

FCC PART 90

TEST REPORT

For

TYT ELECTRONICS CO., LTD

Block 39-1, Optoelectronics-information industry b, Nan' an, Quanzhou, Fujian China

FCC ID: POD-MD380V

Report Type: Original Report		Product Type DMR	;:	
Test Engineer:	William Li		William	~ Lì
Report Number:	RSZ150807001-0	0		
Report Date:	2015-09-16			
Reviewed By:	Jimmy Xiao RF Engineer	1	<i>imm</i> y	xiao
Prepared By:		e of WanLi Industr Tian Free Trade Zo dong, China 20018 320008	rial Building	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Report No.: RSZ150807001-00

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology Test Facility	
SYSTEM TEST CONFIGURATION	
Description of Test Configuration Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	8
Applicable Standard	
FCC §2.1046 & §90.205 - RF OUTPUT POWER	
APPLICABLE STANDARD	
Test Procedure Test Equipment List and Details	
TEST DATA	
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
Test Equipment List and Details	11
Test Procedure	
TEST DATA	
FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	
APPLICABLE STANDARD	
Test Equipment List and Details Test Procedure	
TEST PROCEDURE	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	23
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	26
APPLICABLE STANDARD	
Test Equipment List and Details	
Test Procedure Test Data	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	28

Page 2 of 33

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ150807001-00

Test Procedure Test Data	
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	
PRODUCT SIMILARITY DECLARATION LETTER	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *TYT ELECTRONICS CO., LTD.*'s product, model number: *MD-380 (FCC ID:* POD-MD380V) or the "EUT" in this report was a *DMR*, the unit was measured approximately: 131 mm (L) \times 61 mm (W) \times 36 mm (H), rated with input voltage: DC 12.0 V charging from adapter or DC 7.4V Li-ion rechargeable battery; charger unit was measured approximately: 7.7 cm (L) x 7.6 cm (W) x 7.2 cm (H), rated with input voltage: DC 12.0 V from adapter.

Adapter Information: Model: NLA050120W1U1; Input: 100-240V, 50/60 Hz, 0.2A; Output: DC 12.0V, 500mA

Note: This series products model: MD-390, MD-368, MD-398, MD-446 and MD-380 are identical schematics, the difference among them is just the model number due to marketing purpose, and model MD-380 was selected for fully testing, the detailed information can be referred to the attached declaration letter that stated and guaranteed by the applicant.

* All measurement and test data in this report was gathered from production sample serial number: 1505946 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2015-08-07.

Objective

This test report is prepared on behalf of *TYT ELECTRONICS CO., LTD* in accordance with Part 2 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s)

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA-603-D and ANSI 63.4-2009.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

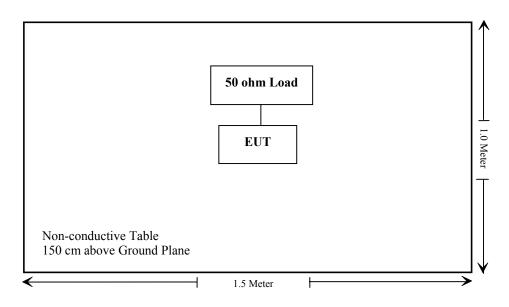
Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.


Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	50 ohm Load	N/A	N/A

Block Diagram of Test Setup

FCC PART 90

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307(b);§2.1093	RF Exposure	Compliance
§2.1046;§90.205	RF Output Power	Compliance
§2.1047;§90.207	Modulation Characteristic	Compliance
§2.1049;§90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Result: Compliance.

Please refer to SAR Report Number: RSZ150807001-20A.

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/WVideo B/W100 kHz300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2014-12-11	2015-12-11
HP Agilent	RF Communication test set	8920A	3325U00859	2015-06-03	2016-06-03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-08-25.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ150807001-00

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)	Result
	10.5	126 0125	High	37.50	5.62	Pass
	12.5	136.0125	Low	29.22	0.84	Pass
	12.5	155 0125	High	37.30	5.37	Pass
Analog	12.5	155.0125	Low	29.50	0.89	Pass
	12.5	173.9875	High	37.48	5.60	Pass
	12.5		Low	29.34	0.86	Pass
	12.5	126 0125	High	37.62	5.78	Pass
	12.3	136.0125	Low	29.38	0.87	Pass
Digital	12.5	155.0125	High	37.56	5.70	Pass
Digital	Digital 12.5	155.0125	Low	29.63	0.92	Pass
	12.5	172 0975	High	37.57	5.71	Pass
	12.3	5 173.9875	Low	29.32	0.86	Pass

Note: The rated high power is 5W. The limit of the high output power is 4W-6W. The rated low power is 1W. The limit of the low output power is 0.8W-1.2W.

