

Page 1 of 44

FCC Part 95 Rules Test Report

Report No.: AGC02931190802FE10A

FCC ID	: PODGMRS-45
PRODUCT DESIGNATION	: Analog Transceiver
BRAND NAME	: TYT
MODEL NAME	: GMR45
APPLICANT	: TYT ELECTRONICS CO., LTD
DATE OF ISSUE	: Jul. 06, 2020
STANDARD(S)	: FCC Part 95 Rules
REPORT VERSION	: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.:AGC02931190802FE10A Page 2 of 44

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	Jul. 06, 2020	Valid	Class II Permissive Change

Note: The original test report Ref. No. (AGC02931190802FE10) (dated 2019-08-20), was modified on 2020-07-06 to include the following changes and additions for:

- Add an external connector.

-Updated Hardware version.

For the above described changes, transmitter power and transmitter Radiated Spurious Emission were tested differently.

Report No.: AGC02931190802FE10A Page 3 of 44

Applicant	TYT ELECTRONICS CO., LTD			
Address	Block 39-1, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian, China.			
manufacturer	TYT ELECTRONICS CO., LTD			
Address	Block 39-1, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian, China.			
Factory	TYT ELECTRONICS CO., LTD			
Address	Block 39-1, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian, China.			
Product Designation:	Analog Transceiver			
Brand Name:	ТҮТ			
Test Model	GMR45			
Date of Test:	Jun. 22, 2020~Jul. 06, 2020			

VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part 95 requirements. The test results of this report relate only to the tested sample identified in this report.

Prepared By

Calin Lin

Calvin Liu (Project Engineer)

Jul. 06, 2020

Reviewed By

Max Zhan

Max Zhang (Reviewer)

wes

Jul. 06, 2020

Approved By

Forrest Lei Authorized Officer

Jul. 06, 2020

Report No.:AGC02931190802FE10A Page 4 of 44

TABLE OF CONTENTS

1. GENERAL INFORMATION		5
1.1 PRODUCT DESCRIPTION		5
1.2 RELATED SUBMITTAL(S) / GRANT (S)		7
1.3 TEST METHODOLOGY.		
1.4 TEST FACILITY		
1.5 SPECIAL ACCESSORIES		
1.6 EQUIPMENT MODIFICATIONS		
2. SYSTEM TEST CONFIGURATION		
2.1 EUT CONFIGURATION		
2.2 EUT EXERCISE		
2.3 CONFIGURATION OF TESTED SYSTEM		
3. SUMMARY OF TEST RESULTS		
4. DESCRIPTION OF TEST MODES		12
5. UNWANTED RADIATION		
5.1 PROVISIONS APPLICABLE		
5.2 MEASUREMENT PROCEDURE	2	13
5.3 TEST SETUP BLOCK DIAGRAM		
5.4 MEASUREMENT RESULTS:		
6. MAXIMUMN TRANSMITTER POWER		
6.1 PROVISIONS APPLICABLE		
6.2 TEST PROCEDURE		
6.3 TEST CONFIGURATION		
6.4 TEST RESULT		
APPENDIX I: PHOTOGRAPHS OF SETUP		
APPENDIX II: EXTERNAL VIEW OF EUT	<u> </u>	

1. GENERAL INFORMATION

1.1 PRODUCT DESCRIPTION

The EUT is a **Analog Transceiver** designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Product Designation	Analog Transceiver
Test Model	GMR45
Hardware Version	TH-9000D-UHF-1.6.1
Software Version	V2.1
Modulation	FM
Channel Separation	12.5KHz
Emission Type	F3E
Maximum Transmitter Power	46.43dBm
Rated Output power	5W/45W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)
Antenna Designation	Detachable
Antenna Type	External antenna
Antenna Gain	0dBi
Power Supply	DC 13.8V
Limiting Voltage	DC 11.73 V~ 15.87V
Operation Frequency Range and Channel	GMRS: 462.5625MHz -462.7125MHz(5W) 462.5500MHz -462.7250MHz(45W) 467.5500MHz -467.7250MHz(45W) Test Channel :4, 11 and 19 channel

Report No.:AGC02931190802FE10A Page 6 of 44

Channel List:

CH. No	CH. Freq	Power	CH. No	CH. Freq	Power
1	462.5625	6.0	13	462.6750	
2	462.5875		14	462.7000	45W
3	462.6125	0	15	462.7250	
4	462.6375	5W	16	467.5500	
5	462.6625		17	467.5750	
6	462.6875		18	467.6000	
7	462.7125		19	467.6250	45W
8	462.5500		20	467.6500	4577
9	462.5750		21	467.6750	
10	462.6000	45W	22	467.7000	8
11	462.6250		23	467.7250	0
12	462.6500		-0		

1.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID:**PODGMRS-45**, filing to comply with the FCC Part 95 requirements.

