (Certificate No.) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (N Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	Acertainties with confidence producted in the closed laboratory terms of terms o	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	Anternatives with confidence producted in the closed laboratory term of term of the closed laboratory term of	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19
The measurements and the ur All calibrations have been con- Calibration Equipment used (N Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	Acertainties with confidence producted in the closed laboratory terms of terms o	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	Anternatives with confidence producted in the closed laboratory term of term of the closed laboratory term of	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	Acertainties with confidence producted in the closed laboratory ACTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	Acertainties with confidence producted in the closed laboratory the territical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 660 SN: 3013 ID ID	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Scheduled Check
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	Incertainties with confidence producted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 ID SN: 3013 SN: GB41293874 SN: WY41498087 SN: 000110210	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 04-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	Acertainties with confidence producted in the closed laboratory ALTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 660 SN: 3013 ID SN: 660 SN: 661 SN: 661 SN: 6641293874 SN: MY41498087 SN: 00110210 SN: US3642U01700	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DE3-3013_Dec18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power sensor E4412A Power sensor E4412A	Incertainties with confidence producted in the closed laboratory M&TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 ID SN: 3013 SN: GB41293874 SN: WY41498087 SN: 000110210	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 04-Apr-19 (No. 217-02892) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	Acertainties with confidence producted in the closed laboratory ALTE critical for calibration) ID SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 660 SN: 3013 ID SN: 660 SN: 661 SN: 661 SN: 6641293874 SN: MY41498087 SN: 00110210 SN: US3642U01700	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DE3-3013_Dec18) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18) 04-Apr-16 (in house check Jun-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
The measurements and the ur All calibrations have been con- Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	acertainties with confidence producted in the closed laboratory # TE critical for calibration)	Cal Date (Certificate No.) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892/02893) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02892) 03-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02893) 04-Apr-19 (No. 217-02894) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. DAE4-660_Dec18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-20 Apr-20 Apr-20 Apr-20 Dec-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20

Certificate No: ES3-3337_Jul19

Page 1 of 10

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters Polarization @ o rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
 Connector Angle: The angle is assessed using the information gained by determining the NORMx (no
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3337_Jul19

Page 2 of 10

ES3DV3 - SN:3337

July 23, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3337

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.07	0.95	0.97	± 10.1 %
DCP (mV) ^B	103.0	99.0	102.0	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	197.0	±3.8 %	± 4.7 %
		Y	0.0	0.0	1.0		180.9		
		Y	0.0	0.0	1.0		185.9		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3337_Jul19

Page 3 of 10

ES3DV3- SN:3337

July 23, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3337

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	6.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3337_Jul19

Page 4 of 10

.

ES3DV3- SN:3337

July 23, 2019

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3337

Calibration Parameter	 Determined 	in Head	Tissue	Simulating M	edia
------------------------------	--------------------------------	---------	--------	--------------	------

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	7.96	7.96	7.96	0.00	1.00	± 13.3 %
450	43.5	0.87	6.99	6.99	6.99	0.22	1.50	± 13.3 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 10 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F Al frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

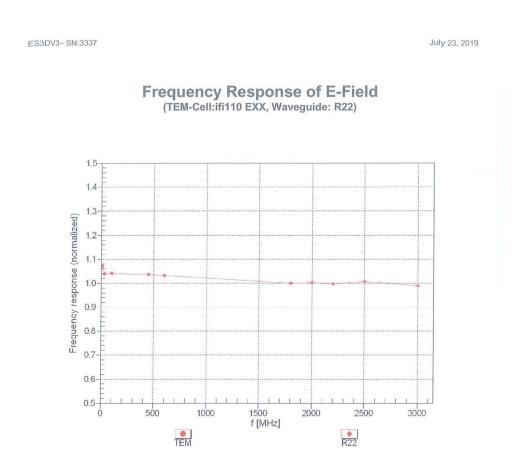
Certificate No: ES3-3337_Jul19

Page 5 of 10

ES3DV3-SN:3337

July 23, 2019

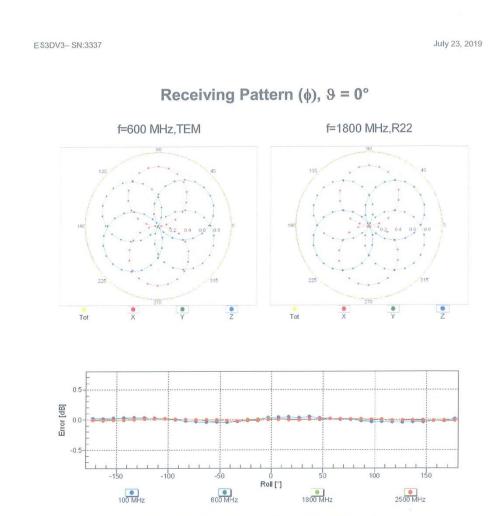
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3337