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2015-06-14	2016-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2015-06-09	2016-06-09

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA -603-D 2.2.3

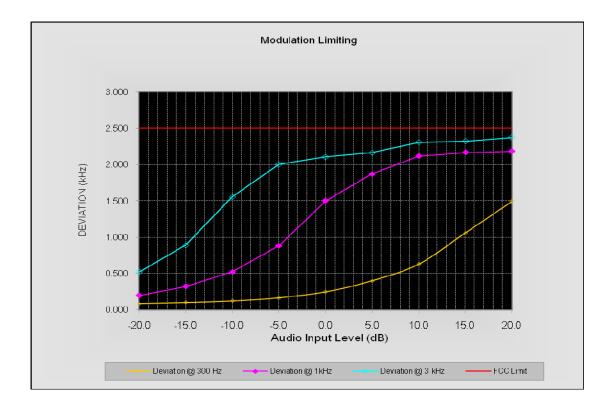
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by William Lion 2015-08-25.

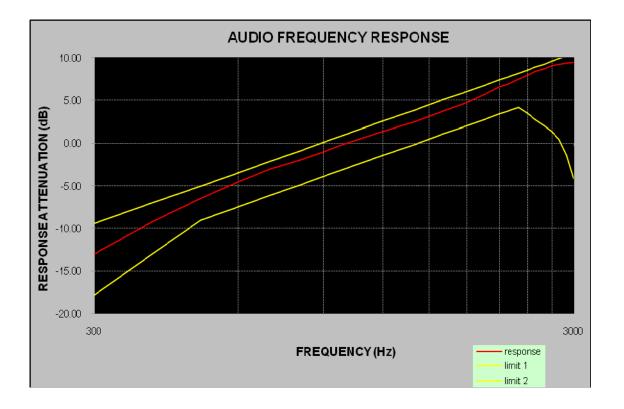
Test Mode: Transmitting


Result: Compliance.

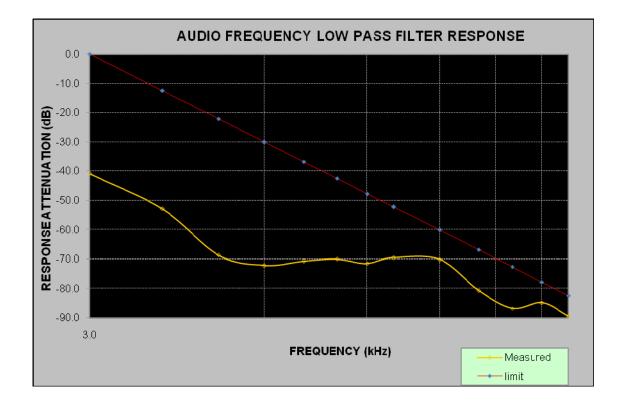
Analog Modulation:

MODULATION LIMITING

Audio Input	Frequency Deviation (kHz)			Limit
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	1.494	2.183	2.372	2.5
15.0	1.058	2.169	2.321	2.5
10.0	0.628	2.118	2.309	2.5
5.0	0.397	1.872	2.164	2.5
0.0	0.248	1.500	2.107	2.5
-5.0	0.164	0.882	2.002	2.5
-10.0	0.122	0.522	1.558	2.5
-15.0	0.101	0.321	0.888	2.5
-20.0	0.085	0.198	0.519	2.5


Carrier Frequency: 155.0125 MHz, Channel Separation=12.5 kHz

Audio Frequency Response


Carrier Frequency: 155.0125 MHz, Channel Separation=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-13.00
400	-9.12
500	-6.45
600	-4.52
700	-3.00
800	-1.98
900	-0.99
1000	0.00
1200	1.36
1400	2.49
1600	3.76
1800	4.82
2000	5.99
2100	6.57
2200	7.01
2300	7.49
2400	7.97
2500	8.41
2600	8.72
2700	9.07
2800	9.27
2900	9.39
3000	9.43

Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1.0	0.0	/
3.0	-40.8	0.0
4.0	-52.9	-12.5
5.0	-68.7	-22.2
6.0	-72.1	-30.1
7.0	-70.7	-36.8
8.0	-70.0	-42.6
9.0	-71.5	-47.7
10.0	-69.5	-52.3
12.0	-70.1	-60.2
14.0	-80.7	-66.9
16.0	-86.8	-72.7
18.0	-84.9	-77.8
20.0	-89.5	-82.4

	Carrier Frequency:	155.0125 MHz,	Channel Separation=12.5 kHz
--	--------------------	---------------	-----------------------------

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from $f_0,\,0dB.$

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
- 3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

(4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2014-12-11	2015-12-11
HP	RF Communication Test Set	8920A	3325U00859	2015-06-03	2016-06-03

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

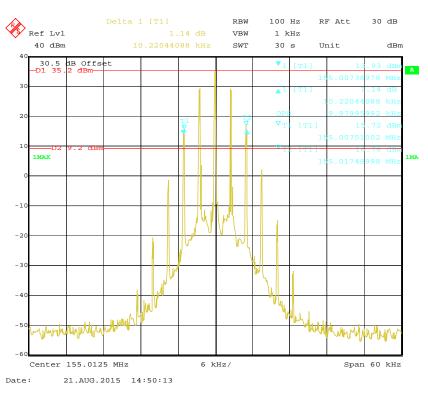
The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

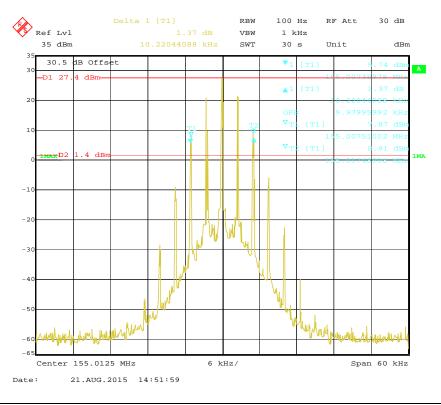
Environmental Conditions

Temperature:	24~26 ℃
Relative Humidity:	50~53 %
ATM Pressure:	100.1~101.0 kPa

The testing was performed by William Li from 2015-08-21 to 2015-09-07.

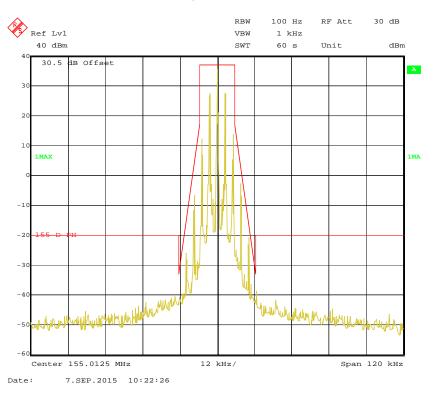

Test Mode: Transmitting

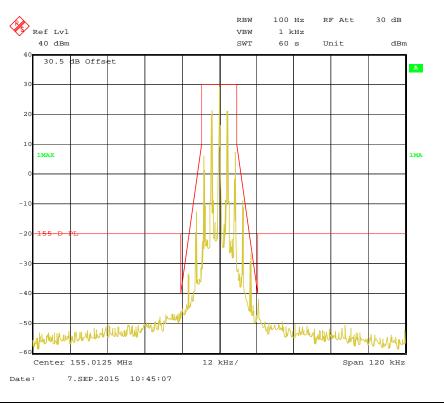
Modulation	Frequency (MHz)	Channel space (kHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)			
Analog	155.0125	12.5	12.5	High	9.98	10.22		
Allalog	12.0	12.5		12.5	12.5	25 12.5	Low	9.98
Disital	155 0125	12.5	High	7.45	9.98			
Digital	155.0125	12.5	Low	7.58	9.26			


Bay Area Compliance Laboratories Corp. (Shenzhen)

Analog Modulation:

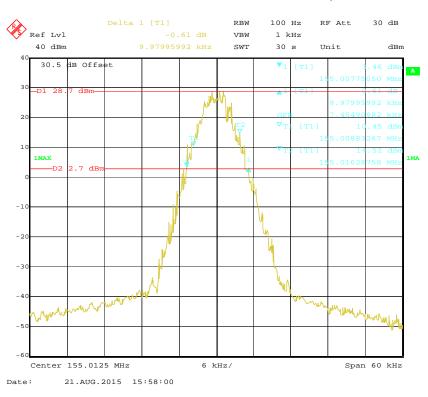
99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.0125 MHz (High Power)



