



Königswinkel 10  
D-32825 Blomberg,  
Germany  
Phone +49 5235 9500 0  
Fax +49 5235 9500 10

# Test Report

No.: R00339 Edition 1

OIS-P 3100 Transponder system for TAG identification

FCC ID: PNTOIS-P3100

EMC Test Laboratory  
accredited by  
DATech e.V.  
in compliance with DIN EN 45001  
under the  
Reg. No. TTI-P-G071/94-00  
and  
listed by **FCC31040/SIT1300F2**



Testing body: PHOENIX TEST-LAB

Königswinkel 10  
D-32825 Blomberg  
Germany

Applicant: Baumer Ident GmbH

Hertzstrasse 10  
69469 Weinheim  
Germany

Equipment under  
test: OIS-P3100

FCC ID: PNT0IS-P3100

Manufacturer: applicant

Order number: 00339

Type of test: Unintentional radiator (whole system) Class B limits 15.109  
Intentional radiator (only EUT), 15.245 field disturbance sensor

---

Method of measurement according to: - ANSI C63.4 dd. 1992

Limits and requirements according to: - FCC Part 15.245  
- FCC Part 15.109

---



## Contents:

|                                                       | Page |
|-------------------------------------------------------|------|
| 1 General Information .....                           | 4    |
| 1.1 Applicant.....                                    | 4    |
| 1.2 Manufacturer .....                                | 4    |
| 1.3 Dates .....                                       | 4    |
| 1.4 Test Laboratory .....                             | 5    |
| 1.5 Reservation .....                                 | 5    |
| 2 EUT Description.....                                | 6    |
| 2.1 General EUT Description.....                      | 6    |
| 2.2 EUT .....                                         | 6    |
| 2.3 Periphery device.....                             | 7    |
| 2.4 Test configuration.....                           | 8    |
| 3 Test procedure.....                                 | 10   |
| 3.1 Unintentional radiator .....                      | 10   |
| 3.2 Intentional radiator.....                         | 11   |
| 4 Radiated Emission for Unintentional Radiator.....   | 12   |
| 4.1 Test set up.....                                  | 12   |
| 4.2 Preliminary measurement.....                      | 13   |
| 4.3 final measurement unintentional radiator.....     | 16   |
| 5 Radiated Emission for Intentional Radiator .....    | 18   |
| 5.1 Test set up.....                                  | 18   |
| 5.2 Preliminary measurement.....                      | 18   |
| 5.2.1 Overview frequency range 2 GHz to 12 GHz.....   | 19   |
| 5.2.2 Overview frequency range 12 GHz to 18 GHz.....  | 19   |
| 5.2.3 Overview frequency range 18 GHz to 24 GHz.....  | 20   |
| 5.3 Final measurement.....                            | 22   |
| 5.3.1 Fundamental emission.....                       | 23   |
| 5.3.2 Harmonic emissions.....                         | 27   |
| 5.4 List of results .....                             | 29   |
| Effective Radiated Power.....                         | 31   |
| 5.5 Human exposure to RF-Electromagnetic Fields ..... | 32   |
| 6 Measurement Equipment.....                          | 33   |
| 6.1 Test equipment.....                               | 33   |
| 6.2 Field Strength Calculation .....                  | 37   |



## 1 GENERAL INFORMATION

### 1.1 APPLICANT

|                            |                    |
|----------------------------|--------------------|
| Name:                      | Baumer Ident GmbH  |
| Address:                   | Hertzstrasse 10    |
|                            | 69469 Weinheim     |
| Country:                   | Germany            |
| Name for contact purposes: | Günther Meuthen    |
| Tel:                       | +49 62 01 99 57 0  |
| Fax:                       | +49 62 01 99 57 99 |

### 1.2 MANUFACTURER

|                            |                    |
|----------------------------|--------------------|
| Name:                      | Baumer Ident GmbH  |
| Address:                   | Hertzstrasse 10    |
|                            | 69469 Weinheim     |
| Country:                   | Germany            |
| Name for contact purposes: | Günther Meuthen    |
| Tel:                       | +49 62 01 99 57 0  |
| Fax:                       | +49 62 01 99 57 99 |

### 1.3 DATES

|                                 |                                |
|---------------------------------|--------------------------------|
| Date of Receipt of Test Sample: | 16 <sup>th</sup> February 2001 |
| Start of test:                  | 19 <sup>th</sup> February 2001 |
| Finish of test:                 | 15 <sup>th</sup> May 2001      |



## 1.4 TEST LABORATORY

The tests were carried out at: **PHOENIX TEST-LAB GmbH**  
**Königswinkel 10**  
**D-32825 Blomberg**      **Tel: +49 (0) 52 35 / 95 00-0**  
**Germany**                      **Fax: +49 (0) 52 35 / 95 00-10**

accredited by DATech e.V. in compliance with DIN EN 45001 under  
Reg. No. TTI-P-G071/94-01, and listed by **FCC 31040/SIT1300F2**

|                      |                   |      |           |      |
|----------------------|-------------------|------|-----------|------|
| Applicant:           | <b>G. MEUTHEN</b> | name | signature | date |
| Test engineer:       | <b>W. MEIER</b>   | name | signature | date |
| Test report checked: | <b>B. STEINER</b> | name | signature | date |
| stamp                |                   |      |           |      |

## 1.5 RESERVATION

This test report is only valid in the original form.

Any reproduction of its contents without written permission of the accredited test laboratory PHOENIX TEST-LAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TEST-LAB GmbH is not responsible for any generalisations or conclusions drawn from these test results and concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page contains the PHOENIX TEST-LAB Logo and the TEST REPORT REFERENCE.



## 2 EUT DESCRIPTION

### 2.1 GENERAL EUT DESCRIPTION

The OIS-P3100 is a high frequency field sensor (transpondersystem) for TAG identification. The EUT consist of three parts: first part is the transceiver module with internal antenna, the second part is the computing module and the third part is the TAG. The transceiver module transmits in CW mode until the semi passive TAG reflects a modulated signal. The system contains alternative two types of transceiver modules the long range device and the short range device. The only difference between the two types is the adjustment of the output power. The output power of the Long Range Transmitter is 3dB higher than the output power of the short range device. The computing module prepares and detects data for periphery system (host computer). The transceiver module is supplied by the computing module which is powered by 24 VDC (external power supply). The TAG is powered by 3.6 V battery (internal). The operating frequency of the transceiver is 2.45 GHz.

### 2.2 EUT

#### Transceiver Module Long Range (LR)

|            |                  |
|------------|------------------|
| Type:      | PC3114/01A       |
| Part No.:  | 124395 Rev. A    |
| S/N:       | K484 035         |
| Connector: | -7 pin connector |

#### Transceiver Module Short Range (SR)

|            |                  |
|------------|------------------|
| Type:      | PC3114/00C       |
| Part No.:  | 124394           |
| S/N:       | K99450505        |
| Connector: | -7 pin connector |



#### Computing Module

Type: PC3141/03B  
Part No.: 2321-021 Rev. A  
S/N: K484 035  
Connectors:  
-Transceiver (Antenna), 9 pin D-Sub, female  
-Terminal, only for service, 9 pin D-Sub, male  
-Power, 24 VDC, 9 pin D-Sub, male  
-HOST, communication to periphery system,  
15 pin D-Sub, male  
-I/O, connect optional device, 15 pin D-Sub, female

#### TAG

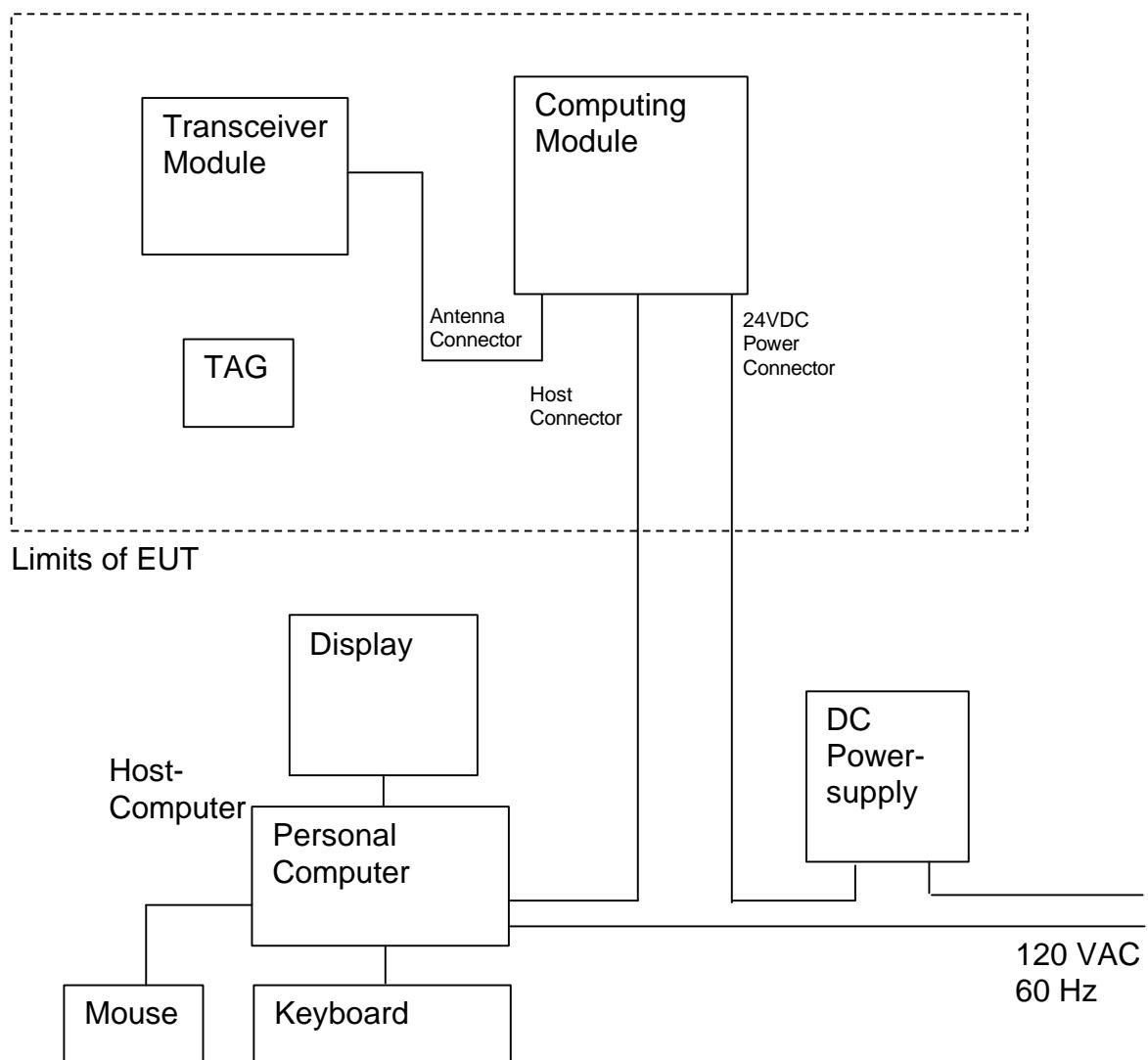
Type: PC3104/32A  
Part No.: 8623 104-321 Rev. A  
S/N: 9720 3266  
Connector: -

### 2.3 PERIPHERY DEVICE

The following equipment was used as host computer for monitoring purposes.