1.3 TEST METHODOLOGY.

The radiated emission testing was performed according to the procedures of TIA/EIA 603. **1.4 TEST FACILITY**

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA		

1.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Report No.:AGC02931190802FE10A Page 8 of 44

2. SYSTEM TEST CONFIGURATION

2.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Report No.:AGC02931190802FE10A Page 9 of 44

2.3 CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT.

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Analog Transceiver	GMR45	FCC ID: PODGMRS-45	EUT

Report No.:AGC02931190802FE10A Page 10 of 44

3. SUMMARY OF TEST RESULTS

FCC 47 CFR Part 95 Test Cases				
Test Item Test Requirement Test Method				
Maximum Transmitter Power	FCC CFR Part 95.1767 FCC 47 CFR Part 2.1046(a)	ANSI/TIA-603-E-2016	PASS	
Transmitter Radiated Spurious Emission	FCC CFR Part 95.1779	ANSI/TIA-603-E-2016	PASS	

1) N/A: In this whole report not application.

2) The EUT is External antenna

Report No.:AGC02931190802FE10A Page 11 of 44

LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 10, 2020	Jun. 09, 2021
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.12, 2019	Dec.11, 2020
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.18, 2018	Sep.17, 2020
preamplifier	ChengYi	EMC184045SE	980508	Sep.20, 2018	Sep.19, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 17, 2019	May 16, 2021
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 09, 2020	Jun. 08, 2021
Double-Ridged Waveguide Horn	ETS	3117	00154520	Oct. 26, 2019	Oct. 25, 2021
SIGNAL GENERATOR	AGILENT	E4421B	122501288	Jun. 09, 2020	Jun. 08, 2021
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 09, 2020	Jun. 08, 2021
ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Jan. 09, 2019	Jan. 08, 2021
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.26, 2018	Sep.25, 2020
Modulation Domain Analyzer	HP	53310A	3121A02467	Oct. 30, 2019	Oct. 29, 2020
Small environmental tester	ESPEC	SH-242	<u>-</u>	Oct. 08, 2019	Oct. 07, 2020
RF Communication Test Set	HP	8920B		Jun. 09, 2020	Jun. 08, 2021
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 11, 2020	Jun. 10, 2021
Attenuator	Weinachel Corp	58-30-33	ML030	Oct. 28, 2019	Oct. 27, 2020
Vector Analyzer	Agilent	E4440A	US40420298	July 02, 2019	July 01, 2020
RF Cable	R&S	1#	·	Each time	N/A
RF Cable	R&S	2#		Each time	N/A

Note: 8920B can generate audio modulation frequency.

4. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (**Analog Transceiver**) has been tested under normal operating condition. (GMRS TX) are chosen for testing at each channel separation.

No.	TEST MODES	CHANNEL SEPARATION
1	GMRS TX	12.5 KHz

Note:1. Only the result of the worst case was recorded in the report.

5. UNWANTED RADIATION

5.1 PROVISIONS APPLICABLE

Standard Applicable [FCC Part 95.1779]

According to FCC section 95.1779, the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB.

5.2 MEASUREMENT PROCEDURE

Each GMRS transmitter type must be designed to comply with the applicable unwanted emissions limits in this section.

(a)Emission masks. Emission masks applicable to transmitting equipment in the GMRS are defined by the requirements in the following table. The numbers in the attenuation requirements column refer to rule paragraph numbers under paragraph (b) of this section.

Attenuation requirements	
(1), (2), (7)	
(3), (4), (7)	
(5), (6), (7)	

(1) Filtering noted for GMRS transmitters refers to the requirement in §95.1775(e).

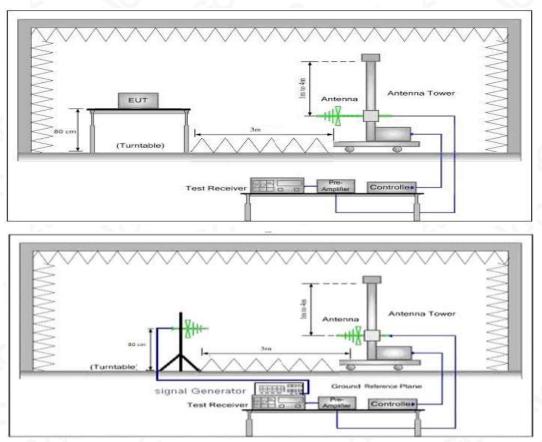
- (2) Unwanted emission power may be measured as either mean power or peak envelope power, provided that the transmitter output power is measured the same way.
- (b) Attenuation requirements. The power of unwanted emissions must be attenuated below the transmitter output power in Watts (P) by at least:
- (1) 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.
- (2) 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.
- (3) 83 log (fd ÷ 5) dB on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz up to and including 10 kHz.
- (4) 116 log (fd ÷ 6.1) dB or 50 + 10 log (P) dB, whichever is the lesser attenuation, on any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz), of more than 10 kHz up to and including 250% of the authorized bandwidth.
- (5) 25 dB on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 150% of the authorized bandwidth.
- (6) 35 dB on any frequency removed from the center of the authorized bandwidth by more than 150% up to and including 250% of the authorized bandwidth.
- (7) 43 + 10 log (P) dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