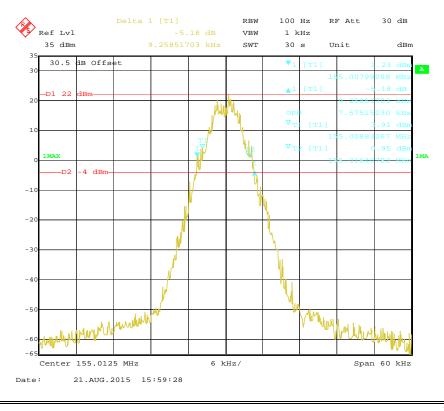

FCC PART 90

Page 18 of 33

Emission Mask D with High Power 12.5 kHz, 155.0125 MHz

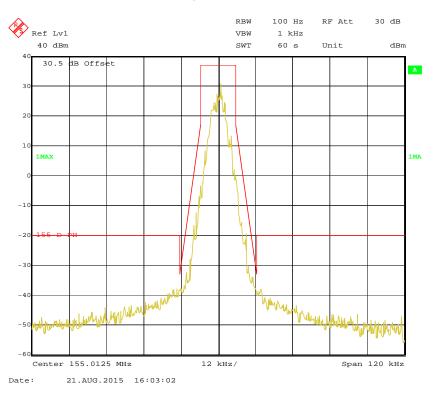


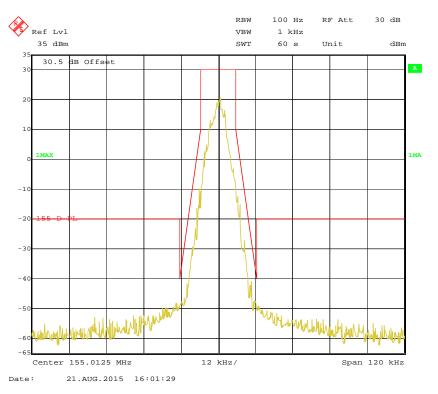
FCC PART 90


Page 19 of 33

Digital Modulation:

99% Occupied Bandwidth & 26 dB Emissions Bandwidth 12.5 kHz, 155.0125 MHz (High Power)




FCC PART 90

Page 20 of 33

Emission Mask D with High Power 12.5 kHz, 155.0125 MHz

Emission Mask D with Low Power 12.5 kHz, 155.0125 MHz

FCC PART 90

Page 21 of 33

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from $f_0, 0 \mbox{ dB}.$

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.

2)On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.

3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least $55 + 10 \log (P)$ or 65 dB, whichever is the lesser attenuation.

4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ150807001-00

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2014-12-11	2015-12-11

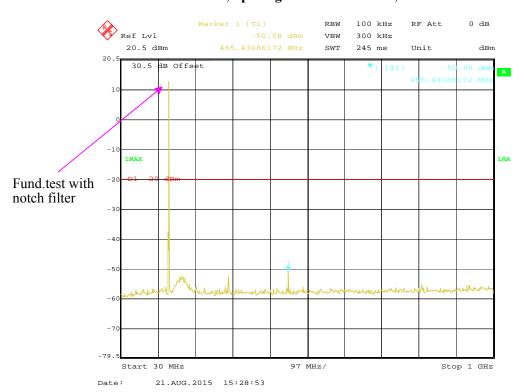
* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

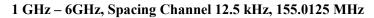
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

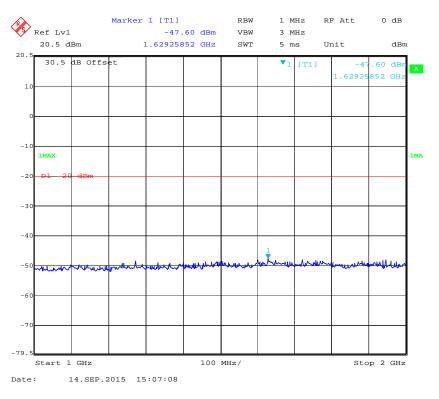
Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

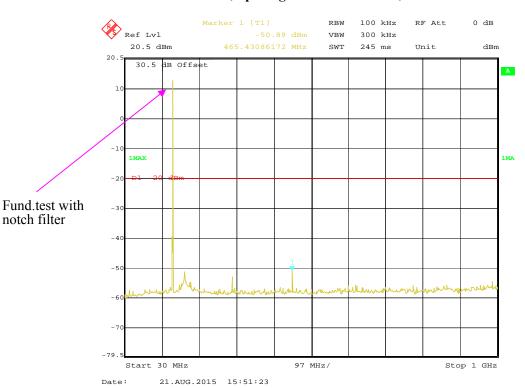
The testing was performed by William Li from 2015-08-21 to 2015-09-14.

