FCC Test Report

Report No.: AGC01039170403FE08

FCC ID	:	POD-ANG7
TYPE OF AUTHORIZATION	:	Certification
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Analog Transceiver
BRAND NAME	:	ТҮТ
TEST MODEL	:	TH-UV8200, TH-UV8200R, TH-UV8000D, TH-UVF8, TH-350
CLIENT	:	TYT ELECTRONICS CO., LTD
DATE OF ISSUE	:	Apr.18, 2017
STANDARD(S)	:	FCC Part 15 Rules
REPORT VERSION	:	V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

AGC Internet

Ó

to noter

46

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record					
Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Apr.18, 2017	Valid	Original Report	

Report Revise Record

Report No.:AGC01039170403FE08 Page 3 of 28

TABLE OF CONTENTS	
1. VERIFICATION OF COMPLIANCE	
2. PRODUCT INFORMATION	5
3. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	
4. SUPPORT EQUIPMENT LIST	
5. SYSTEM DESCRIPTION	7
6. SUMMARY OF TEST RESULTS	
7. FCC RADIATED EMISSION TEST	9
7.1. TEST EQUIPMENT OF RADIATED EMISSION	9
7.2. LIMITS OF RADIATED EMISSION TEST	9
7.3 BLOCK DIAGRAM OF RADIATED EMISSION TEST	9
7.4 PROCEDURE OF RADIATED EMISSION TEST	10
7.5 TEST RESULT OF RADIATED EMISSION TEST	
8. CONDUCTED EMISSION TEST	
8.1 PROVISIONS APPLICABLE	13
8.2 MEASUREMENT PROCEDURE	13
8.3 TEST SETUP BLOCK DIAGRAM	14
8.4 TEST RESULT	15
9. ANTENNA CONDUCTED POWER FOR RECEIVERS	
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	
APPENDIX 2 PHOTOGRAPHS OF EUT	22

1. VERIFICATION OF COMPLIANCE

Applicant		
	TYT ELECTRONICS CO., LTD	
Address	Block 39-1, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian, China	
Manufacturer	TYT ELECTRONICS CO., LTD	
Address	Block 39-1, Optoelectronics-information industry base, Nan'an, Quanzhou, Fujian, China	
Product Designation	Analog Transceiver	
Brand name	ТҮТ	
Test Model	TH-UV8200	
Series Model	TH-UV8200R, TH-UV8000D, TH-UVF8, TH-350	
Difference description	All the same except for the model name.	
Measurement Procedure	ANSI C63.4: 2014	
Date of test:	Apr.18, 2017 to Apr.18, 2017	
Deviation:	None	
Condition of Test Sample	Normal	

The above equipment was tested by Attestation Of Global Compliance (Shenzhen) Co., Ltd. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, the measurement procedure according to ANSI C63.4:2014. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Tested by

Steven Zhou

Steven Zhou(Zhou Pengyun) Apr.18, 2017

Reviewed by

BONPL xie

Bart Xie(Xie Xiaobin)

Apr.18, 2017

Approved by

Solger Zhang(Zhang Hongyi) Authorized Officer Apr.18, 2017

2. PRODUCT INFORMATION

The EUT is a Analog Transceiver designed for voice communication. It is designed by way of utilizing the FM modulation achieves the system operating.

A major technical description of EUT is described as following:

Communication Type	Voice / Tone only	
Modulation	FM	
Hardware Version	TH-UV8200G	
Software Version	TH-8200 V1	
RX Frequency Range	136-174MHz & 400-520MHz	
Emission Type	F3E	
Antenna Designation	Detachable	
Antenna Gain	1.5dBi	
Power Supply	DC 7.4V 2200mAh	
Adaptor Poromotor	INPUT:AC 100-240V~ 50/60Hz ,0.3A	
Adapter Parameter	OUTPUT:DC 12.5V , 0.5A	
	INPUT:DC 12.5V	
Charger Parameter	OUTPUT:DC 8.4V, 0.4~0.45A	