PC: Hewlett Packard type Vectra VL5 Series 5 DT 5/166  
serial no.: FR70969699  
Declaration of conformity to Part 15 by HP  
keyboard: Hewlett Packard Part #: C3758-60203  
Product #: C3758A ABD  
FCC ID: CIGEØ3633  
mouse: Hewlett Packard  
serial no.: LZB64208399  
FCC ID: DZL211Ø29  
monitor: Elsa type GDM-17E03T5  
serial no.: 6302392  
FCC ID: AK8GDM17SE2T  
Power Supply: Hewlett Packard 6673A  
serial no.: 3501 A 00874

As operating system of the PC Windows 95 was used. The driver for the video card had the version FCS 76.


The mains voltage was 120VAC and the mains frequency was 60Hz.

The tests carried out with a video resolution for standard 625-line systems.

## 2.4 TEST CONFIGURATION

The system was tested in a typical configuration, as it is normally used by a customer

The system was set up as follows:





The following external I/O cables were used:

| cable:                                       | length | shielding | connectors          |
|----------------------------------------------|--------|-----------|---------------------|
| Transceiver Module to Computing Module       | 10 m   | yes       | D-SUB               |
| Computing Module to Personal Computer (HOST) | 1.5 m  | yes       | D-SUB               |
| Computing Module to DC-Power Supply          | 2.0 m  | no        | D-SUB / n.s.        |
| Personal Computer to Display                 | 1.8 m  | yes       | D-SUB / fixed       |
| Personal Computer to Mouse                   | 1.5 m  | yes       | PS2                 |
| Personal Computer to Keyboard                | 1.5 m  | yes       | D-SUB               |
| Personal Computer to AC-mains                | 2.0 m  | no        | IEC 320/ IEC Europe |



### 3 TEST PROCEDURE

The test procedure was splitted in unintentional radiator test and intentional radiator test. The unintentional radiator test included the whole system with the personal computer and the intentional radiator is only the transmitter module, the computing module and the TAG.

Preliminary measurements were made in a fully anechoic chamber (FAC) with 3 m measuring distance for unintentional radiator and 1m for intentional radiator. In the first step the equipment under test is measured from two sides in its normal fitted position with horizontal and vertical polarization of the antenna. This scan uses the scanable for preliminary measurements. This procedure makes it possible to ascertain without the effect of external interference sources and without adjusting the antenna in a height where the test object is emitting interference at certain frequencies.

In the second step the frequency range, with the results from the first step, is divided into six ranges. In each range the six frequencies with the highest level, which are closer than 10dB to the limit line, are measured with the receiver set up shown in the scan table for the search scan and with both polarizations for the antenna. In this case the turntable is moved by 2 degree steps over 360 degrees. In the last stage the positions with the highest levels are measured with the quasi-peak detector or, above 1GHz with the average detector.

The final measurement are described under subclause 3.1 and 3.2 of this document.

#### 3.1 UNINTENTIONAL RADIATOR

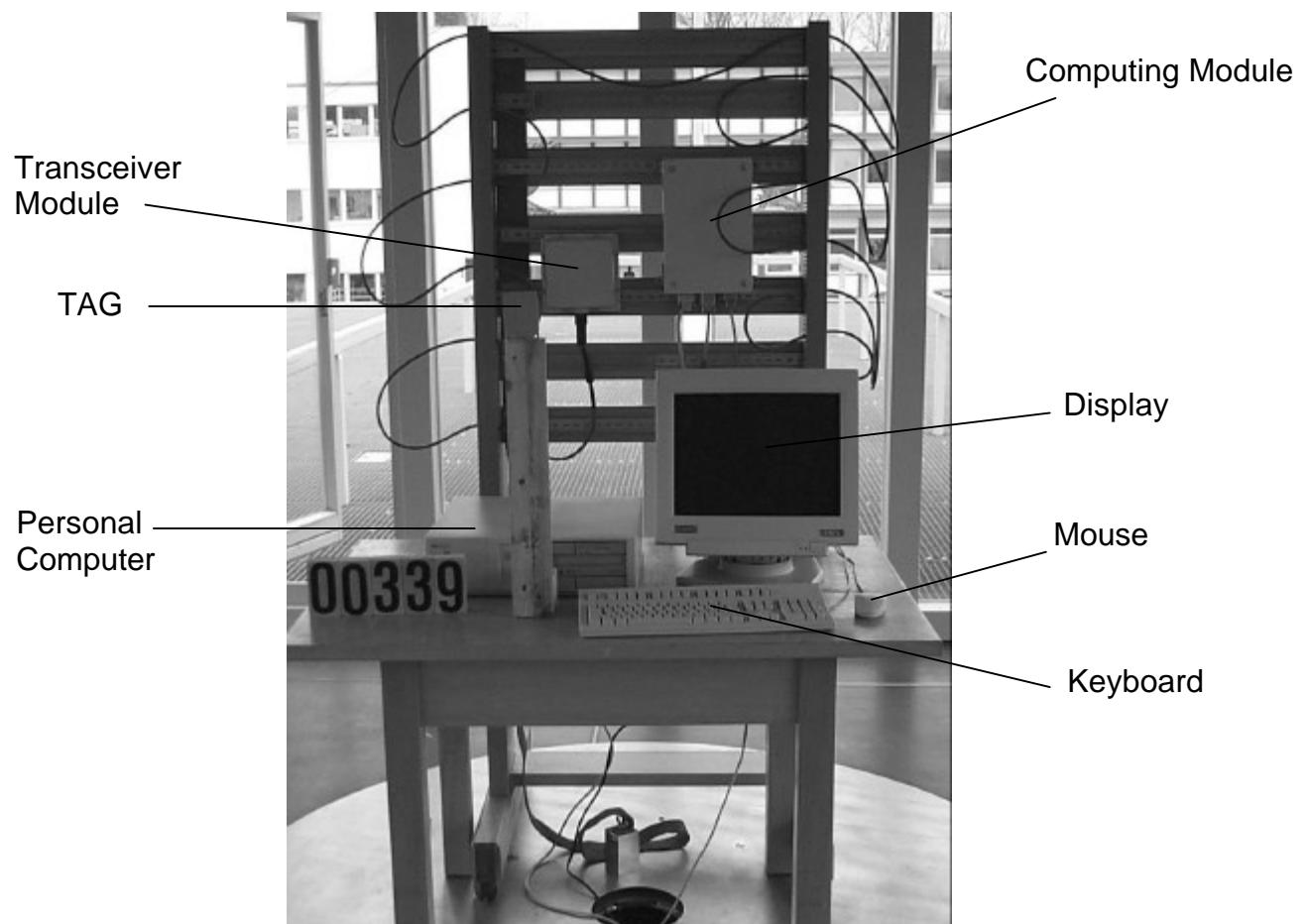
The radiated testing were performed in accordance with C63.4 procedure, as revised in 1992. The specification used was Class B limits of Rules Part 15 Subpart B for radiated (§15.109) interference measurements.

The preliminary measurement was performed at antenna to EUT (with LR-Transceiver) distance of 3 meters in a fully anechoic chamber to select the emissions in the frequency range of 30 MHz to 2 GHz.

The final measurement was performed at antenna to EUT (with LR-Transceiver) distance of 10 meters on open area test site to measure the selected emissions in the frequency range of 30 MHz to 2 GHz.

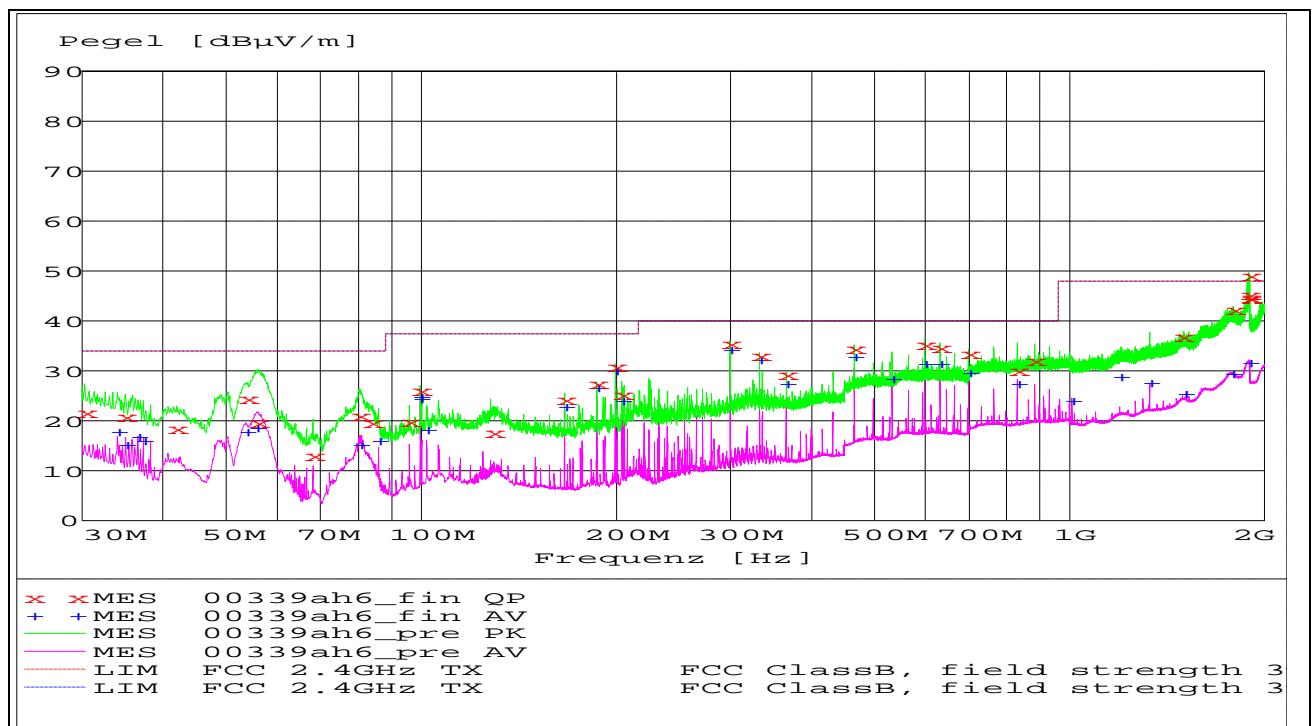


### **3.2 INTENTIONAL RADIATOR**


The radiated testing were performed in accordance with C63.4 procedure, as revised in 1992. The specification used was the limit of CFR 47 Part 15 Subpart C §15.245, §15.205 and §15.209.

The preliminary measurement was performed at antenna to EUT (with LR-Transceiver and SR-Transceiver) distance of 3 meters in a fully anechoic chamber to select the fundamental frequency, harmonic frequencies and indefinable emissions in the frequency range of 2 GHz to 26 GHz.

