

FCC 47 CFR PART 15 SUBPART C ISED CANADA RSS-247 ISSUE 1

CERTIFICATION TEST REPORT

FOR

WIRELESS CAPABLE SECURITY CAMERA

HVIN: R12 PMN: AXIS M1065-LW

FCC ID: PNB-AXISM1065-LW IC: 3919A-M1065LW

REPORT NUMBER: 11191821-E1

ISSUE DATE: 2016-08-11

Prepared for AXIS COMMUNICATIONS AB EMDALAVAGEN 14 LUND SWEDEN, SE-223 69

Prepared by
UL LLC
12 LABORATORY DR.
RESEARCH TRIANGLE PARK, NC 27709 USA
TEL: (919) 549-1400

NVLAP Lab code: 200246-0

Revision History

Ver	Issue Date	Revisions	Revised By
1	2016-07-15	Initial Issue	Brian Kiewra
2	2016-07-21	Added model numbers and more EUT descriptive detail.	Brian Kiewra
3	2016-07-26	Added Line Conducted diagram.	Brian Kiewra
4	2016-08-11	Removed model variants, added HVIN and PMN. Made editorial changes to references throughout.	Brian Kiewra

TABLE OF CONTENTS

1. AT	TTESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EC	QUIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	8
5.4.	SOFTWARE AND FIRMWARE	8
5.5.	WORST-CASE CONFIGURATION AND MODE	9
5.6.	DESCRIPTION OF TEST SETUP	10
6. TE	EST AND MEASUREMENT EQUIPMENT	14
7. ME	EASUREMENT METHODS	17
8. AN	NTENNA PORT TEST RESULTS	18
8. AN 8.1.	ON TIME AND DUTY CYCLE	
8.1. 8.2.	ON TIME AND DUTY CYCLE802.11b MODE IN THE 2.4 GHz BAND	18 21
8.1. 8.2. 8.2	ON TIME AND DUTY CYCLE	18 21 21
8.1. 8.2. 8.2 8.2	ON TIME AND DUTY CYCLE	18 21 21
8.1. 8.2. 8.2 8.2	ON TIME AND DUTY CYCLE	18 21 21 23
8.1. 8.2. 8.2 8.2 8.2	ON TIME AND DUTY CYCLE	18 21 23 26
8.1. 8.2. 8.2 8.2 8.2	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS	
8.1. 8.2. 8.2 8.2 8.2 8.2 8.3 8.3.	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS 802.11g MODE IN THE 2.4 GHz BAND 3.1. 6 dB BANDWIDTH	
8.1. 8.2. 8.2 8.2 8.2 8.3 8.3 8.3	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS 802.11g MODE IN THE 2.4 GHz BAND 3.1. 6 dB BANDWIDTH 3.2. 99% BANDWIDTH	
8.1. 8.2. 8.2 8.2 8.2 8.3 8.3 8.3	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS 802.11g MODE IN THE 2.4 GHz BAND 3.1. 6 dB BANDWIDTH 3.2. 99% BANDWIDTH 3.3. OUTPUT POWER	
8.1. 8.2. 8.2 8.2 8.2 8.3 8.3 8.3 8.3	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS 802.11g MODE IN THE 2.4 GHz BAND 3.1. 6 dB BANDWIDTH 3.2. 99% BANDWIDTH 3.3. OUTPUT POWER 3.4. POWER SPECTRAL DENSITY	
8.1. 8.2. 8.2 8.2 8.3 8.3 8.3 8.3 8.3	ON TIME AND DUTY CYCLE 802.11b MODE IN THE 2.4 GHz BAND 2.1. 6 dB BANDWIDTH 2.2. 99% BANDWIDTH 2.3. OUTPUT POWER 2.4. POWER SPECTRAL DENSITY 2.5. OUT-OF-BAND EMISSIONS 802.11g MODE IN THE 2.4 GHz BAND 3.1. 6 dB BANDWIDTH 3.2. 99% BANDWIDTH 3.3. OUTPUT POWER	