I/O Port Information (Applicable Not Applicable)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
DC Input Port	1	1.47m, Unshielded	1		
Antenna Connect Port	1	0	1		

3. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Dongguan Precise Testing Service Co., Ltd.			
Location	Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.			
Description	The test site is constructed and calibrated to meet the FCC requirements in documents TIA/EIA 603			
FCC Registration No.	371540			

List Of Test Equipment:

Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 3, 2016	June 2, 2017
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 3, 2016	June 2, 2017
Spectrum analyzer	Agilent	E4407B	MY46185649	June 3, 2016	June 2, 2017
EXA Signal Analyzer	Aglient	N9010A	MY53470504	2016.12.17	2017.12.16
Power Sensor	Agilent	U2021XA	MY55050474	June 3, 2016	June 2, 2017
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	June 3, 2016	June 2, 2017
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 3, 2016	June 2, 2017
Artificial Mains Network	Narda	L2-16B	000WX31025	July 3, 2016	July 2, 2017
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017
Shielded Room	CHENGYU	843	PTS-002	June 3, 2016	June 2, 2017

4. SUPPORT EQUIPMENT LIST

Device Type	Manufacturer	Model Name	Serial No.	Data Cable	Power Cable

5. SYSTEM DESCRIPTION

EUT test procedure:

- 1. Connect EUT and peripheral devices.
- 2. Power on the EUT, the EUT begins to work.
- 3. Running data transmission and make sure the EUT normal working.

EMC TEST MODES

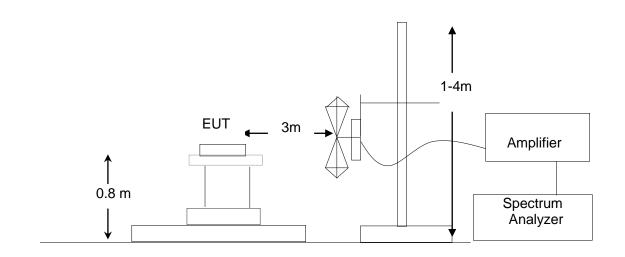
No.	TEST MODES
1	Scanning mode + Receiving mode

Note: Only the result of the worst case was recorded in the report.

6. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.107	Conduction Emission	Compliant
§15.109	Radiated Emission	Compliant
§15.111	Antenna Conducted Power for receivers	Compliant

7. FCC RADIATED EMISSION TEST

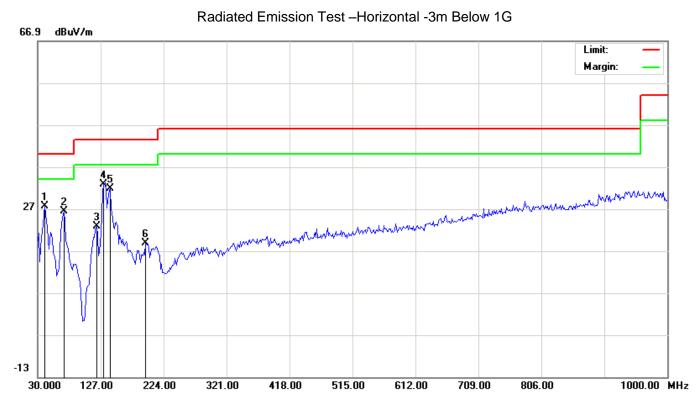

7.1. TEST EQUIPMENT OF RADIATED EMISSION

7.2. LIMITS OF RADIATED EMISSION TEST

Frequency	Distance	Maximum Field Strength Limit
(MHz)	(m)	(dBuV/m/ Q.P.)
30~88	3	40.0
88~216	3	43.5
216~960	3	46.0
Above 960	3	54.0

**Note: The lower limit shall apply at the transition frequency.

7.3 BLOCK DIAGRAM OF RADIATED EMISSION TEST


7.4 PROCEDURE OF RADIATED EMISSION TEST

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.4.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4) The EUT received power by AC 120V/60Hz.
- 5) The antenna was placed at 3 meter away from the EUT as stated in FCC Part 15. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6) The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7) The test mode(s) were scanned during the test:
- 8) Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization

and turntable position were recorded into a computer in which correction factors were used to calculate the

emission level and compare reading to the applicable limit and Q.P./Peak reading is presented.