Report No.:AGC02931190802FE10A Page 14 of 44

- (1) EUT was placed on a 0.8 or 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector.
- (2) A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- (3)The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- (4)The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- (5)A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- (6)The measurement results are obtained as described below: Power(EIRP)=PMea- PAg Pcl Ga The measurement results are amend as described below: Power(EIRP)=PMea- Pcl - Ga
- (7)This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

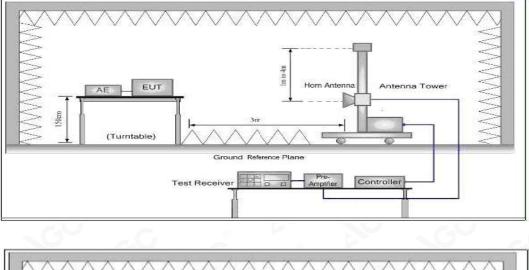
(8)Test the EUT in the lowest channel, the middle channel the Highest channel



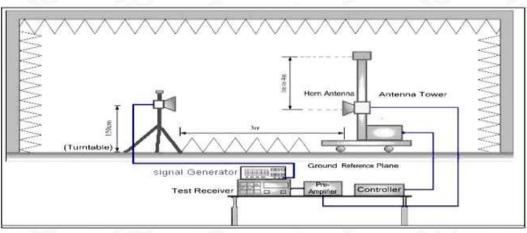
Report No.:AGC02931190802FE10A Page 15 of 44

5.3 TEST SETUP BLOCK DIAGRAM

SUBSTITUTION METHOD: (Radiated Emissions)

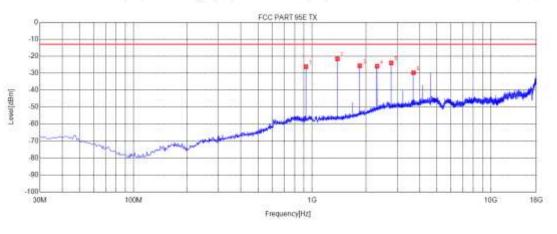


Radiated Below1GHz



Report No.:AGC02931190802FE10A Page 16 of 44

Radiated Above 1 GHz


Report No.:AGC02931190802FE10A Page 17 of 44

5.4 MEASUREMENT RESULTS:

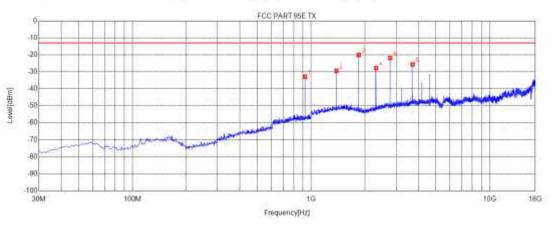
the unwanted emission should be attenuated below TP by at least 43+10 log(Transmit Power) dB

```
Limit: At least 43+10 log (P) =43+10log (5) =49.99 (dBc) 36.99-49.99=-13dBm
At least 43+10 log (P) =43+10log (45) =59.53 (dBc) 46.53-59.53=-13dBm
```

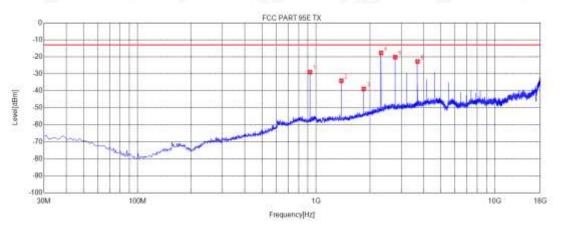
Measurement Result for 12.5 KHz Channel Separation @ 462.6375MHz-5W-Horizontal

- Limit # Final Test - Horizontal

	Freq.	Reading	Level	Limit	Margin	Factor	Angle	Deleritu	
NO.	[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	[°]	Polarity	
1	925.2352	-69.68	-26.19	-13.00	13.19	43.49	47	Horizontal	
2	1387.6388	-18.13	-21.58	-13.00	8.58	-3.45	257	Horizontal	
3	1850.0850	-25.09	-25.68	-13.00	12.68	-0.59	248	Horizontal	
4	2314.2314	-28.90	-25.91	-13.00	12.91	2.99	286	Horizontal	
5	2776.6777	-28.90	-23.99	-13.00	10.99	4.91	142	Horizontal	
6	3701.5702	-36.55	-29.74	-13.00	16.74	6.81	219	Horizontal	


- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level

Report No.: AGC02931190802FE10A Page 18 of 44

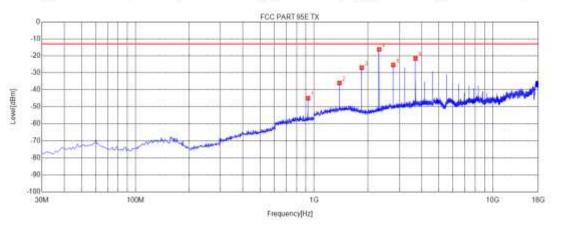

NO.	Freq.	Reading	Level	Limit	Margin	Factor	Angle	Delerity
	[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	[°]	Polarity
1	925.2352	-76.45	-32.88	-13.00	19.88	43.57	85	Vertical
2	1387.6388	-30.86	-29.45	-13.00	16.45	1.41	199	Vertical
3	1850.0850	-21.03	-20.10	-13.00	7.10	0.93	142	Vertical
4	2314.2314	-30.17	-27.77	-13.00	14.77	2.40	199	Vertical
5	2774.9775	-26.35	-21.88	-13.00	8.88	4.47	333	Vertical
6	3701.5702	-32.19	-25.63	-13.00	12.63	6.56	209	Vertical

- 1.
- Factor=Antenna Factor + Cable loss. (Below 1GHz) Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz) 2.
- Margin=Limit-Level 3.

Report No.:AGC02931190802FE10A Page 19 of 44

Measurement Result for 12.5 KHz Channel Separation @ 462.6250MHz-45W-Horizontal

- Limit Final Test Horizontal

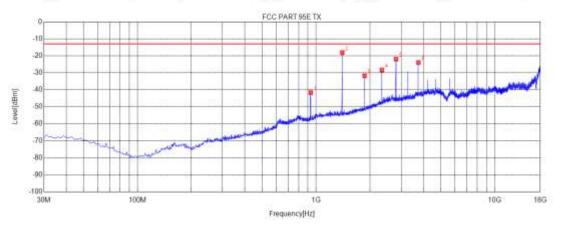

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	925.2352	-72.51	-29.02	-13.00	16.02	43.49	295	Horizontal
2	1387.6388	-30.64	-34.09	-13.00	21.09	-3.45	124	Horizontal
3	1850.0850	-38.33	-38.92	-13.00	25.92	-0.59	247	Horizontal
4	2312.5313	-20.70	-17.73	-13.00	4.73	2.97	190	Horizontal
5	2774.9775	-25.14	-20.23	-13.00	7.23	4.91	162	Horizontal
6	3701.5702	-29.58	-22.77	-13.00	9.77	6.81	209	Horizontal

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit-Level

Report No.:AGC02931190802FE10A Page 20 of 44

Measurement Result for 12.5 KHz Channel Separation @ 462.6250MHz-45W-Vertical

- Limit Final Test Vertical

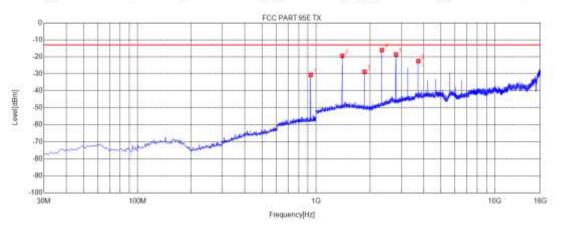

Freq.	Reading	Level	Limit	Margin	Factor	Angle	Delerity
[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	[°]	Polarity
925.2352	-88.52	-44.95	-13.00	31.95	43.57	114	Vertical
1387.6388	-37.42	-36.01	-13.00	23.01	1.41	172	Vertical
1850.0850	-27.95	-27.02	-13.00	14.02	0.93	57	Vertical
2314.2314	-18.66	-16.26	-13.00	3.26	2.40	162	Vertical
2776.6777	-29.91	-25.43	-13.00	12.43	4.48	210	Vertical
3699.8700	-28.12	-21.57	-13.00	8.57	6.55	210	Vertical
	[MHz] 925.2352 1387.6388 1850.0850 2314.2314 2776.6777	[MHz][dBm]925.2352-88.521387.6388-37.421850.0850-27.952314.2314-18.662776.6777-29.91	[MHz][dBm][dBm]925.2352-88.52-44.951387.6388-37.42-36.011850.0850-27.95-27.022314.2314-18.66-16.262776.6777-29.91-25.43	[MHz][dBm][dBm][dBm]925.2352-88.52-44.95-13.001387.6388-37.42-36.01-13.001850.0850-27.95-27.02-13.002314.2314-18.66-16.26-13.002776.6777-29.91-25.43-13.00	[MHz][dBm][dBm][dBm][dB]925.2352-88.52-44.95-13.0031.951387.6388-37.42-36.01-13.0023.011850.0850-27.95-27.02-13.0014.022314.2314-18.66-16.26-13.003.262776.6777-29.91-25.43-13.0012.43	[MHz][dBm][dBm][dBm][dB][dB]925.2352-88.52-44.95-13.0031.9543.571387.6388-37.42-36.01-13.0023.011.411850.0850-27.95-27.02-13.0014.020.932314.2314-18.66-16.26-13.003.262.402776.6777-29.91-25.43-13.0012.434.48	[MHz][dBm][dBm][dBm][dB][dB][dB][dB]925.2352-88.52-44.95-13.0031.9543.571141387.6388-37.42-36.01-13.0023.011.411721850.0850-27.95-27.02-13.0014.020.93572314.2314-18.66-16.26-13.003.262.401622776.6777-29.91-25.43-13.0012.434.48210