11	SETI	ID DHOTOS	۵n
10.	AC P	OWER LINE CONDUCTED EMISSIONS	87
9.6	. WC	ORST-CASE 18-26GHz	86
9.5	. WC	ORST-CASE BELOW 1 GHz	85
9.4	. TX	ABOVE 1 GHz 802.11n HT20 MODE IN THE 2.4 GHz BAND	78
9.3	. TX	ABOVE 1 GHz 802.11g MODE IN THE 2.4 GHz BAND	71
9.2	. TX	ABOVE 1 GHz 802.11b MODE IN THE 2.4 GHz BAND	64
9.1	. LIN	MITS AND PROCEDURE	63
9. F	RADIA	TED TEST RESULTS	63
8	3.4.5.	OUT-OF-BAND EMISSIONS	58
8	3.4.4.	POWER SPECTRAL DENSITY	56
8	3.4.3.	OUTPUT POWER	54
8	3.4.2.	99% BANDWIDTH	51

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Axis Communications AB

Emdalavagen 14

Lund Sweden, SE-223 69

EUT DESCRIPTION: Wireless Capable Security Camera

HVIN: R12

PMN: AXIS M1065-LW

SERIAL NUMBER: Radiated: ACCC8E23D3A6

Conducted: ACCC8E23D4CF/ACCC8E23D3B2

DATE TESTED: 2016-04-25 to 2016-06-15

APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	Pass
Industry Canada (ISED CANADA) RSS-247 Issue 1	Pass
Industry Canada (ISED CANADA) RSS-GEN Issue 4	Pass

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL LLC By:

Prepared By:

Jeff Moser

EMC Program Manager

UL – Consumer Technology Division

Brian Kiewra WISE Engineer

UL - Consumer Technology Division

Page 5 of 95

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 4, RSS-247 Issue 1.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 12 Laboratory Dr., Research Triangle Park, NC 27709, USA and 2800 Suite B, Perimeter Park Drive, Morrisville, NC 27560.

12 Laboratory Dr., RTP, NC 27709					
☐ Chamber A					
2800 Suite B Perimeter Park Dr.,					
Morrisville, NC 27560					
☐ Chamber NORTH					
☐ Chamber SOUTH					

The onsite chambers are covered under ISED Canada company address code 2180C with site numbers 2180C -1 through 2180C-4, respectively.

UL LLC (RTP) is accredited by NVLAP, Laboratory Code 200246-0. The full scope of accreditation can be viewed at http://www.nist.gov/nvlap/.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

Page 6 of 95

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Total RF power, conducted	± 0.45 dB
RF power density, conducted	± 1.5 dB
Spurious emissions, conducted	± 2.94 dB
All emissions, radiated up to 40 GHz	± 5.36 dB
Temperature	± 0.07°C
Humidity	± 2.26% RH
DC and low frequency voltages	± 1.27%
Conducted Emissions (0.150-30MHz)	± 2.37dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a network surveillance camera that contains an 802.11 a/b/g/n and Bluetooth transceivers, manufactured by AXIS Communications AB, Lund, SWEDEN.

The EUT is provided with an Axis PS-U05 rev. 1 power supply.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2412 - 2462	802.11b	16.47	44.36
2412 - 2462	802.11g	13.11	20.46
2412 - 2462	802.11n HT20	12.12	16.29

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an internal inverted-f type antenna. The peak antenna gain is +1.3 dBi for 2.4 GHz band and +2.6 dBi for 5 GHz band.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was 6.15_beta52. Special test firmware used for EMC was 15+snapshot_20160511 (this firmware allows for simultaneously operation for Bluetooth and WLAN in order to reduce test set-ups).

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Manufacturer stated that EUT is only intended to operate installed in mounting bracket which is one fixed orientation; therefore, all final radiated testing was performed in stated position.