The test data of the worst case condition (mode 1) was reported on the following Data page

7.5 TEST RESULT OF RADIATED EMISSION TEST

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		41.3167	18.71	8.81	27.52	40.00	-12.48	peak			
2		70.4167	22.25	4.16	26.41	40.00	-13.59	peak			
3		120.5333	15.78	7.08	22.86	43.50	-20.64	peak			
4	*	131.8500	20.95	11.80	32.75	43.50	-10.75	peak			
5		141.5500	16.67	15.21	31.88	43.50	-11.62	peak			
6		196.5167	8.91	9.88	18.79	43.50	-24.71	peak			

RESULT: PASS

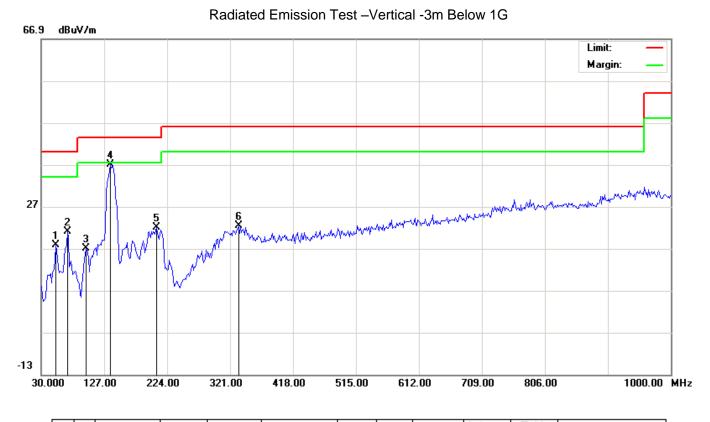


Table Antenna Reading Measurement Limit Over Freq. Factor Mk Height Degree Detector Comment No dBuV dBuV/m dBuV/m MHz dB/m dB cm degree 1 52.6333 9.47 8.41 17.88 40.00 -22.12 peak 2 70.4167 11.17 9.85 21.02 40.00 -18.98peak 3 99.5167 6.96 10.00 16.96 43.50 -26.54 peak 4 136.6999 23.40 13.66 37.06 43.50 -6.44 peak 5 207.8333 10.84 11.20 22.04 43.50 -21.46 peak 6 333.9333 4.66 17.67 22.33 46.00 23.67 peak

RESULT: PASS

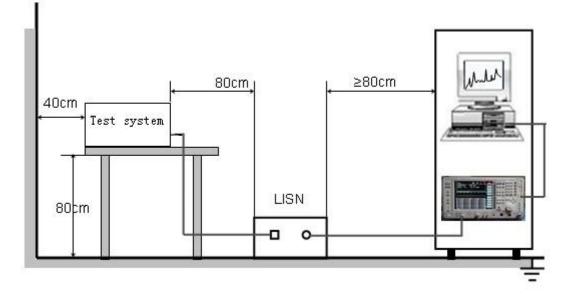
- **Note:** 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin=Measurement-Limit.
 - 2. The "Factor" value can be calculated automatically by software of measurement system.
 - 3. Emissions range from 1GHz to 12.5GHz have 20dB margin. No recording in the test report.
 - 4. Only the data of the worst case would be record in this test report.