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level

Report No.:AGC02931190802FE10A Page 21 of 44

Measurement Result for 12.5 KHz Channel Separation @ 467.6250MHz-45W-Horizontal

- Limit Final Test - Horizontal


NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	934.9449	-85.34	-41.64	-13.00	28.64	43.70	84	Horizontal
2	1402.9403	-14.68	-18.09	-13.00	5.09	-3.41	180	Horizontal
3	1870.4870	-31.32	-31.76	-13.00	18.76	-0.44	246	Horizontal
4	2338.0338	-31.55	-28.38	-13.00	15.38	3.17	189	Horizontal
5	2805.5806	-26.91	-21.95	-13.00	8.95	4.96	199	Horizontal
6	3740.6741	-30.90	-23.96	-13.00	10.96	6.94	199	Horizontal

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level

Report No.:AGC02931190802FE10A Page 22 of 44

Measurement Result for 12.5 KHz Channel Separation @ 467.6250MHz-45W -Vertical

- Limit Final Test Vertical

NO.	Freq.	Reading	Level	Limit	Margin	Factor	Angle	Polarity
	[MHz]	[dBm]	[dBm]	[dBm]	[dB]	[dB]	[°]	, ,
1	934.9449	-74.33	-30.66	-13.00	17.66	43.67	104	Vertical
2	1402.9403	-20.99	-19.47	-13.00	6.47	1.52	343	Vertical
3	1870.4870	-29.71	-28.85	-13.00	15.85	0.86	142	Vertical
4	2338.0338	-18.62	-16.07	-13.00	3.07	2.55	190	Vertical
5	2805.5806	-23.26	-18.69	-13.00	5.69	4.57	334	Vertical
6	3742.3742	-29.21	-22.55	-13.00	9.55	6.66	359	Vertical

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level

6. MAXIMUMN TRANSMITTER POWER 6.1 PROVISIONS APPLICABLE

FCC Part 95.1767 For GMRS, the maximum permissible transmitter output power effective radiated power (e.r.p.) as follows.

This section contains transmitting power limits for GMRS stations. The maximum transmitting power depends on which channels are being used and the type of station.

(a)462/467 MHz main channels. The limits in this paragraph apply to stations transmitting on any of the 462 MHz main channels or any of the 467 MHz main channels. Each GMRS transmitter type must be capable of operating within the allowable power range. GMRS licensees are responsible for ensuring that their GMRS stations operate in compliance with these limits.

(1)The transmitter output power of mobile, repeater and base stations must not exceed 50 Watts.

(2) The transmitter output power of fixed stations must not exceed 15 Watts.

(b)462 MHz interstitial channels. The effective radiated power (ERP) of mobile, hand-held portable and base stations transmitting on the 462 MHz interstitial channels must not exceed 5 Watts.

(c)467 MHz interstitial channels. The effective radiated power (ERP) of hand-held portable units

transmitting on the 467 MHz interstitial channels must not exceed 0.5 Watt. Each GMRS transmitter type

capable of transmitting on these channels must be designed such that the ERP does not exceed 0.5 Watt.

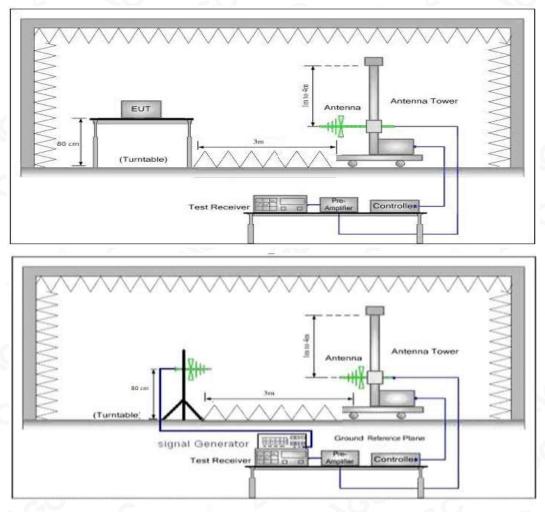
Report No.:AGC02931190802FE10A Page 24 of 44

6.2 TEST PROCEDURE

- (1)EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. The radiated emission measurements of all transmit frequencies in all channels were measured with peak detector
- (2)A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver
- (3)The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (Pr).
- (4)The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- (5)A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg Pcl Ga The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl - Ga