The final measurement was performed at antenna to EUT (with LR-Transceiver and SR-transceiver) distance of 3 meters on a open area test site to measurement the selected emissions in the frequency range of 2 GHz to 26 GHz.


## 4 RADIATED EMISSION FOR UNINTENTIONAL RADIATOR

### 4.1 TEST SET UP



## 4.2 PRELIMINARY MEASUREMENT

|                     |                                                     |
|---------------------|-----------------------------------------------------|
| 1st header line     | preliminary emission measurement                    |
| 2nd header line     | according to FCC Part 15                            |
| EUT                 | OIS-P 3100                                          |
| Manufacturer        | Baumer Ident                                        |
| Operating Condition | transmit                                            |
| Test Site           | fully anechoic chamber M8 PHOENIX TEST LAB          |
| Operator            | W. Meier                                            |
| Test Specification  | whole system (TAG with LR-Transceiver and computer) |
| Comment line        |                                                     |



Data record name: 00339ah6

of 02/11/00

The limit line and measurement curve shown in the diagram below refer to the preliminary measurements. Here, it must be noted that because of the floor absorbers, the measured values do not comply with the values of the above mentioned standard; they only serve as orientation in determining which frequencies must be measured on the open area test site. The limit line is achieved with the applied standard by converting to the correction for the free space in which in the "worst case" the reflected floor wave is missing entirely (-6dB). Therefore -6dB is added to the limit line of the standard concerned.



The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with the EUT in various positions.

For frequencies  $\leq 1\text{GHz}$ :

The top measured curve represents the peak measurement. The measured points marked with x are frequency points of the highest emissions relativ to the limit, for which in the next step measurements with a quasi-peak detector on the open area test side were carried out. These values are indicated in the following table. The bottom measured curve represents average values, which are only required for control purposes.

For frequencies  $> 1\text{GHz}$ :

The top measured curve represents the peak measurement. The measured points marked with x are the final measured max-peak results. These values are indicated in the following table. The bottom measured curve represents average values. The measured points marked with + are the final measured average results

### Result measured:

#### $\leq 1\text{GHz}$ with quasi-peak detector

(These values are marked in the above diagram by x)

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Transducer<br>1/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Azimuth | Polarisation |
|------------------|-----------------------|-------------------|-----------------------|--------------|---------|--------------|
| 30.320000        | 21.70                 | 19.5              | 34.0                  | 12.3         | 136.00  | VERTICAL     |
| 34.880000        | 20.90                 | 16.4              | 34.0                  | 13.1         | 211.00  | VERTICAL     |
| 41.904000        | 18.40                 | 12.3              | 34.0                  | 15.6         | 314.00  | VERTICAL     |
| 53.920000        | 24.50                 | 8.2               | 34.0                  | 9.5          | 180.00  | VERTICAL     |
| 55.896000        | 19.80                 | 7.7               | 34.0                  | 14.2         | 359.00  | HORIZONTAL   |
| 68.056000        | 13.30                 | 6.7               | 34.0                  | 20.7         | 80.00   | HORIZONTAL   |
| 80.272000        | 21.20                 | 8.7               | 34.0                  | 12.8         | 135.00  | HORIZONTAL   |
| 83.784000        | 19.60                 | 9.4               | 34.0                  | 14.4         | 69.00   | VERTICAL     |
| 95.976000        | 20.00                 | 11.3              | 37.5                  | 17.5         | 295.00  | HORIZONTAL   |
| 99.704000        | 26.00                 | 12.0              | 37.5                  | 11.5         | 100.00  | HORIZONTAL   |
| 129.120000       | 17.70                 | 13.0              | 37.5                  | 19.8         | 127.00  | HORIZONTAL   |
| 166.168000       | 24.40                 | 11.2              | 37.5                  | 13.1         | 357.00  | HORIZONTAL   |
| 186.704000       | 27.60                 | 10.3              | 37.5                  | 9.9          | 46.00   | HORIZONTAL   |
| 199.408000       | 31.10                 | 10.8              | 37.5                  | 6.4          | 80.00   | HORIZONTAL   |
| 203.664000       | 25.40                 | 10.9              | 37.5                  | 12.1         | 315.00  | VERTICAL     |
| 299.144000       | 35.50                 | 14.6              | 40.0                  | 4.5          | 11.00   | VERTICAL     |
| 332.352000       | 33.20                 | 15.3              | 40.0                  | 6.8          | 216.00  | HORIZONTAL   |
| 365.616000       | 29.40                 | 16.5              | 40.0                  | 10.6         | 222.00  | HORIZONTAL   |
| 465.320000       | 34.50                 | 18.5              | 40.0                  | 5.5          | 261.00  | HORIZONTAL   |
| 598.312000       | 35.20                 | 20.4              | 40.0                  | 4.8          | 75.00   | VERTICAL     |
| 631.504000       | 34.70                 | 20.8              | 40.0                  | 5.3          | 18.00   | VERTICAL     |
| 697.976000       | 33.50                 | 20.5              | 40.0                  | 6.5          | 31.00   | VERTICAL     |
| 831.016000       | 30.10                 | 21.8              | 40.0                  | 9.9          | 180.00  | VERTICAL     |
| 882.672000       | 32.20                 | 22.1              | 40.0                  | 7.8          | 2.00    | VERTICAL     |

Data record name: 00339ah6\_fin QP

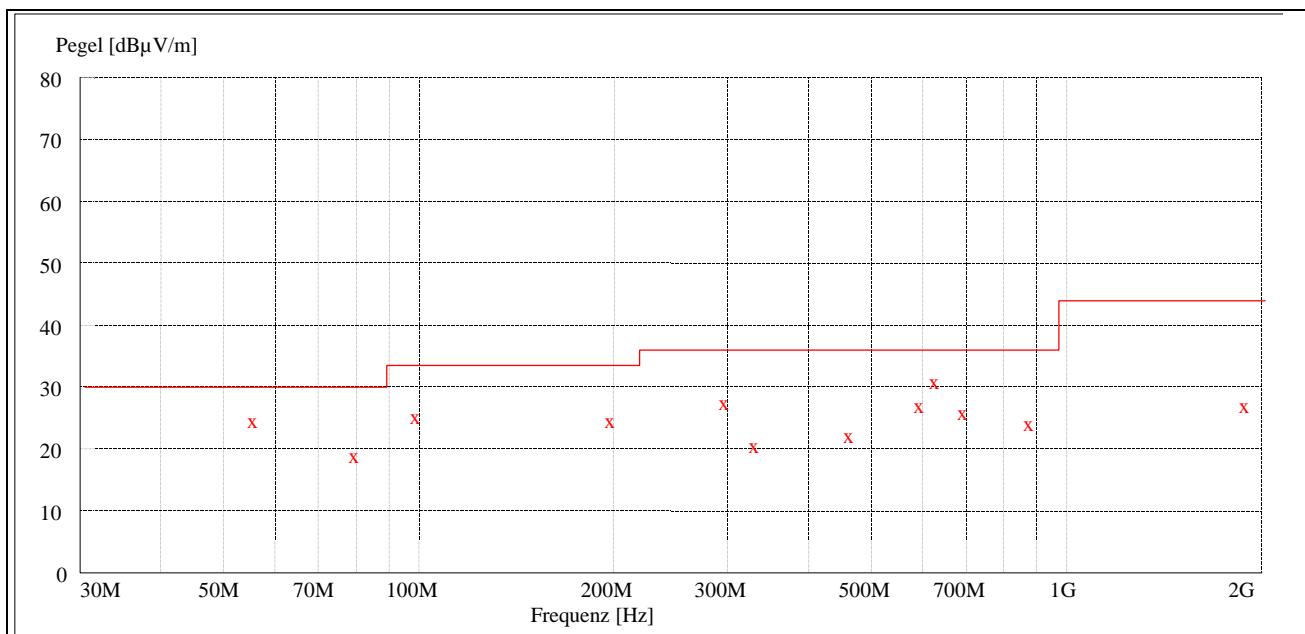
of 06/10/00

**Result measured:****>1GHz with average detector:**

(These values are marked in the above diagram by +)

| Frequency<br>MHz | Level<br>dB $\mu$ V/m | Transducer<br>1/m | Limit<br>dB $\mu$ V/m | Margin<br>dB | Azimuth | Polarisation |
|------------------|-----------------------|-------------------|-----------------------|--------------|---------|--------------|
| 1008.000000      | 24.10                 | 23.1              | 48.0                  | 23.9         | 27.00   | VERTICAL     |
| 1196.672000      | 28.90                 | 24.5              | 48.0                  | 19.1         | 207.00  | VERTICAL     |
| 1329.624000      | 27.80                 | 25.7              | 48.0                  | 20.2         | 1.00    | VERTICAL     |
| 1503.368000      | 25.60                 | 26.9              | 48.0                  | 22.4         | 149.00  | HORIZONTAL   |
| 1777.032000      | 29.50                 | 29.8              | 48.0                  | 18.5         | 187.00  | HORIZONTAL   |
| 1890.400000      | 31.70                 | 31.6              | 48.0                  | 16.3         | 240.00  | VERTICAL     |

Data record name: 00339ah6\_fin AV


For frequencies above 1 GHz the values in the table above, measured in the fully anechoic chamber with the average detector, are the final results.

The results from the final measurements below 1 GHz on the open area test site, at the above listed frequency points of the highest radiated emissions relativ to the limit for quasi-peak, are presented in the following.

|                      |
|----------------------|
| Test Equipment used: |
| 02, 06, 11, 112      |

### 4.3 FINAL MEASUREMENT UNINTENTIONAL RADIATOR

|                     |                                                     |
|---------------------|-----------------------------------------------------|
| 1st header line     | finalary emission measurement                       |
| 2nd header line     | according to FCC Part 15                            |
| EUT                 | OIS-P 3100                                          |
| Manufacturer        | Baumer Ident                                        |
| Operating Condition | transmit                                            |
| Test Site           | Open area test site M6 (10 m)                       |
| Operator            | W. Meier                                            |
| Test Specification  | whole system (TAG with LR-Transceiver and computer) |
| Comment line        |                                                     |



Filename:

00339ffnm

The limit line and measurement curve shown in the diagram below refer to the preliminary measurements. Here, it must be noted that because of the expansion measuring distance (10 m instead of 3m), the measured values do not comply with the values of the above mentioned standard; they only serve as orientation in determining which frequencies must be measured on the open area test site.

The limit line is achieved with the applied standard by converting to a 10 m measurement distance (-10 dB).

The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with the EUT in various positions.



For frequencies ≤1GHz:

The measured points marked with x are frequency points of the highest emissions relative to the limit, for which in the next step measurements with a quasi-peak detector on the open area test side were carried out. These values are indicated in the following table.

For frequencies >1GHz:

The measured points marked with x are the final measured average results. These values are indicated in the following table.