8. CONDUCTED EMISSION TEST

8.1 PROVISIONS APPLICABLE

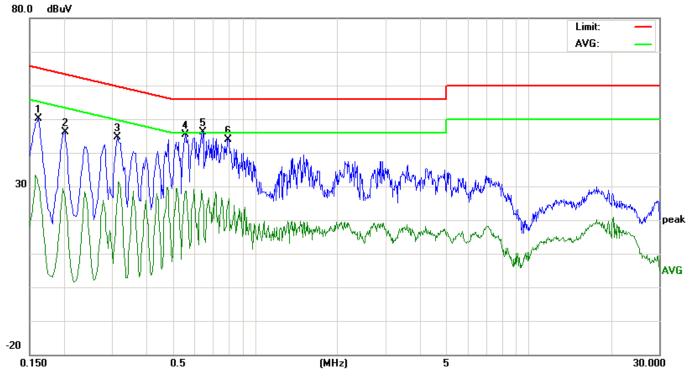
For an intentional radiator that is designed to be connected to the public utility (AC) power line, the, the radio frequency voltage that is conducted back onto the AC power line on any frequencies within the band 150 KHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50uH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission (MHz)	Conducted Limit(dBuV)					
	Quasi-Peak	Average				
0.15 – 0.5	66 to 56 *	56 to 46 *				
0.5 – 5	56	46				
5 – 30	60	50				

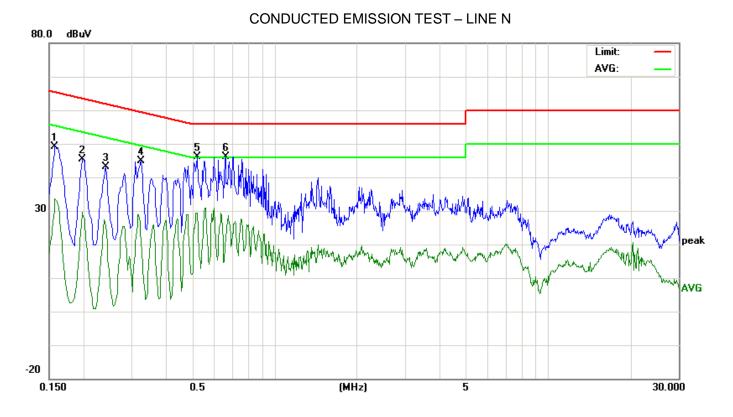

* Decreases with the logarithm of the frequency.

8.2 MEASUREMENT PROCEDURE

- (1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- (2) Support equipment, if needed, was placed as per ANSI C63.4.
- (3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- (4) The EUT received AC 120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- (5) All support equipments received AC power from a second LISN, if any.
- (6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- (7) Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.


During the above scans, the emissions were maximized by cable manipulation.

8.3 TEST SETUP BLOCK DIAGRAM


8.4 TEST RESULT

CONDUCTED EMISSION TEST - LINE L

No.	Freq. (MHz)	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
		Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1620	50.02		30.19	0.10	50.12		30.29	65.36	55.36	-15.24	-25.07	Р	
2	0.2020	45.92		26.58	0.11	46.03		26.69	63.52	53.52	-17.49	-26.83	Р	
3	0.3140	44.55		26.98	0.14	44.69		27.12	59.86	49.86	-15.17	-22.74	Р	
4	0.5580	45.12		28.53	0.22	45.34		28.75	56.00	46.00	-10.66	-17.25	Р	
5	0.6460	45.78		24.74	0.22	46.00		24.96	56.00	46.00	-10.00	-21.04	Р	
6	0.7980	43.75		24.99	0.21	43.96		25.20	56.00	46.00	-12.04	-20.80	Р	

RESULT: PASS

No.	Freq. (MHz)	Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)					/largin (dB) P/F		Comment		
		Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.1580	49.08		33.40	0.10	49.18		33.50	65.56	55.56	-16.38	-22.06	Р	
2	0.1980	45.34		29.47	0.11	45.45		29.58	63.69	53.69	-18.24	-24.11	Р	
3	0.2420	43.08		25.45	0.12	43.20		25.57	62.02	52.02	-18.82	-26.45	Р	
4	0.3260	44.86		19.85	0.14	45.00		19.99	59.55	49.55	-14.55	-29.56	Р	
5	0.5220	45.96		29.13	0.21	46.17		29.34	56.00	46.00	-9.83	-16.66	Р	
6	0.6620	45.98		21.62	0.22	46.20		21.84	56.00	46.00	-9.80	-24.16	Р	