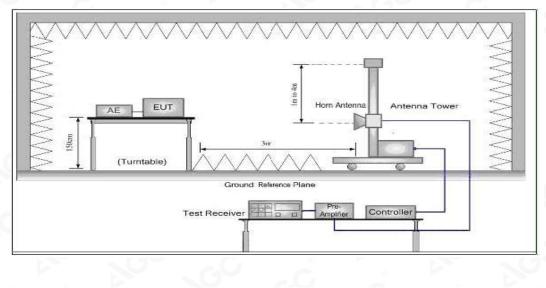
- (6)This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- (7)ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.
- (8)Test the EUT in the lowest channel, the middle channel the Highest channel

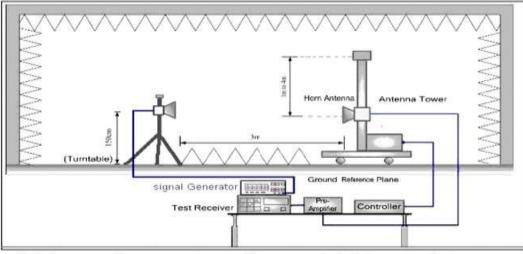


Report No.:AGC02931190802FE10A Page 25 of 44

6.3 TEST CONFIGURATION

Effective Radiated Power


Radiated Below1GHz



Report No.:AGC02931190802FE10A Page 26 of 44

Radiated Above 1 GHz

Report No.:AGC02931190802FE10A Page 27 of 44

6.4 TEST RESULT

The maximum Power (CP) for UHF is

Analog: 5W/45W for 12.5 KHz Channel Separation

Calculation Formula: CP = R + A + L

* Note:

CP: The final Conducted Power

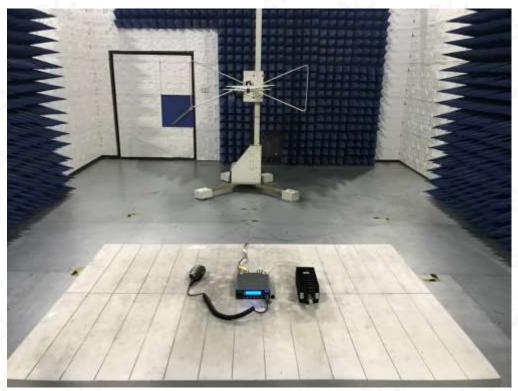
R : The reading value from spectrum analyzer

A : The attenuation value of the used attenuator

L : The loss of all connection cables

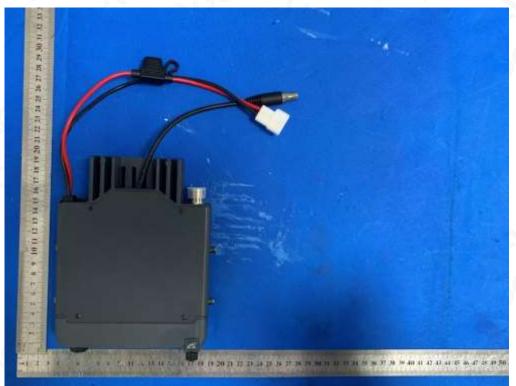
ERP RESULT:

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Emission Level	Limit	Margin
(MHz)	(dBuv/m)	Polarization	(dBm)	(dB)	(dBi)	(dBm)	(W)	(W)	(W)
ChannelSeparation:12.5KHz									
462.6375	125.81	V	30.58	0.38	6.6	36.80	4.79	5	0.21
462.6375	125.75	Н	30.52	0.38	6.6	36.74	4.72	5	0.28
462.6250	135.44	V	40.21	0.38	6.6	46.43	43.95	50	6.05
462.6250	135.31	Н	40.08	0.38	6.6	46.30	42.66	50	7.34
467.6250	135.42	V	40.19	0.38	6.6	46.41	43.75	50	6.25
467.6250	135.31	Н	40.08	0.38	6.6	46.30	42.66	50	7.34


Note: The antenna will not be sold with the device, we test the power with Alternative method, added a 50Ω car antenna (mode:C-002) max gain: 0dBi) in the test.

Report No.:AGC02931190802FE10A Page 28 of 44

APPENDIX I: PHOTOGRAPHS OF SETUP RADIATED EMISSION TEST SETUP



Report No.:AGC02931190802FE10A Page 29 of 44

APPENDIX II: EXTERNAL VIEW OF EUT TOTAL VIEW OF EUT

Part I TOP VIEW OF EUT

Report No.:AGC02931190802FE10A Page 30 of 44

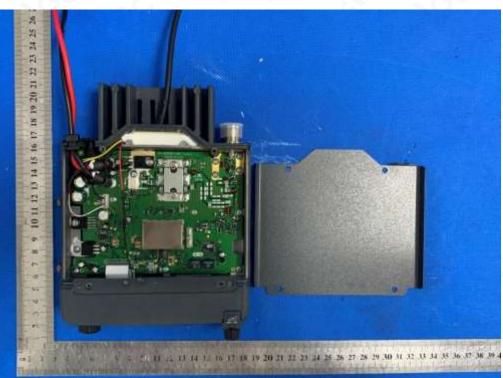
BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Report No.:AGC02931190802FE10A Page 31 of 44