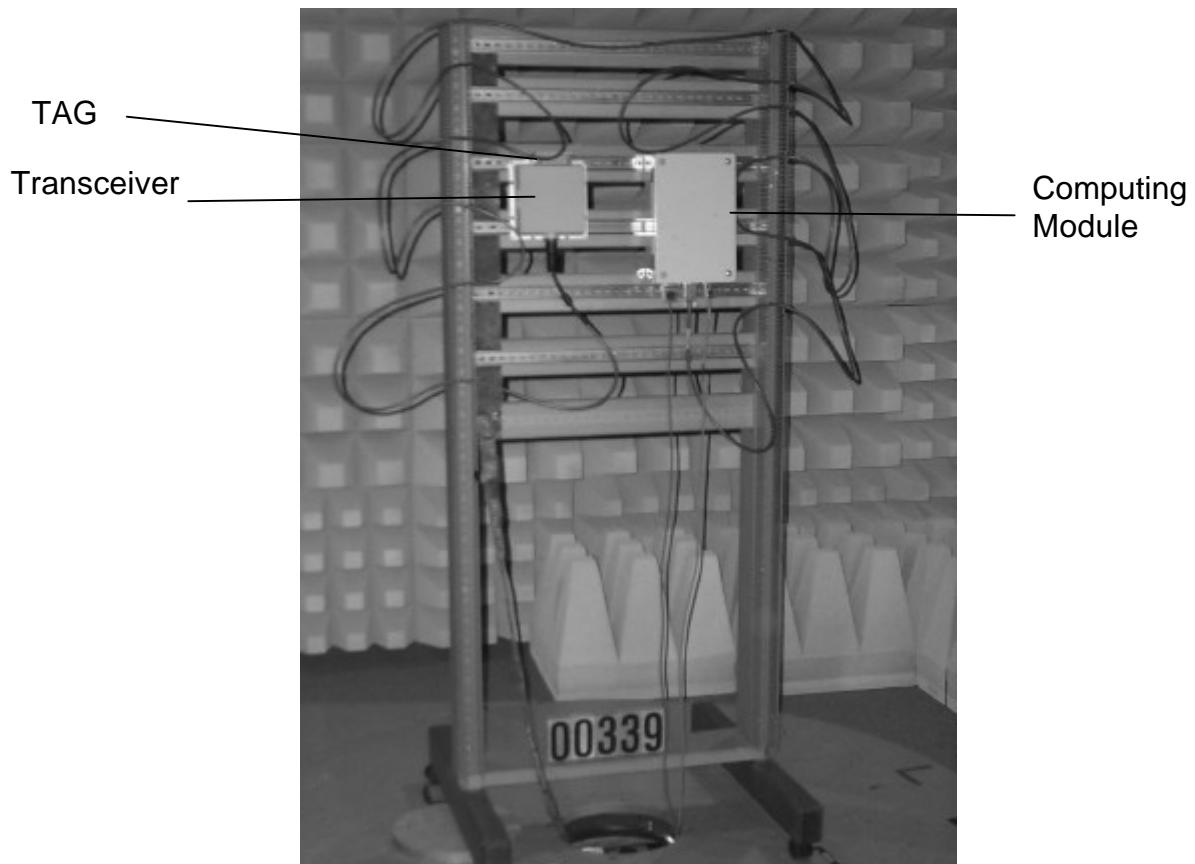
### Measurement Results:

(These values are marked in the above diagram by x)

| Frequency<br>MHz | Level<br>dB $\mu$ A/m | Transducer<br>dB | Limit<br>dB $\mu$ A/m | Margin<br>dB | Height of<br>measuring<br>antenna<br>cm | Azimuth of<br>EUT<br>deg | Polar-<br>isation |
|------------------|-----------------------|------------------|-----------------------|--------------|-----------------------------------------|--------------------------|-------------------|
| 55.896000        | 24.81                 | 7.1              | 30.0                  | 5.2          | 259.0                                   | 38.00                    | Ver.              |
| 80.272000        | 19.16                 | 8.0              | 30.0                  | 10.8         | 40.0                                    | 40.00                    | Ver.              |
| 99.704000        | 25.47                 | 11.3             | 30.0                  | 4.5          | 140.0                                   | 40.00                    | Hor.              |
| 199.408000       | 24.95                 | 9.8              | 33.5                  | 8.6          | 100.0                                   | 0.00                     | Ver.              |
| 299.144000       | 27.82                 | 13.3             | 36.0                  | 8.2          | 100.0                                   | 0.00                     | Ver.              |
| 332.352000       | 20.88                 | 13.9             | 36.0                  | 15.1         | 130.0                                   | 0.00                     | Ver.              |
| 465.320000       | 22.39                 | 16.9             | 36.0                  | 13.6         | 110.0                                   | 8.00                     | Hor.              |
| 598.312000       | 27.26                 | 18.5             | 36.0                  | 8.7          | 140.0                                   | 217.00                   | Hor.              |
| 631.504000       | 31.09                 | 19.0             | 36.0                  | 4.9          | 164.0                                   | 140.00                   | Hor.              |
| 697.976000       | 26.18                 | 18.6             | 36.0                  | 3.8          | 168.0                                   | 23.00                    | Ver.              |
| 882.672000       | 24.44                 | 19.9             | 36.0                  | 5.6          | 118.0                                   | 0.00                     | Ver.              |
| 1897.100000      | 27.14                 | 28.5             | 44.0                  | 28.0         | 259.0                                   | 38.00                    | Ver.              |

Filename: 00339ffnm\_fin QP

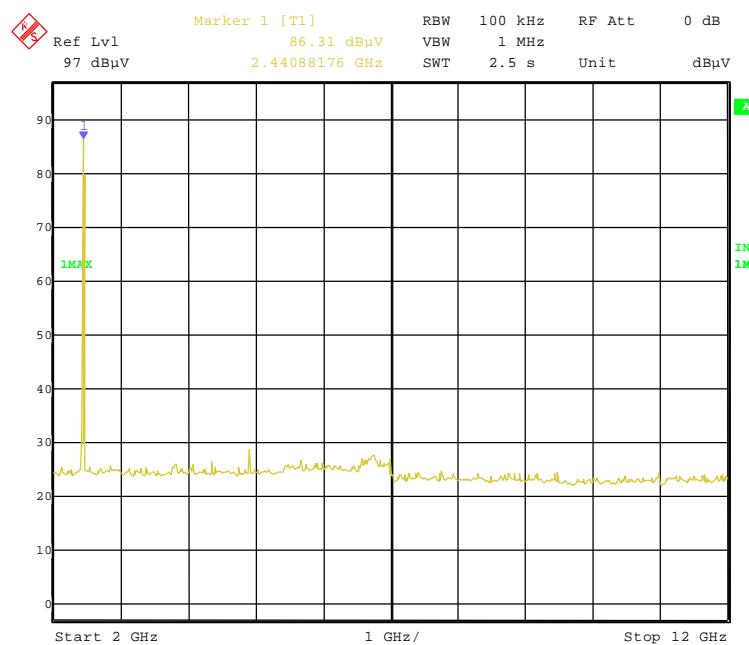
Test Equipment used:


03, 06, 11

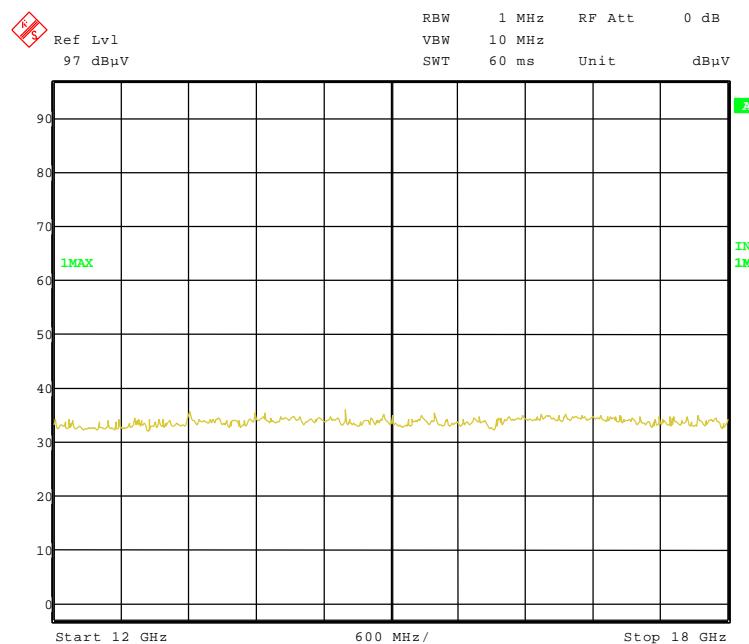
## 5 RADIATED EMISSION FOR INTENTIONAL RADIATOR

### 5.1 PRELIMINARY MEASUREMENT

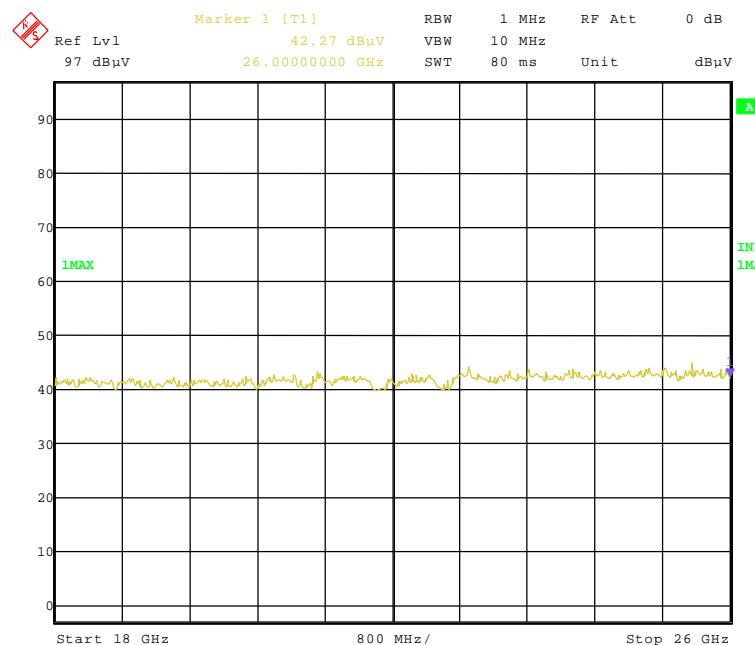
The preliminary measurement was performed at antenna to EUT (with LR-Transceiver and SR-Transceiver) distance of 3 meter in a fully anechoic chamber to select the fundamental frequency, harmonic frequencies and indefinable emissions in the frequency range of 2 GHz to 26 GHz. The measurement was carry out in the presence of the TAG in the vertical and horizontal polarisation (the maximum value was shown).