Calibration Para	ameter Determined	in Body	y Tissue	Simulating	Media
-------------------------	-------------------	---------	----------	------------	-------

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	7.42	7.42	7.42	0.00	1.00	± 13.3 %
450	56.7	0.94	7.09	7.09	7.09	0.15	1.50	± 13.3 %

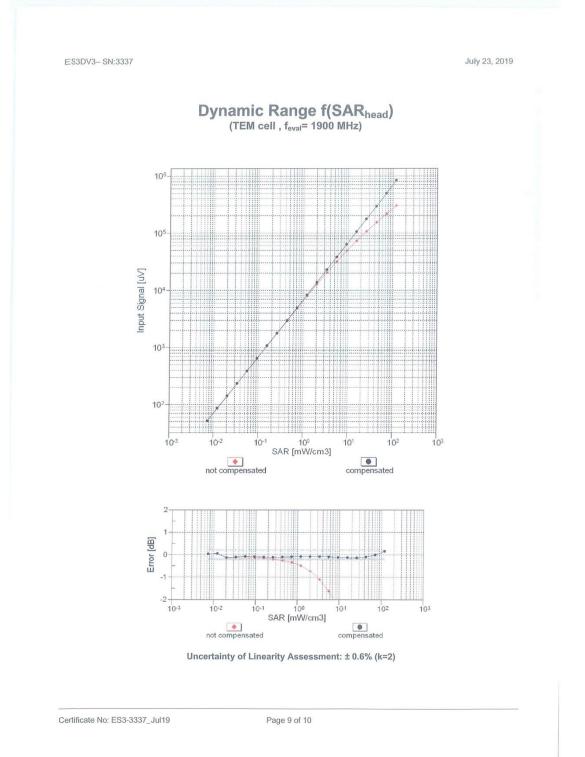
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation form always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