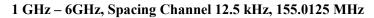

Test Mode: Transmitting

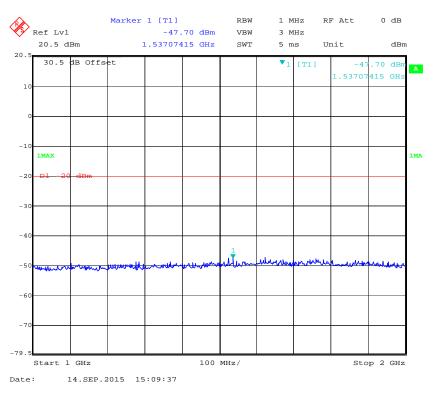

Please refer to the following plots.

Analog Modulation:

30 MHz – 1 GHz, Spacing Channel 12.5 kHz, 155.0125 MHz




FCC PART 90


Page 24 of 33

Digital Modulation:

30 MHz – 1 GHz, Spacing Channel 12.5 kHz, 155.0125 MHz

FCC PART 90

Page 25 of 33

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
HP	Amplifier	8447E	1937A01046	2015-05-06	2016-05-06
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-07	2017-12-06
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2014-12-10	2015-12-11
Sunol Sciences	Horn Antenna	DRH-118	A052304	2012-12-01	2015-11-30
HP	Synthesized Sweeper	HP 8341B	2624A00116	2015-06-03	2016-06-03
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2015-04-23	2016-04-23
A.H. System	Horn Antenna	SAS-200/571	135	2013-02-11	2016-02-10
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =50+10 Log_{10} (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Spurious attenuation limit in dB =55+10 Log_{10} (power out in Watts) for EUT with a 6.25 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by William Li on 2015-08-21.

Test Mode: Transmitting

30 MHz – 2 GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FCC I	Part 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Analog	g Modulati	ion 155.0	25MHz,	Channel S	pacing 12.5	K		
310.03	41.22	88	1.5	Н	-53.8	0.36	0	-54.16	-20	34.16
310.03	53.05	343	2.4	V	-41.9	0.36	0	-42.26	-20	22.26
465.04	37.95	180	1.6	Н	-57.0	0.47	0	-57.47	-20	37.47
465.04	33.94	120	1.8	V	-61.1	0.47	0	-61.57	-20	41.57
620.05	45.32	57	2.1	Н	-49.7	0.57	0	-50.27	-20	30.27
620.05	51.84	164	2.0	V	-43.2	0.57	0	-43.77	-20	23.77
1085.09	32.18	203	2.5	Н	-64.7	1.50	6.10	-60.10	-20	40.10
1085.09	31.48	137	1.2	V	-66.8	1.50	6.10	-62.20	-20	42.20
		Digita	l Modulat	ion 155.0	125MHz,	Channel S	pacing 12.5	K		
310.03	42.19	269	2.5	Н	-52.8	0.36	0	-53.16	-20	33.16
310.03	54.05	6	2.3	V	-40.9	0.36	0	-41.26	-20	21.26
465.04	41.63	12	1.3	Н	-53.4	0.47	0	-53.87	-20	33.87
465.04	52.49	31	1.0	V	-42.5	0.47	0	-42.97	-20	22.97
620.05	44.92	227	2.4	Н	-50.1	0.57	0	-50.67	-20	30.67
620.05	42.18	96	1.7	V	-52.8	0.57	0	-53.37	-20	33.37
1085.09	31.49	256	1.3	Н	-65.4	1.50	6.10	-60.80	-20	40.80
1085.09	32.13	292	1.1	V	-66.2	1.50	6.10	-61.60	-20	41.60

Note:

,

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2016-05-08
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2014-11-01	2015-11-01
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by William Lion 2015-08-21.