#### 5.1.1 TEST SET UP

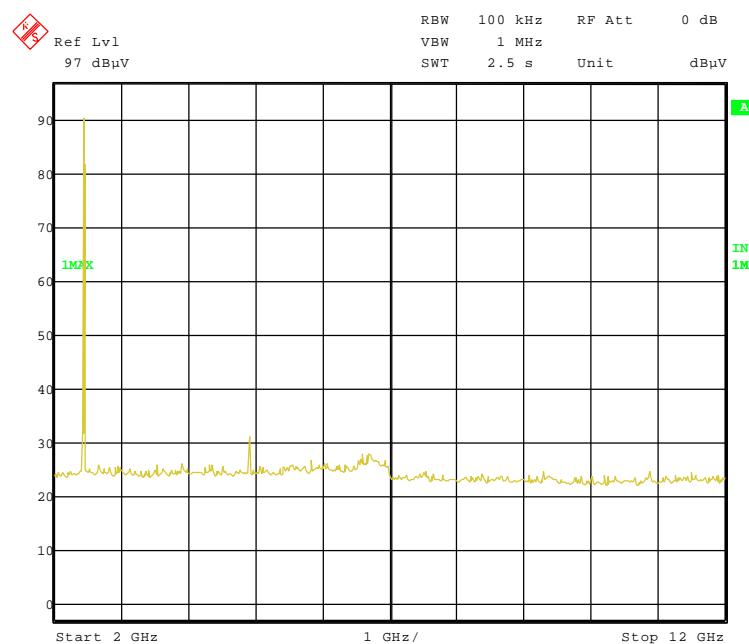



Test Equipment used:

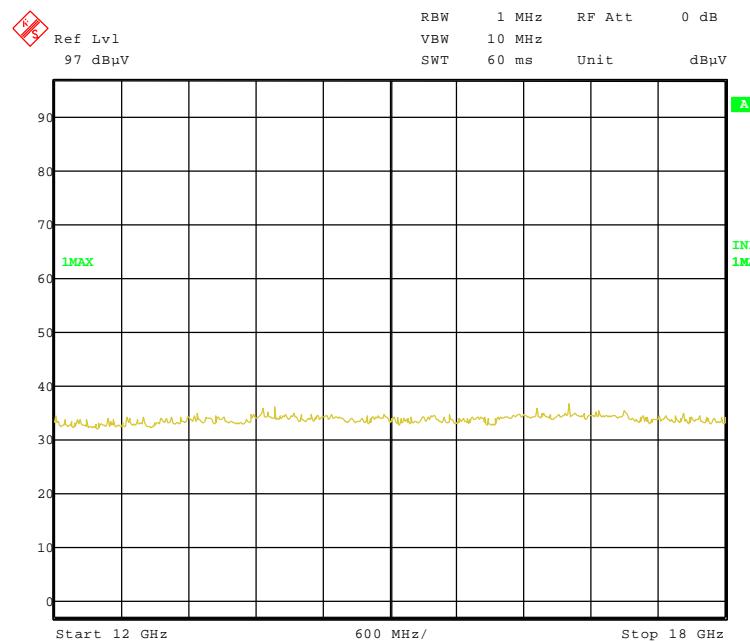
02, 07, 17, 19, 20, 21, 22, 23, 24, 43, 63


## 5.1.2 OVERVIEW FREQUENCY RANGE 2 GHZ TO 12 GHZ LR-TRANSCEIVER

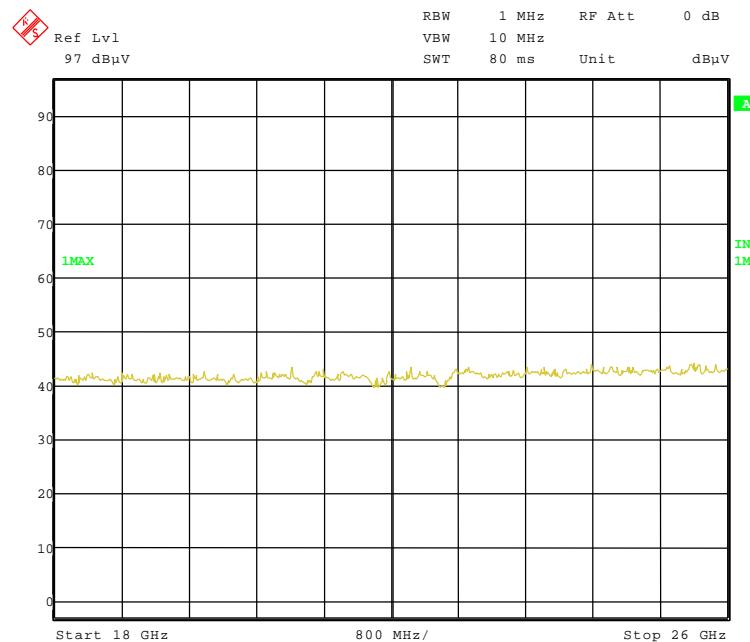



## 5.1.3 OVERVIEW FREQUENCY RANGE 12 GHZ TO 18 GHZ LR-TRANSCEIVER




### 5.1.4 OVERVIEW FREQUENCY RANGE 18 GHZ TO 26 GHZ LR-TRANSCEIVER

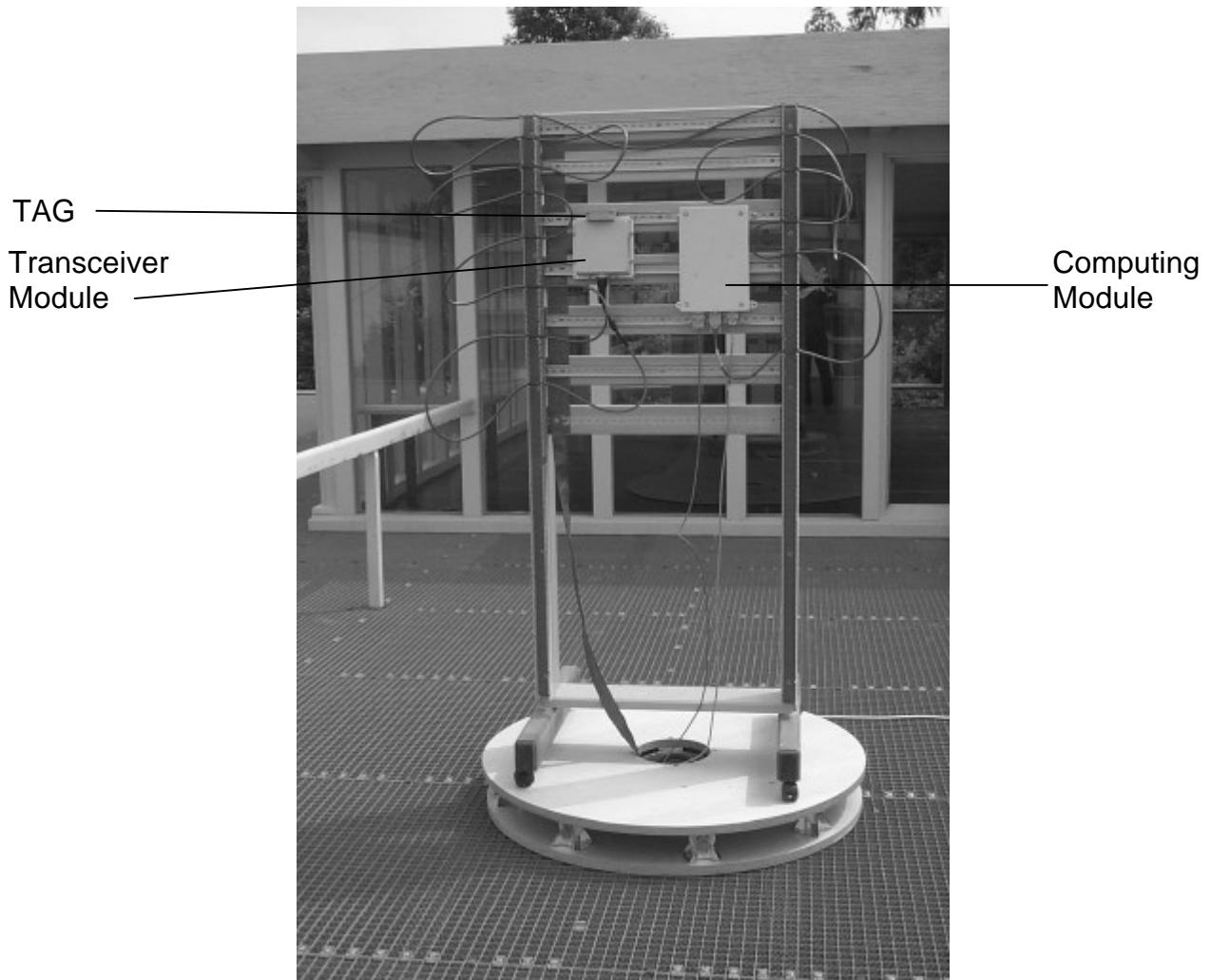



### 5.1.5 OVERVIEW FREQUENCY RANGE 2 GHZ TO 12 GHZ SR-TRANSCEIVER



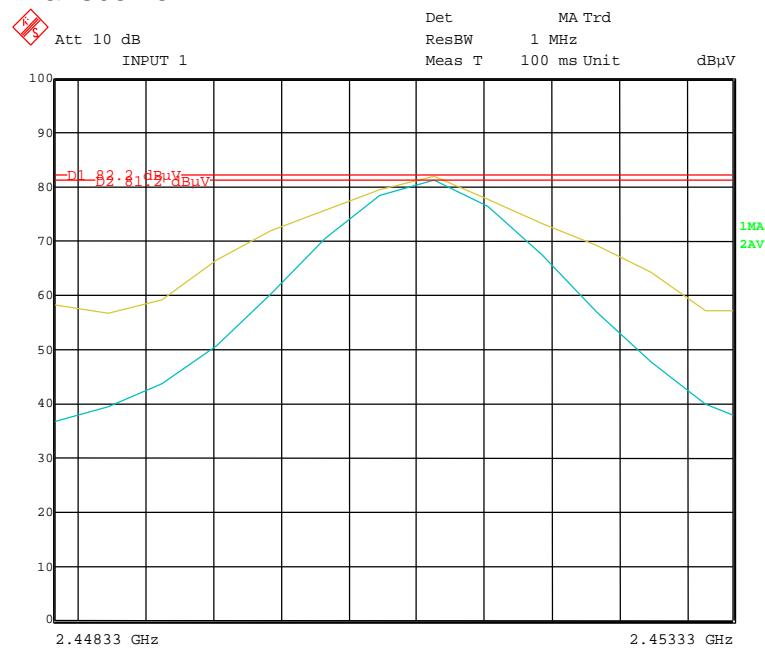
## 5.1.6 OVERVIEW FREQUENCY RANGE 12 GHZ TO 18 GHZ SR-TRANSCEIVER




## 5.1.7 OVERVIEW FREQUENCY RANGE 18 GHZ TO 26 GHZ SR-TRANSCEIVER



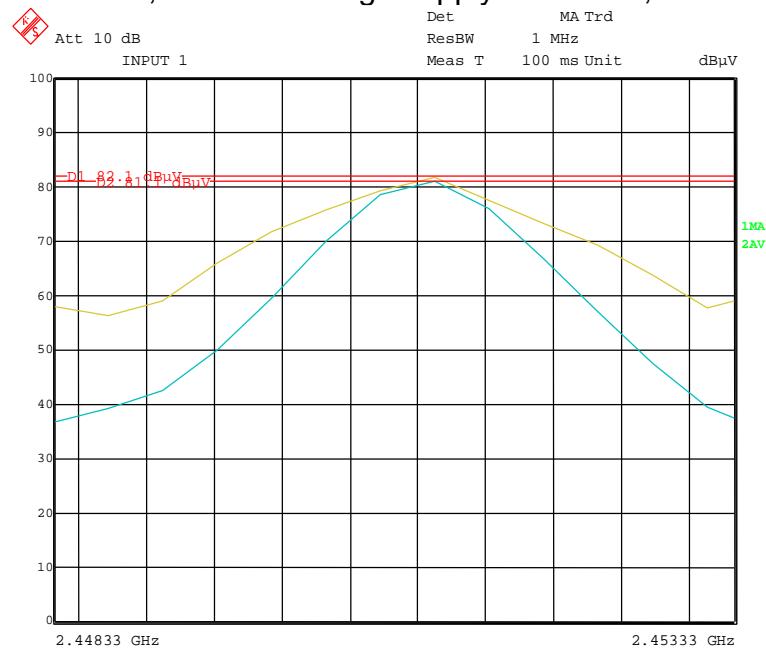
## 5.2 FINAL MEASUREMENT


The final measurement was performed at antenna to EUT (with LR-Transceiver and SR-Transceiver) distance of 3 meters on open area test site to measurement the select emissions in the frequency range of 2 GHz to 26 GHz. The measurement was carry out in the presence of the TAG with a scan high of 1m to 4m in the vertical and horizontal polarisation (the maximum value was shown, average blue trace, peak yellow trace).