BACK VIEW OF EUT

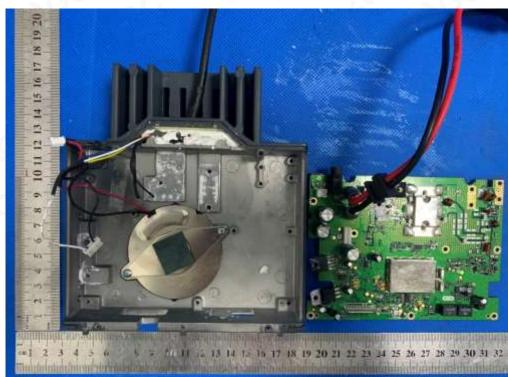
LEFT VIEW OF EUT


Report No.:AGC02931190802FE10A Page 32 of 44

RIGHT VIEW OF EUT

Antenna port

OPEN VIEW-1 OF EUT



Report No.:AGC02931190802FE10A Page 33 of 44

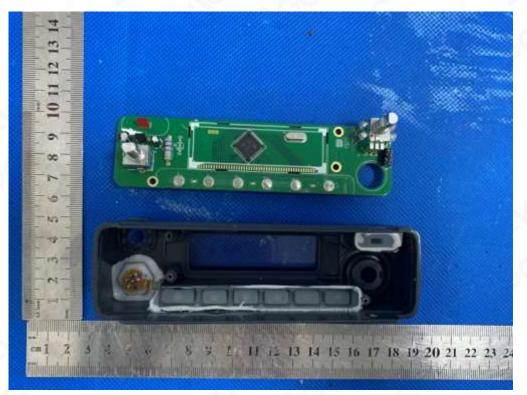
OPEN VIEW-2 OF EUT

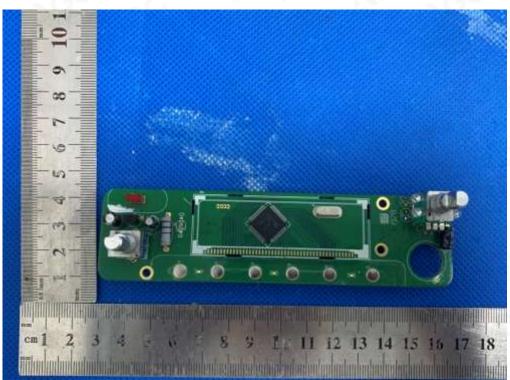
OPEN VIEW-3 OF EUT-1

Report No.:AGC02931190802FE10A Page 34 of 44

INTERNAL VIEW OF EUT(FIGURE 1)

INTERNAL VIEW OF EUT(FIGURE 2)

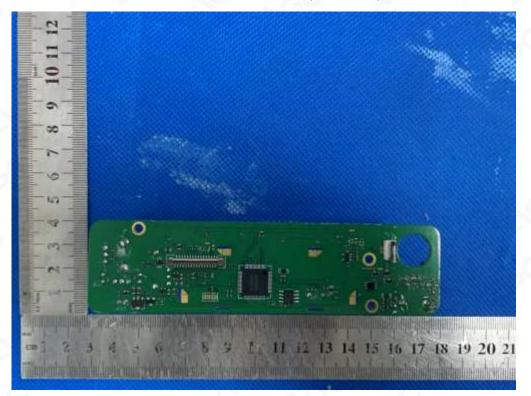


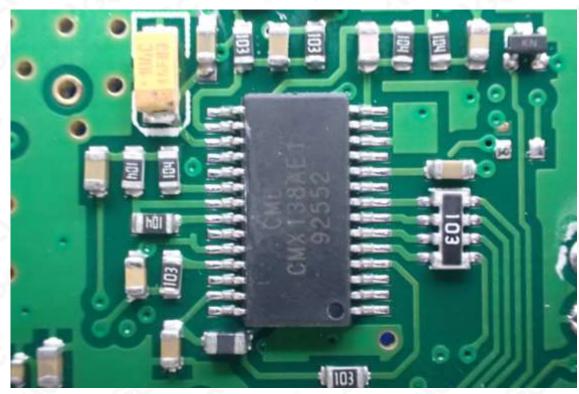


Report No.:AGC02931190802FE10A Page 35 of 44

OPEN VIEW-4 OF EUT-1

INTERNAL VIEW OF EUT(FIGURE 1)