Test Mode: Transmitting

For Analog Modulation

Reference Frequency: 155.0125 MHz, Limit: ±2.5 ppm, 12.5 kHz				
Test Envi	Test Environment Fre		equency Measure with Time Elapsed	
Temperature (℃)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)	
	Frequency Stability	y versus Input Temper	ature	
50	7.4	155.012523	0.148	
40	7.4	155.012518	0.116	
30	7.4	155.012512	0.077	
20	7.4	155.012509	0.058	
10	7.4	155.012513	0.084	
0	7.4	155.012497	-0.019	
-10	7.4	155.012499	-0.006	
-20	7.4	155.012515	0.097	
-30	7.4	155.012516	0.103	
Frequency Stability versus Input Voltage				
20	6.4	155.012514	0.090	

For Digital Modulation

Reference Frequency: 155.0125 MHz, Limit: ±2.5 ppm, 12.5 kHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency (MHz)	Frequency Error (ppm)	
	Frequency Stability	versus Input Temper	ature	
50	7.4	155.012515	0.097	
40	7.4	155.012523	0.148	
30	7.4	155.012519	0.123	
20	7.4	155.012522	0.142	
10	7.4	155.012512	0.077	
0	7.4	155.012518	0.116	
-10	7.4	155.012516	0.103	
-20	7.4	155.012523	0.148	
-30	7.4	155.012514	0.090	
Frequency Stability versus Input Voltage				
20	6.4	155.012517	0.110	

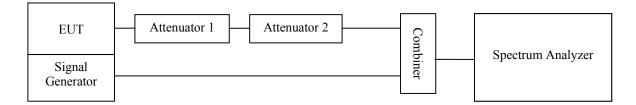
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214 Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSIQ26	8386001028	2014-12-11	2015-12-11
НР	RF Communication Test Set	8920A	3325U00859	2015-06-03	2016-06-03


* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P_0 .
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .

Bay Area Compliance Laboratories Corp. (Shenzhen)

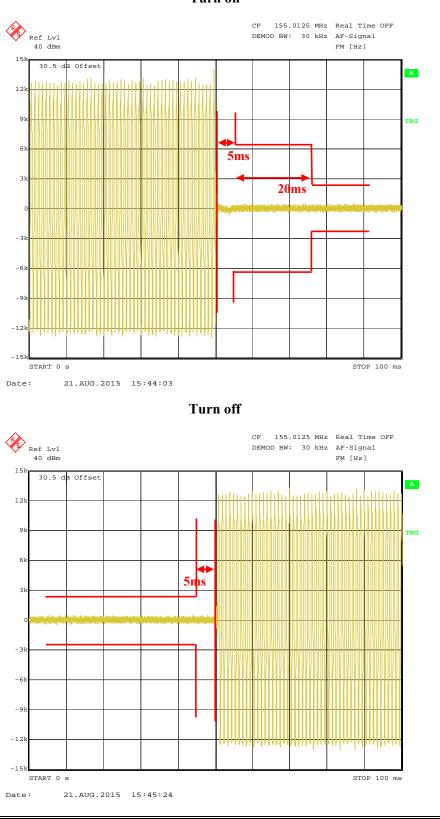
k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by William Lion 2015-08-21.


Test Mode: Transmitting

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	5 (t1)	<+/-12.5 kHz	
12.5	20(t2)	<+/-6.25 kHz	Pass
	5 (t3)	<+/-12.5 kHz	

Please refer to the following plots.

Report No.: RSZ150807001-00

Channel Spacing 12.5 kHz

Turn on

FCC PART 90

Page 32 of 33

PRODUCT SIMILARITY DECLARATION LETTER

TYT ELECTRONICS CO., LTD Block 39-1, Optoelectronics-information industry b, Nan'an, Quanzhou, Fujian, China Fax: +86 595-27770858 Fax: +86 595-27770857

2015-08-31

Product Similarity Declaration

To Whom It May Concern,

We, TYT ELECTRONICS CO., LTD, hereby declare that we have a product named as DMR (Model no: MD-380) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (MD-390 MD-368 MD-398 MD-446) on reports and certificate, all the models are identical schematics, except for the differences as below,

1, Model number

No other changes are made to them. We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Signature:

Jiamao Lin

Manager

***** END OF REPORT *****

FCC PART 90

Page 33 of 33