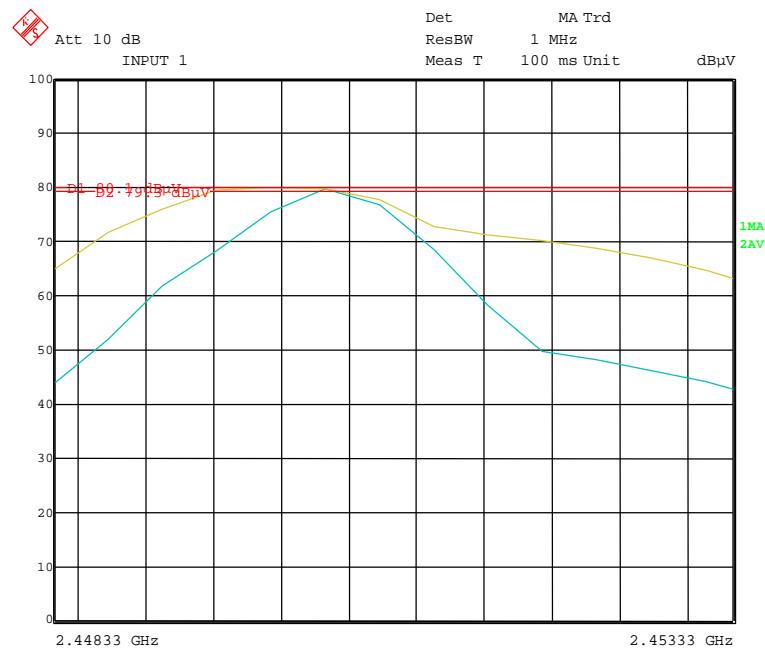
### 5.2.1 TEST SET UP



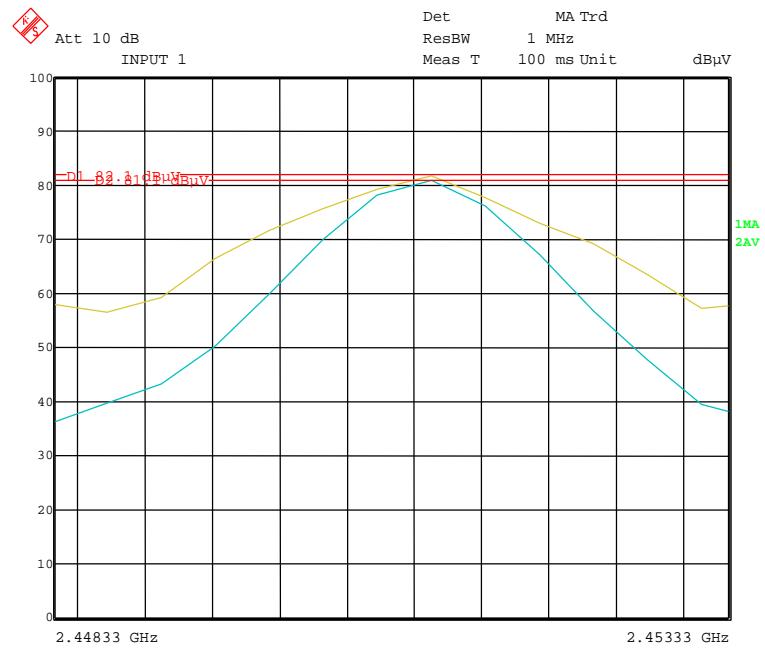
## 5.2.2 FUNDAMENTAL EMISSION


2.45 GHz, normal rated supply voltage 24 VDC, measurement distance 3 m, LR-Transceiver



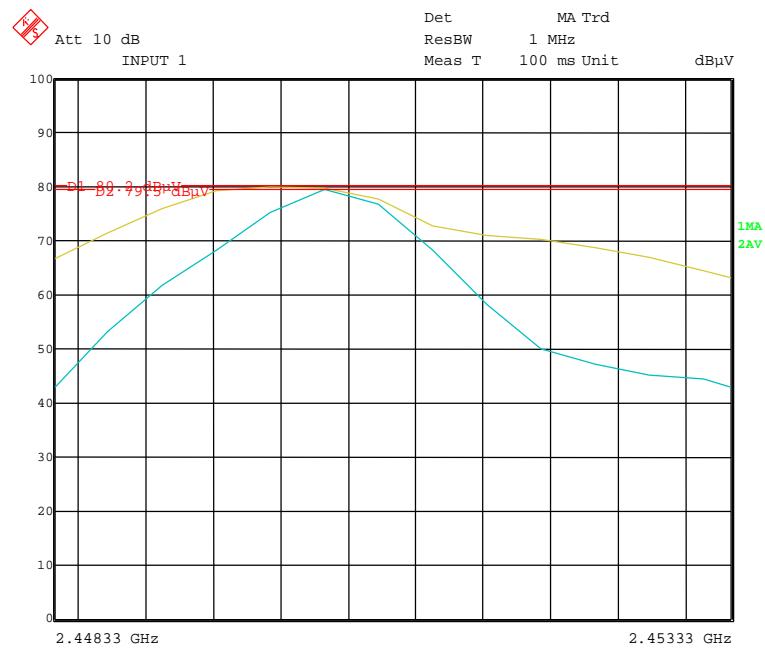

2.45 GHz, normal rated supply voltage 24 VDC, measurement distance 3 m, SR-Transceiver




2.45 GHz, extreme voltage supply 20.4 VDC, measurement distance 3 m, LR-Transceiver



2.45 GHz, extreme voltage supply 20.4 VDC, measurement distance 3 m, SR-Transceiver

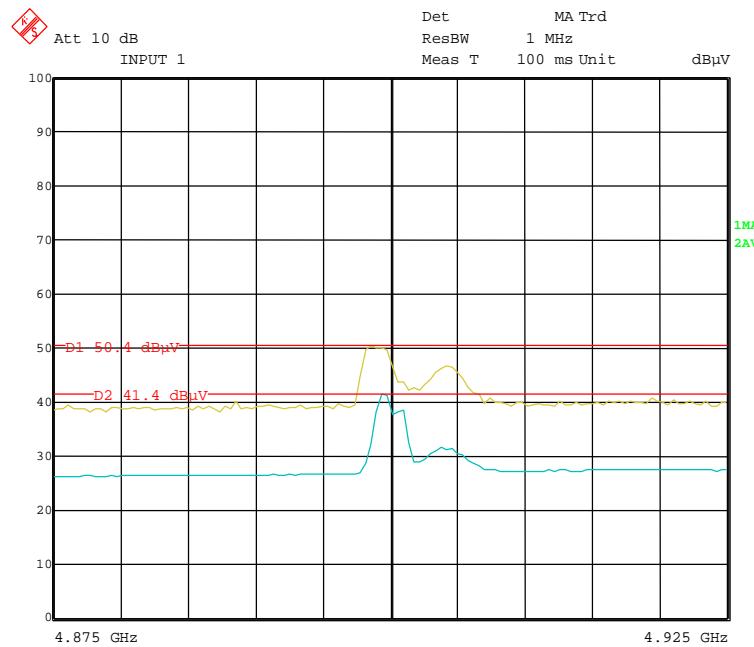



2.45 GHz, extreme voltage supply 27.6 VDC, measurement distance 3 m, LR-Transceiver






2.45 GHz, extreme voltage supply 27.6 VDC, measurement distance 3 m, SR-Transceiver




### 5.2.3 HARMONIC EMISSIONS

1<sup>st</sup> harmonic emission, normal rated supply voltage 24 VDC, measurement distance 3 m, LR-Transceiver



1<sup>st</sup> harmonic emission, normal rated supply voltage 24 VDC, measurement distance 3 m, SR-Transceiver



Test Equipment used:

03, 07, 17 ,43, 63,

### radiated emission intentional radiator with LR-Transceiver

## 5.3 LIST OF RESULTS

| Frequency<br>GHz | Voltage<br>Supply<br>V | Measured<br>Result Avg<br>dB $\mu$ V | Measured<br>Result Peak<br>dB $\mu$ V | Cable<br>Loss<br>dB | Pre-<br>amplifier<br>dB | Antenna<br>Factor<br>dB/m | Polar-<br>isation | Limit<br>d=3m<br>dB $\mu$ V/m | Measured<br>Result Avg<br>dB $\mu$ V/m | Test<br>Result |
|------------------|------------------------|--------------------------------------|---------------------------------------|---------------------|-------------------------|---------------------------|-------------------|-------------------------------|----------------------------------------|----------------|
| 2.45*            | 24                     | 81.2                                 | 82.2                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 113.5                                  | passed         |
| 2.45*            | 20.4                   | 81.1                                 | 82.1                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 113.4                                  | passed         |
| 2.45*            | 27.6                   | 81.1                                 | 82.1                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 113.4                                  | passed         |
| 4.90**           | 24                     | 32.4                                 | 41.9                                  | 4.2                 | 26.0                    | 33.4                      | hor.              | 54                            | 43.6                                   | passed         |
| 7.35***          | 24                     | -                                    | <28<br>noise level                    | 1.1                 | 26.0                    | 37.8                      | hor.              | 54                            | <40.9<br>noise level                   | passed         |
| 9.80***          | 24                     | -                                    | <28<br>noise level                    | 1.1                 | 26.0                    | 38.5                      | hor.              | 64                            | <41.6<br>noise level                   | passed         |
| 12.25***         | 24                     | -                                    | <36<br>noise level                    | 1.5                 | 25.8                    | 33.6                      | hor.              | 64                            | <45.3<br>noise level                   | passed         |
| 14.70***         | 24                     | -                                    | <36<br>noise level                    | 1.5.                | 26.6                    | 33.7                      | hor.              | 64                            | <44.6<br>noise level                   | passed         |
| 17.15***         | 24                     | -                                    | <36<br>noise level                    | 2.0                 | 27.4                    | 33.8                      | hor.              | 64                            | <44.4<br>noise level                   | passed         |
| 19.60***         | 24                     | -                                    | <45<br>noise level                    | 2.2                 | 38.2                    | 37.1                      | hor.              | 64                            | <46.1<br>noise level                   | passed         |
| 22.05***         | 24                     | -                                    | <45<br>noise level                    | 2.4                 | 38.2                    | 37.1                      | hor.              | 54                            | <46.3<br>noise level                   | passed         |
| 24.50***         | 24                     | -                                    | <45<br>noise level                    | 2.5                 | 38.9                    | 37.2                      | hor.              | 64                            | <45.8<br>noise level                   | passed         |