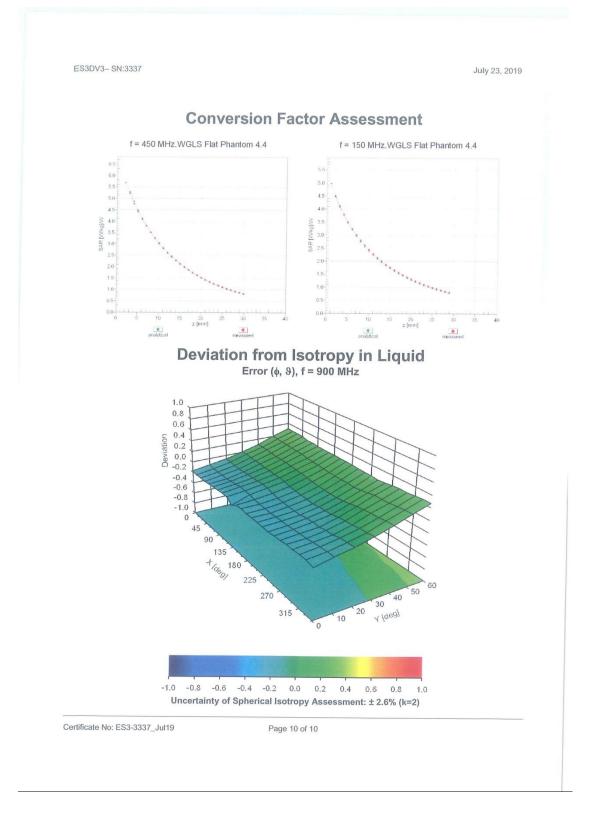
Certificate No: ES3-3337_Jul19


Page 6 of 10

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3337_Jul19


Page 7 of 10



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3337_Jul19

Page 8 of 10

DAE CALIBRATION DATA

Calibration Laboratory Schmid & Partner Engineering AG reughausstrasse 43, 8004 Zurich		S S S S S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditat The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatories	to the EA	No.: SCS 0108
Client AGC (Auden)			DAE4-1398_Apr20
CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D0	04 BM - SN: 1398	
Calibration procedure(s)	QA CAL-06.v30 Calibration proced	lure for the data acquisition elec	stronics (DAE)
Calibration date:	April 23, 2020		
All calibrations have been conduc Calibration Equipment used (M&T Primary Standards		facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	C and humidity < 70%. Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	03-Sep-19 (No:25949)	Sep-20
Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1		Check Date (in house) 09-Jan-20 (in house check) 09-Jan-20 (in house check)	Scheduled Check In house check: Jan-21 In house check: Jan-21
Calibrated by:	Name Eric Hainfeld	Function Laboratory Technician	Signature
Approved by:	Sven Kühn	Deputy Manager	NATURA
5996	Oven Kunn	Doputy managor	1.V.S. Mun

Certificate No: DAE4-1398_Apr20

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

DAE Connector angle

data acquisition electronics angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1398_Apr20

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	Х	Y	Z
High Range	404.182 ± 0.02% (k=2)	404.163 ± 0.02% (k=2)	403.625 ± 0.02% (k=2)
Low Range		3.99141 ± 1.50% (k=2)	

Connector Angle

Connector Angle to be used in DASY system	48.5 ° ± 1 °

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199993.97	-0.69	-0.00
Channel X	+ Input	20002.68	0.90	0.00
Channel X	- Input	-19999.43	2.09	-0.01
Channel Y	+ Input	199995.37	0.92	0.00
Channel Y	+ Input	20001.91	0.19	0.00
Channel Y	- Input	-20002.51	-1.02	0.01
Channel Z	+ Input	199995.81	1.22	0.00
Channel Z	+ Input	19999.53	-2.15	-0.01
Channel Z	- Input	-20003.31	-1.71	0.01

Low Range		Reading (μV)	Difference (µV)	Error (%)
Channel X	+ Input	2001.04	-0.06	-0.00
Channel X	+ Input	201.40	-0.04	-0.02
Channel X	- Input	-198.38	0.09	-0.05
Channel Y	+ Input	2000.82	-0.33	-0.02
Channel Y	+ Input	200.78	-0.64	-0.32
Channel Y	- Input	-198.93	-0.50	0.25
Channel Z	+ Input	2000.88	-0.29	-0.01
Channel Z	+ Input	200.17	-1.16	-0.58
Channel Z	- Input	-199.73	-1.11	0.56

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-13.38	-14.99
	- 200	16.43	14.19
Channel Y	200	9.12	8.64
	- 200	-10.42	-10.63
Channel Z	200	7.29	7.30
	- 200	-10.50	-10.14

3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (µV)	Channel Ζ (μV)
Channel X	200	-	-2.81	-1.24
Channel Y	200	3.25	-	-2.30
Channel Z	200	9.51	1.74	-

Certificate No: DAE4-1398_Apr20

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15956	15899
Channel Y	15963	17836
Channel Z	15841	13905

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.28	-0.86	2.25	0.44
Channel Y	-0.69	-1.65	0.47	0.36
Channel Z	-0.76	-1.67	0.59	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1398_Apr20

Page 5 of 5

DIPOLE CALIBRATION DATA

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client AGC-CERT (Auden)		Certificate No	Certificate No: CLA150-4008_Mar20		
CALIBRATION C	ERTIFICATE				
Object	CLA150 - SN: 40	08			
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sources	s below 700 MHz		
Calibration date:	March 12, 2020				
		onal standards, which realize the physical ur robability are given on the following pages ar			
All calibrations have been conducte	ed in the closed laborator	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.		
Calibration Equipment used (M&TE	critical for calibration)				
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration		
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20		
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20		
ower sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20		
leference 20 dB Attenuator	SN: 5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20		
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20		
Reference Probe EX3DV4	SN: 3877	31-Dec-19 (No. EX3-3877_Dec19)	Dec-20		
DAE4	SN: 654	27-Jun-19 (No. DAE4-654_Jun19)	Jun-20		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check		
ower meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20		
ower sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20		
ower sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20		
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20		
letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20		
	Name	Function	Signature		
Calibrated by:	Jeton Kastrati	Laboratory Technician	felle		
Approved by:	Katja Pokovic	Technical Manager	flelly		
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory	Issued: March 12, 2020		