RESULT: PASS

9. ANTENNA CONDUCTED POWER FOR RECEIVERS

<u>LIMIT</u>

The antenna conducted power of the receiver as defined in §15.111 shall not exceed the values given in the following tables

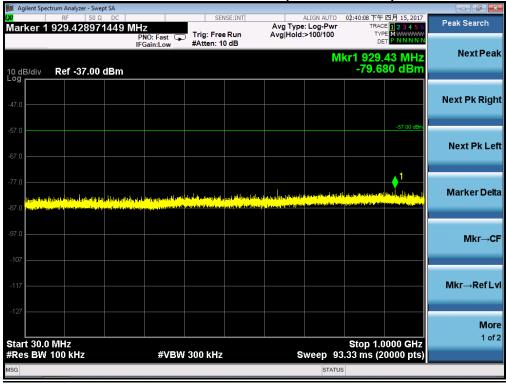
Frequency Range	9 KHz to 2GHz					
Limit	2.0 nW (-57 dBm)					

TEST CONFIGURATION

EUT	Spectrum Analyzer

TEST PROCEDURE

- 1. The receiver antenna terminal connected to a spectrum analyzer.
- 2. The test data of the worst case condition (mode 1) was reported on the following Data page.


TEST RESULTS

lent Spectrum Analyzer - Swept SA ALIGN AUTO 02:38:12 下午 四月 15, 2017 e: Log-Pwr TRACE 12 3 4 5 6 I:>100/100 TYPE MUMANNY DET P NNNN N Trace/Detector Marker 1 9.338417 kHz Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Wide Figure Run IFGain:Low #Atten: 10 dB Select Trace Mkr1 9.338 kHz -72.850 dBm Ref -37.00 dBm 10 dB/div Log **Clear Write** Trace Average Monuter Max Hold mana Mariana a the hold the manne a half for an AMAN **Min Hold** View Blank Trace On More 1 of 3 Start 9.00 kHz #Res BW 1.0 kHz Stop 150.00 kHz Sweep 136.0 ms (20000 pts) #VBW 3.0 kHz STATUS

Conducted Measurement (9 KHz to 150 KHz)

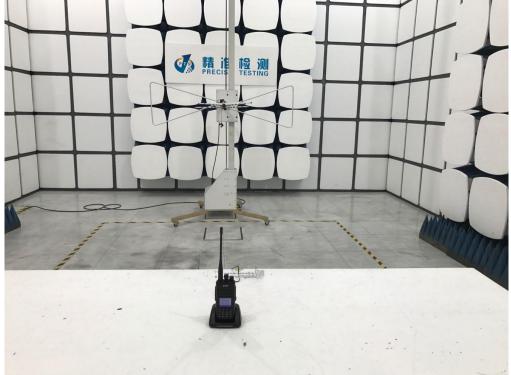
Conducted Measurement (150 KHz to 30MHz)

	n Analyzer - Swept SA								- d -
	RF 50 Ω DC 50.000000 kHz	PNO: Fast 🗔	SENS	Run		ALIGN AUTO : Log-Pwr >100/100	TYP	四月 15,2017 E <mark>1 2 3 4 5 6</mark> E MWWWWW T P NNNNN	Peak Search
10 dB/div R	ef -37.00 dBm	IFGain:Low	#Atten: 10	dB			Mkr1 15		Next Peak
-47.0									Next Pk Right
-57.0								-57.00 dBm	Next Pk Left
-77.0									Marker Delta
	an a	n state of a state of the state							Mkr→CF
-107									Mkr→RefLv
-127							0 4 .		More 1 of 2
Start 150 kH #Res BW 10		#VBW	30 kHz		S	weep 28	35.3 ms (2	0.00 MHz 0000 pts)	

Conducted Measurement (30MHz to 1GHz)

Conducted Measurement (1GHz to 2GHz)