\* OATS with high scan 1m – 4m , RBW 1 MHz, 3m distance

\*\* OATS with high scan 1m – 4m , RBW 1 MHz (100kHz), 3m distance, Notchfilter 2.4 GHz

\*\*\* preliminary measurement fully anechoic chamber, RBW 1 MHz, 3m distance, Notchfilter 2.4 GHz, no emission found

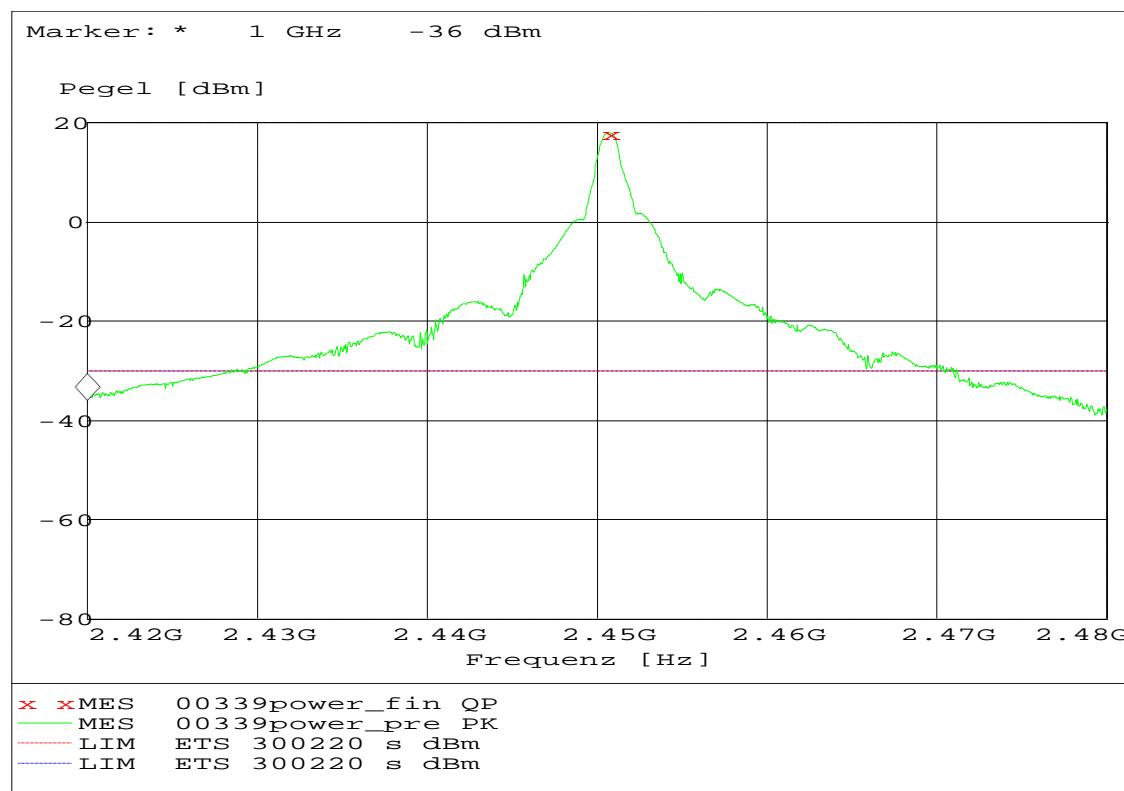


Radiated emission intentional radiator with SR-Transceiver

| Frequency<br>GHz | Voltage<br>Supply<br>V | Measured<br>Result Avg<br>dB $\mu$ V | Measured<br>Result Peak<br>dB $\mu$ V | Cable<br>Loss<br>dB | Pre-<br>amplifier<br>dB | Antenna<br>Factor<br>dB/m | Polar-<br>isation | Limit<br>d=3m<br>dB $\mu$ V/m | Measured<br>Result Avg<br>dB $\mu$ V/m | Test<br>Result |
|------------------|------------------------|--------------------------------------|---------------------------------------|---------------------|-------------------------|---------------------------|-------------------|-------------------------------|----------------------------------------|----------------|
| 2.45*            | 24                     | 79.3                                 | 80.1                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 111.6                                  | passed         |
| 2.45*            | 20.4                   | 79.3                                 | 80.1                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 111.6                                  | passed         |
| 2.45*            | 27.6                   | 79.3                                 | 80.1                                  | 3.8                 | -                       | 28.5                      | hor.              | 114                           | 111.6                                  | passed         |
| 4.90**           | 24                     | 41.4                                 | 50.4                                  | 4.2                 | 26.0                    | 33.4                      | hor.              | 54                            | 53                                     | passed         |
| 7.35***          | 24                     | -                                    | < 28<br>noise level                   | 1.1                 | 26.0                    | 37.8                      | hor.              | 54                            | < 40.9<br>noise level                  | passed         |
| 9.80***          | 24                     | -                                    | < 28<br>noise level                   | 1.1                 | 26.0                    | 38.5                      | hor.              | 64                            | < 41.6<br>noise level                  | passed         |
| 12.25***         | 24                     | -                                    | < 36<br>noise level                   | 1.5                 | 25.8                    | 33.6                      | hor.              | 64                            | < 45.3<br>noise level                  | passed         |
| 14.70***         | 24                     | -                                    | < 36<br>noise level                   | 1.5                 | 26.6                    | 33.7                      | hor.              | 64                            | < 44.6<br>noise level                  | passed         |
| 17.15***         | 24                     | -                                    | < 36<br>noise level                   | 2.0                 | 27.4                    | 33.8                      | hor.              | 64                            | < 44.4<br>noise level                  | passed         |
| 19.60***         | 24                     | -                                    | < 45<br>noise level                   | 2.2                 | 38.2                    | 37.1                      | hor.              | 64                            | < 46.1<br>noise level                  | passed         |
| 22.05***         | 24                     | -                                    | < 45<br>noise level                   | 2.4                 | 38.2                    | 37.1                      | hor.              | 54                            | < 46.3<br>noise level                  | passed         |
| 24.50***         | 24                     | -                                    | < 45<br>noise level                   | 2.5                 | 38.9                    | 37.2                      | hor.              | 64                            | < 45.8<br>noise level                  | passed         |

\* OATS with high scan 1m – 4m, RBW 1 MHz, 3m distance

\*\* OATS with high scan 1m – 4m, RBW 1 MHz (100kHz), 3m distance, Notchfilter 2.4 GHz


\*\*\* preliminary measurement fully anechoic chamber, RBW 1 MHz, 3m distance, Notchfilter 2.4 GHz, no emission found



## EFFECTIVE RADIATED POWER

The effective radiated power measurement was performed at antenna to EUT distance of 1 meter in a fully anechoic chamber to measurement the fundamental frequency.

The effective radiated power measurement carried out only with LR-Transceiver module and computing module without TAG and periphery device.



| Effective Radiated Power |                        |                           |                  |                                         |                                           |                             |                |
|--------------------------|------------------------|---------------------------|------------------|-----------------------------------------|-------------------------------------------|-----------------------------|----------------|
| Frequency<br>GHz         | Voltage<br>Supply<br>V | Measured<br>Result<br>dBm | Transducer<br>dB | Minimum Distance<br>to Human Body<br>cm | Calculate<br>Result<br>mW/cm <sup>2</sup> | Limit<br>mW/cm <sup>2</sup> | Test<br>Result |
| 2.45                     | 24                     | 17.7                      | -73.7            | 20                                      | 0.0117                                    | 1                           | passed         |



## 5.4 HUMAN EXPOSURE TO RF-ELECTROMAGNETIC FIELDS

In accordance with the OET Bulletin 65 Edition 97.01,

S: power density (mW/cm<sup>2</sup>)

EIRP: equivalent isotropically radiated power (mW)

R: distance to the center of radiation of the antenna (cm)

$$S = \frac{EIRP}{4 * \pi * R^2}$$

The transceiver is classified as mobile device therefore the distance between the transmitter module and human body is minimum 20 cm (see user manual), and the EIRP is 17.7 dBm (58.9 mW), so the power density is:

$$S = 0.0117 \text{ mW/cm}^2$$

The limit for "General Population/Uncontrolled Exposure" of the power density is 1 mW/cm<sup>2</sup> (2.45 GHz), in accordance with the 47 CFR 2.1310.



## 6 MEASUREMENT EQUIPMENT

### 6.1 TEST EQUIPMENT

| No. | Test equipment             | Type      | Manufacturer       | Serial No.               | PM-No            |
|-----|----------------------------|-----------|--------------------|--------------------------|------------------|
| 01  | Fully anechoic chamber M8  | -         | Siemens Matsushita | B83117-E7019-T231        | 480190           |
| 02  | Fully anechoic chamber M20 | -         | Albatross Projects | B83107-E2439-T232        | 480303           |
| 03  | Open area test site        | -         | Phoenix Test-Lab   | -                        | 480085           |
| 04  | Outdoor test site          | -         | Phoenix Test-Lab   | -                        | 480293           |
| 05  | Measuring receiver         | ESAI      | Rohde & Schwarz    | 831953/001<br>833181/018 | 480025<br>480026 |
| 06  | Measuring receiver         | ESMI      | Rohde & Schwarz    | 843977/001<br>843530/018 | 480179<br>480180 |
| 07  | Measuring receiver         | ESI 40    | Rohde & Schwarz    | 837808/007               | 480334           |
| 08  | Measuring receiver         | ESCS 30   | Rohde & Schwarz    | 828985/014               | 480270           |
| 09  | Spectrum analyser          | R2361C    | Advantest          | 51720469                 | 480144           |
| 10  | Loop antenna               | HFH2-Z2   | Rohde & Schwarz    | 832609/014               | 480059           |
| 11  | BILOG Antenna              | CBL6112 A | Chase              | 2034                     | 480185           |
| 12  | BILOG Antenna              | CBL6112 B | Chase              | 2688                     | 480328           |
| 13  | Bikon Antenna              | HK 116    | Rohde & Schwarz    | 833599/008               | 480071           |
| 14  | Bikon Antenna              | HK 116    | Rohde & Schwarz    | 836891/012               | 480122           |
| 15  | Lop-Per Antenna            | HL 223    | Rohde & Schwarz    | 835556/014               | 480123           |
| 16  | Lop-Per Antenna            | HL 223    | Rohde & Schwarz    | 833335/005               | 480072           |
| 17  | Horn Antenna               | 3115 A    | EMCO               | 9609-4918                | 480183           |
| 18  | Horn Antenna               | 3115 B    | EMCO               | 9609-4922                | 480184           |
| 19  | Standard Gain Horn         | 18240-20  | FLANN              | 483                      | 480337           |
| 20  | Standard Gain Horn         | 20240-20  | FLANN              | 56                       | 480296           |
| 21  | pre amplifier 12 GHz       | 23-5A     | Miteq              | 681851                   | 480337           |
| 22  | pre amplifier 18 GHz       | 16-5A     | Miteq              | 571667                   | 480334           |
| 23  | pre amplifier 26.7 GHz     | 20-5A     | Miteq              | 658697                   | 480342           |