Certificate No: CLA150-4008_Mar20

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S

С

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid
sensitivity in TSL / NORM x,y,z
not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4008_Mar20

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	0.76 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.89 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 1 W input power	2.60 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	63.6 ± 6 %	0.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	4.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.01 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 1 W input power	2.70 W/kg

Certificate No: CLA150-4008_Mar20

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	44.7 Ω - 6.6 jΩ	
Return Loss	- 21.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω - 9.0 jΩ	
Return Loss	- 20.5 dB	

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

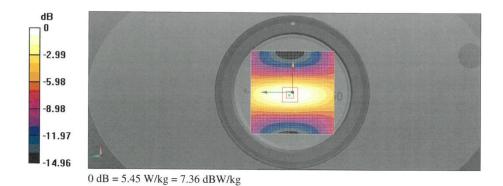
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 11.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

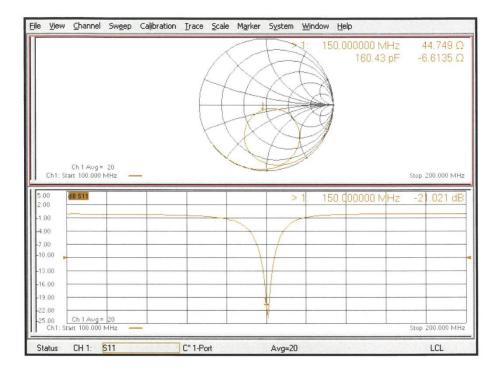
DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4008


Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.76 S/m; ϵ_r = 50.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.45, 12.45, 12.45) @ 150 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 83.37 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 7.13 W/kg SAR(1 g) = 3.91 W/kg; SAR(10 g) = 2.60 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (>30 mm) Ratio of SAR at M2 to SAR at M1 = 81.5% Maximum value of SAR (measured) = 5.45 W/kg

Certificate No: CLA150-4008_Mar20

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4008_Mar20

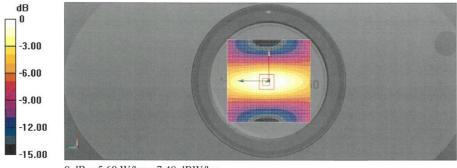
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 12.03.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4008

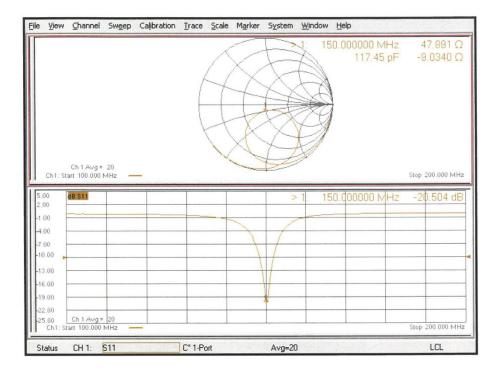

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.81 S/m; ϵ_r = 63.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(11.51, 11.51, 11.51) @ 150 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

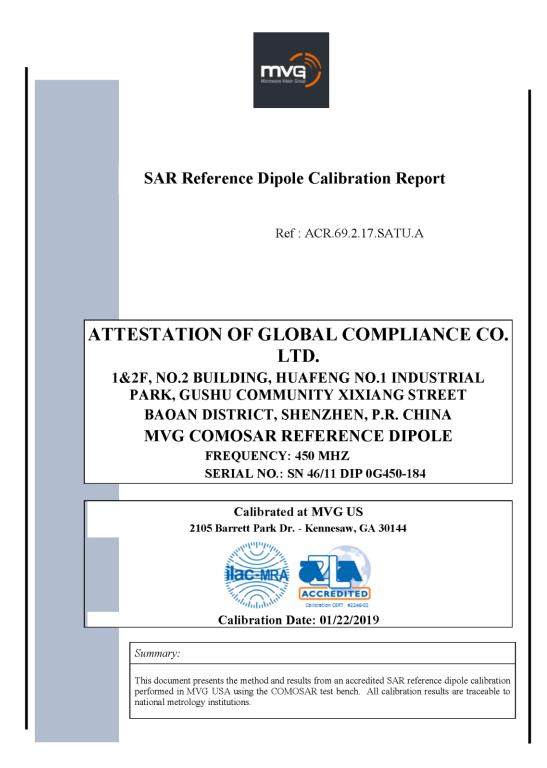
CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 83.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 7.41 W/kg SAR(1 g) = 4.03 W/kg; SAR(10 g) = 2.70 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (>30 mm) Ratio of SAR at M2 to SAR at M1 = 81.7% Maximum value of SAR (measured) = 5.60 W/kg