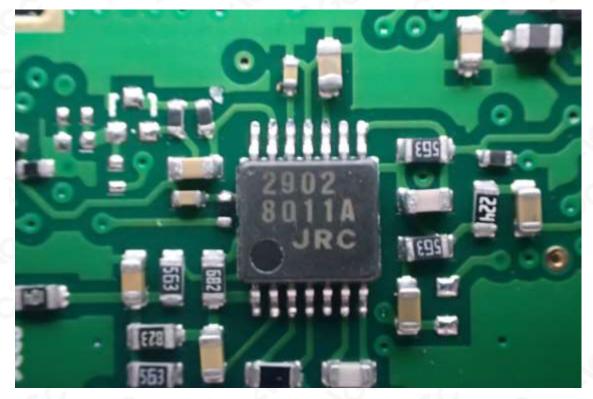


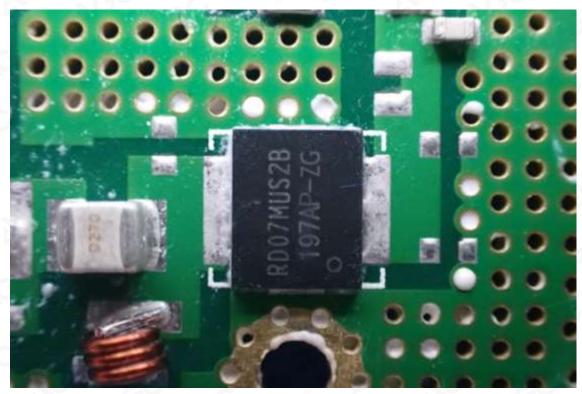


Report No.:AGC02931190802FE10A Page 36 of 44

INTERNAL VIEW OF EUT(FIGURE 2)

INTERNAL VIEW OF EUT(FIGURE 3)

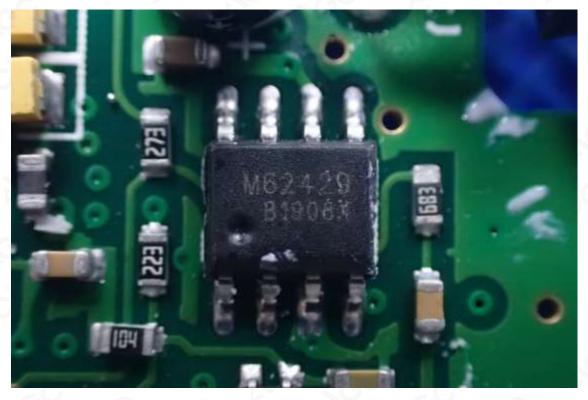


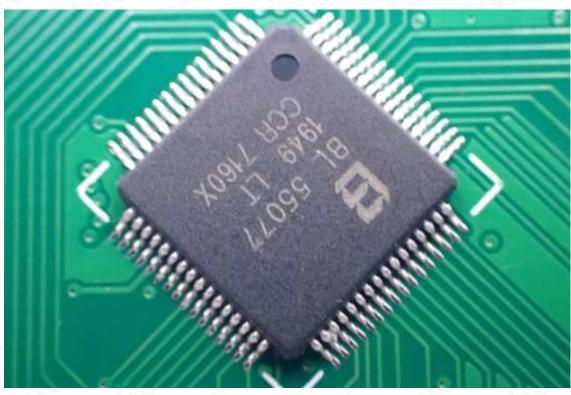


Report No.:AGC02931190802FE10A Page 37 of 44

INTERNAL VIEW OF EUT(FIGURE 4)

INTERNAL VIEW OF EUT(FIGURE 5)





Report No.:AGC02931190802FE10A Page 38 of 44

INTERNAL VIEW OF EUT(FIGURE 6)

INTERNAL VIEW OF EUT(FIGURE 7)

Report No.:AGC02931190802FE10A Page 39 of 44

INTERNAL VIEW OF EUT(FIGURE 8)

INTERNAL VIEW OF EUT(FIGURE 9)

Report No.:AGC02931190802FE10A Page 40 of 44

Part 2 TOP VIEW OF EUT

BOTTOM VIEW OF EUT

Report No.:AGC02931190802FE10A Page 41 of 44

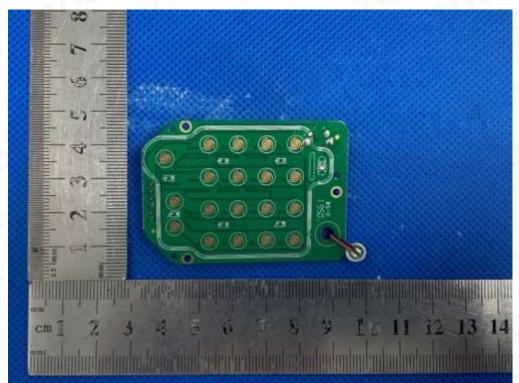
FRONT VIEW OF EUT

BACK VIEW OF EUT

Report No.:AGC02931190802FE10A Page 42 of 44

LEFT VIEW OF EUT

RIGHT VIEW OF EUT



Report No.:AGC02931190802FE10A Page 43 of 44

OPEN VIEW-1 OF EUT

INTERNAL VIEW-1 OF EUT

Report No.:AGC02931190802FE10A Page 44 of 44

INTERNAL VIEW-2 OF EUT

----END OF REPORT----