| No. | Test equipment               | Type       | Manufacturer     | Serial No.  | PM-No  |
|-----|------------------------------|------------|------------------|-------------|--------|
| 24  | microwave cable              | KPS--800   | Insulated wire   | -           | 480302 |
| 25  | microwave cable              | KPS--400   | Insulated wire   | -           | 480300 |
| 26  | Signal generator             | SME 06     | Rohde & Schwarz  | 844530/008  | 480174 |
| 27  | Signal generator             | SMG        | Rohde & Schwarz  | 8334497/030 | 480013 |
| 28  | Signal generator             | 83650L     | Agilent          | 3844A00554  | 480333 |
| 29  | Radio communication analyser | CMTA 54    | Rohde & Schwarz  | 841904/011  | 480169 |
| 30  | Oscilloscope 4channel        | 54540A     | Hewlett Packard  | 3339A00192  | 480001 |
| 31  | Oscilloscope 2 channel       | 54520A     | Hewlett Packard  | 3344A00390  | 480007 |
| 32  | Signal generator             | TOE 7704   | TOELLNER         | 39385       | 480008 |
| 33  | Combiner                     | ZFSC-2-11  | Mini Circuits    | -           | 410089 |
| 34  | Combiner                     | ZFSC-2-11  | Mini Circuits    | -           | 410090 |
| 35  | Power splitter               | 11850C     | Hewlett Packard  | 01052       | 410069 |
| 36  | Power splitter               | -          | Suhner           | -           | 410070 |
| 37  | Symmetrical transformer      | -          | Phoenix Test Lab | -           | 410086 |
| 38  | Feeding bridge A             | -          | Phoenix Test Lab | -           | 410087 |
| 39  | Feeding bridge A             | -          | Phoenix Test Lab | -           | 410088 |
| 40  | Regulating transformer       | BR802      | Block            | -           | 480094 |
| 41  | Regulating transformer       | BR802      | Block            | -           | 480095 |
| 42  | Regulating transformer       | B9701089   | Block            | 105713      | 480341 |
| 43  | Power supply                 | TOE 8752   | Toellner         | 31566       | 480010 |
| 44  | Power supply                 | TOE 8852   | Toellner         | 51712       | 480233 |
| 46  | Power supply                 | TOE 8752   | Toellner         | 31569       | 480009 |
| 47  | Power supply                 | TOE 8852   | Toellner         | 51786       | 490001 |
| 48  | Climatic chamber             | KS600/75L  | RS-Simulatoren   | 19002901    | 490065 |
| 49  | Climatic chamber             | KS600/75   | RS-Simulatoren   | 19004201    | 490070 |
| 50  | Climatic chamber             | ST2K220/75 | RS-Simulatoren   | 9803901     | 490020 |
| 51  | Climatic chamber             | ST2K220/75 | RS-Simulatoren   | 2002701     | 490072 |
| 52  | Climatic chamber             | GTS500.40  | GTS              | 1660        | 490073 |
| 53  | Double circulator            | -          | Motorola         | -           | -      |
| 54  | Directional coupler          | ZFDC-2O-5  | Mini Circuits    | -           | 410092 |



| No. | Test equipment                 | Type             | Manufacturer            | Serial No. | PM-No  |
|-----|--------------------------------|------------------|-------------------------|------------|--------|
| 55  | Directional coupler            | 4001B-20         | Narda Microwave         | 02010      | 410150 |
| 56  | Directional coupler            | 774D             | Hewlett Packard         | 06375      | 410149 |
| 57  | Impedance matching unit        | -                | Phoenix-Test-Lab        | -          | 410091 |
| 58  | High Pass Filter               | HP-350           | Dirk Fischer Elektronik | -          | 410151 |
| 59  | High Pass Filter               | HP-450           | Dirk Fischer Elektronik | -          | 410152 |
| 60  | High Pass Filter               | HP-1000          | Dirk Fischer Elektronik | -          | 410147 |
| 61  | IF-Filter 20kHz/25kHz          | MQF 10.7-1400/11 | Telefilter              | 0043       | 480323 |
| 62  | IF-Filter 12.5kHz              | MQF 10.7-0850/11 | Telefilter              | 0043       | 480324 |
| 63  | Notch Filter 2.44 GHz          |                  |                         | -          | 480346 |
| 64  | Notch Filter                   | TTR 190-3EE      | TELONIC Berkeley        | 97284-6    | 480331 |
| 65  | Notch Filter                   | TTR 95-3EE       | TELONIC Berkeley        | 00104-2    | 480332 |
| 66  | Mixer                          | ZP-1             | Mini Circuits           | 15542      | 410148 |
| 67  | Variable Attenuator 0 -11 dB   | 8494B            | Hewlett Packard         | 3308A38264 | 480264 |
| 68  | Variable Attenuator 0 - 110 dB | 8496B            | Hewlett Packard         | 3308A71365 | 480265 |
| 69  | Attenuator / 3 dB / 5 W        | WA2-3            | Weinschel               | 8250       | 410115 |
| 70  | Attenuator / 3 dB / 5 W        | WA2-3            | Weinschel               | 8251       | 410116 |
| 71  | Attenuator / 3 dB / 5 W        | WA2-3            | Weinschel               | 8252       | 410117 |
| 72  | Attenuator / 3 dB / 50 W       | 33-3-34          | Weinschel               | BH 5062    | 410131 |
| 73  | Attenuator / 6 dB / 5 W        | WA2-6            | Weinschel               | 8253       | 410118 |
| 74  | Attenuator / 6 dB / 5 W        | WA2-6            | Weinschel               | 8254       | 410119 |
| 75  | Attenuator / 6 dB / 5 W        | WA2-6            | Weinschel               | 8255       | 410120 |
| 76  | Attenuator / 6 dB / 25 W       | 33-6-34          | Weinschel               | BH 5536    | 410128 |
| 77  | Attenuator / 10 dB / 1 W       | 6810.17A         | Huber + Suhner          | -          | 410067 |
| 78  | Attenuator / 10 dB / 5 W       | WA2-10           | Weinschel               | 8259       | 410121 |
| 79  | Attenuator / 10 dB / 5 W       | WA2-10           | Weinschel               | 8260       | 410122 |
| 80  | Attenuator / 10 dB / 5 W       | WA2-10           | Weinschel               | 8261       | 410123 |
| 81  | Attenuator / 10 dB / 10 W      | WA8-10           | Weinschel               | 7538       | 410112 |
| 82  | Attenuator / 10 dB / 25 W      | 33-10-34         | Weinschel               | BH 4878    | 410129 |
| 83  | Attenuator / 10 dB / 25 W      | 33-10-34         | Weinschel               | BH 4856    | 410130 |



| No. | Test equipment             | Type         | Manufacturer     | Serial No. | PM-No  |
|-----|----------------------------|--------------|------------------|------------|--------|
| 84  | Attenuator / 10 dB / 100 W | BN 745353    | Spinner          | 20262      | 480274 |
| 85  | Attenuator / 20 dB / 1 W   | 6820.17A     | Huber + Suhner   | -          | 410068 |
| 86  | Attenuator / 20 dB / 5 W   | WA2-20       | Weinschel        | 8256       | 410124 |
| 87  | Attenuator / 20 dB / 5 W   | WA2-20       | Weinschel        | 8257       | 410125 |
| 88  | Attenuator / 20 dB / 5 W   | WA2-20       | Weinschel        | 8258       | 410126 |
| 89  | Attenuator / 20 dB / 10 W  | WA8-20       | Weinschel        | 7539       | 410113 |
| 90  | Attenuator / 30 dB / 200 W | BN 745395    | Spinner          | 29971      | 480232 |
| 91  | Termination / 50 Ω / 15 W  | 6515.17.A    | Huber + Suhner   | -          | 410078 |
| 92  | Termination / 50 Ω / 0.5 W | 6500.17.A    | Huber + Suhner   | -          | 410074 |
| 93  | Termination / 50 Ω / 0.5 W | 6500.17.A    | Huber + Suhner   | -          | 410075 |
| 94  | RF-cable No. 1             | RTK 081      | Rosenberger      | -          | 410093 |
| 95  | RF-cable No. 2             | RTK 081      | Rosenberger      | -          | 410094 |
| 96  | RF-cable No. 3             | RTK 081      | Rosenberger      | -          | 410095 |
| 97  | RF-cable No. 4             | RTK 081      | Rosenberger      | -          | 410096 |
| 98  | RF-cable No. 5             | RTK 081      | Rosenberger      | -          | 410097 |
| 99  | RF-cable No. 6             | RTK 081      | Rosenberger      | -          | 410098 |
| 100 | RF-cable No. 7             | Sucoflex 104 | Huber + Suhner   | -          | 410099 |
| 101 | RF-cable No. 8             | RG223        | Phoenix-Test-Lab | -          | 410100 |
| 102 | RF-cable No. 9             | RG223        | Phoenix-Test-Lab | -          | 410101 |
| 103 | RF-cable No. 10            | RG223        | Phoenix-Test-Lab | -          | 410102 |
| 104 | RF-cable No. 11            | RG223        | Phoenix-Test-Lab | -          | 410103 |
| 105 | RF-cable No. 12            | RG223        | Phoenix-Test-Lab | -          | 410104 |
| 106 | RF-cable No. 13            | RG223        | Phoenix-Test-Lab | -          | 410105 |
| 107 | RF-cable No. 14            | RG223        | Phoenix-Test-Lab | -          | 410106 |
| 108 | RF-cable No. 15            | RG223        | Phoenix-Test-Lab | -          | 410107 |
| 109 | RF-cable No. 16            | RG223        | Phoenix-Test-Lab | -          | 410108 |
| 110 | RF-cable No. 17            | RG223        | Phoenix-Test-Lab | -          | 410109 |
| 111 | RF-cable No. 18            | RG58         | Phoenix-Test-Lab | -          | 410110 |
| 112 | RF-cable No. 30            | RTK 081      | Rosenberger      | -          | 410141 |
| 113 | RF-cable No. 31            | RTK 081      | Rosenberger      | -          | 410142 |



- Fully anechoic chamber meets the 4 dB requirements of ANSI C63. 4 above 100MHz up to 5GHz
- Open area test site meets the requirements of ANSI C 63.4

All measuring equipment underlie a quality system and are calibrated.

## 6.2 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the antenna factor and cable loss from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL$$

FS = Field Strength

RA = Receiver Amplitude

CL = Cable Loss

AF = Antenna Factor