Agilent Spectrum Analyzer - Swe					
RF 50 Ω 1arker 1 1.9734986	2 DC	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:40:36 下午四月 15,2017 TRACE 123456	Peak Search
0 dB/div Ref -37.00	PNO: Fast 🕞 IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:>100/100	r1 1.973 50 GHz -68.813 dBm	Next Peak
47.0					Next Pk Righ
57.0				-57.00 dBm	Next Pk Lef
77.0 37.0	f of stilling and fished over all of the optimized states of the second states of the se	ana ay ang kang ang kang kang kang kang kang k	na kon tanàha mangunan bandakana na ng kaodesina amin'ny kongo kaodesina dia kaodesina dia kaodesina dia kaodesina dia kaodesina dia kaodesina d	an fellahan asar Maa Kalena ka	Marker Delta
97.0					Mkr→Cl
107					Mkr→RefLv
127					More 1 of 2
start 1.0000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Stop 2.0000 GHz 333 ms (20000 pts)	
50			STATE		


PASS

Report No.:AGC01039170403FE08 Page 20 of 28

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

APPENDIX 2 PHOTOGRAPHS OF EUT

TOTAL VIEW OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

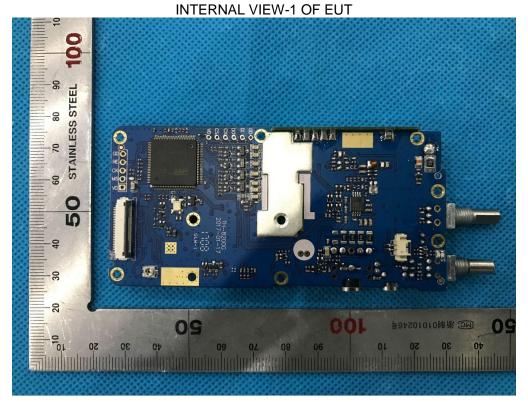
FRONT VIEW OF EUT

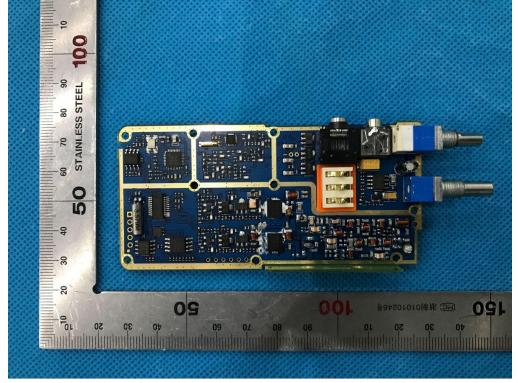
Report No.:AGC01039170403FE08 Page 24 of 28

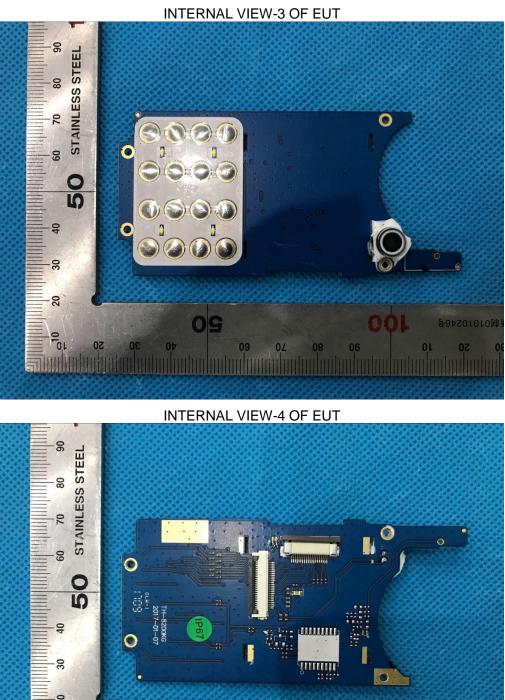
LEFT VIEW OF EUT

Report No.:AGC01039170403FE08 Page 25 of 28

ADAPTER OF MARKETING




OPEN VIEW-1 OF EUT


OPEN VIEW-2 OF EUT

INTERNAL VIEW-2 OF EUT

----END OF REPORT----