0 dB = 5.60 W/kg = 7.48 dBW/kg

Certificate No: CLA150-4008_Mar20


Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: CLA150-4008_Mar20

Page 8 of 8

Ref: ACR.69.2.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	01/22/2019	JS
Checked by :	Jérôme LUC	Product Manager	01/22/2019	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	01/22/2019	thim Puthowski

	Customer Name
Distribution :	ATTESTATION OF GLOBAL COMPLIANCE CO. LTD.

Issue	Date	Modifications
А	01/22/2019	Initial release

Page: 2/11

Ref: ACR.69.2.17.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test 4	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Calil	pration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	lation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

Ref: ACR.69.2.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 450 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID450
Serial Number	SN 46/11 DIP 0G450-184
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.69.2.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

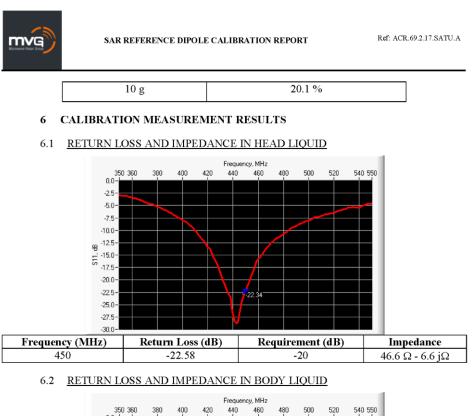
5.1 <u>RETURN LOSS</u>

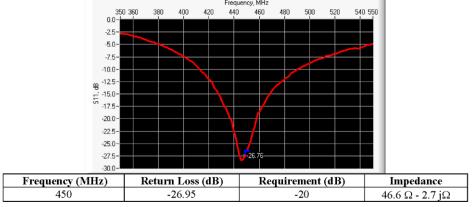
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:


Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		Lmm hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.69.2.17.SATU.A

450	290.0 ±1 %.	PASS	166.7 ±1 %.	PASS	6.35 ±1 %.	PASS
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Frequency MHz	Relative per	mittivity (ε _r ')	Conductivity (σ) S/	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %	PASS	0.87 ±5 %	PASS
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

7.1 HEAD LIQUID MEASUREMENT

Page: 7/11

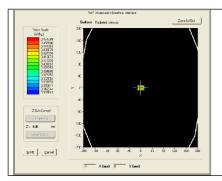
Ref: ACR.69.2.17.SATU.A

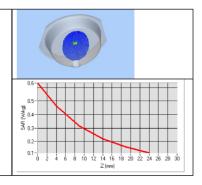
1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.2 sigma : 0.86
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58	4.83 (0.46)	3.06	3.13 (0.31)
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11

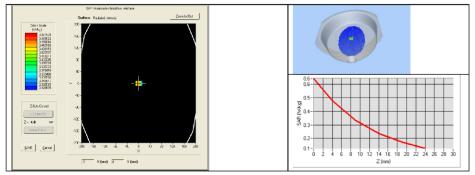
Ref: ACR.69.2.17.SATU.A

39.7	20.5	
40.5	20.9	
41.1	21.1	
43.6	21.9	
48.7	23.3	
52.4	24	
55.3	24.6	
63.8	25.7	
67.1	25	
67.4	24.2	
	40.5 41.1 43.6 48.7 52.4 55.3 63.8 67.1	40.5 20.9 41.1 21.1 43.6 21.9 48.7 23.3 52.4 24 55.3 24.6 63.8 25.7 67.1 25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (&r')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	57.2 ±5 %	PASS	0.96 ±5 %	PASS
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11


Ref: ACR.69.2.17.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

S - A	ODENIGAD VA		
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps' : 57.6 sigma : 0.95		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
450	5.07 (0.51)	3.25 (0.33)	

Page: 10/11

Ref: ACR.69.2.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Calipers	Carrera	CALIPER-01	01/2017	01/2020		
Reference Probe	MVG	EPG122 SN 18/11	10/2018	10/2019		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	10/2017	10/2019		

Page: 11/11