Based on the baseline scan, the worst-case data rates were:

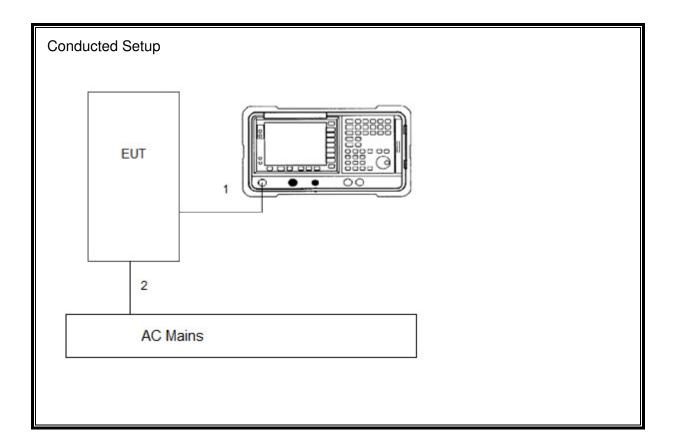
802.11b mode: 5.5 Mbps 802.11g mode: 6 Mbps 802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0

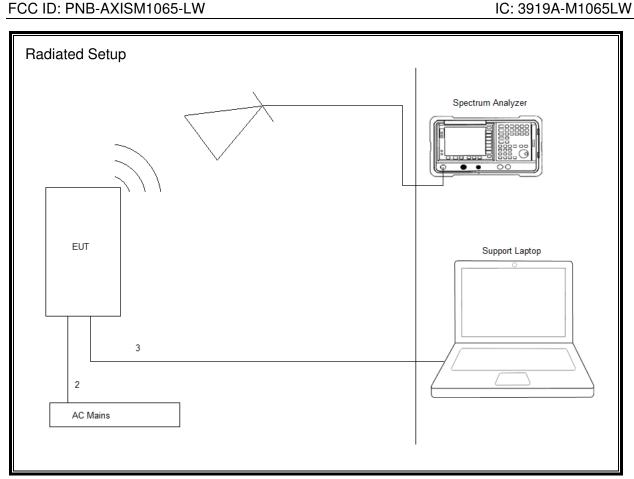
FORM NO: 03-EM-F00858

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Laptop	Lenovo	T440	RTP1014PC015NUR	NA		


I/O CABLES


I/O Cable List							
Cable No	Port	# of Identical ports	Connector Type	Cable Length (m)	Remarks		
1	Antenna Port	1	RF	<1m	NA		
2	AC Mains	1	AC	>1m	NA		
3	Ethernet	1	RJ45	>1m	CAT5E		

TEST SETUP

Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

DATE: 2016-08-11

DATE: 2016-08-11

IC: 3919A-M1065LW

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Radiated Emissions - Chamber C

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	30-1000 MHz Range				
AT0075	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB3	2015-06-10	2016-06-30
	1-18 GHz				
AT0062	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2015-08-25	2016-08-31
	18-40GHz				
AT0063	Horn Antenna, 18- 26.5GHz	ARA	MWH-1826/B	2015-08-27	2016-08-31
AT0061	Horn Antenna, 26-40GHz	ARA	MWH-2640/B	2015-08-27	2016-08-31
	Gain-Loss Chains				
C-SAC01	Gain-loss string: 0.009- 1000MHz	Various	Various	2016-01-18	2017-01-31
C-SAC02	Gain-loss string: 1-18GHz	Various	Various	2016-01-28	2017-01-31
C-SAC03	Gain-loss string: 18- 40GHz	Various	Various	2015-09-27	2016-09-30
	Receiver & Software				
SA0016	Spectrum Analyzer	Agilent	PXA N903A	2015-08-26	2016-08-31
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Additional Equipment used				
HI0082	Temp/Humid/Pressure Meter	Cole-Parmer	99760-00	2016-04-26	2017-04-26

Test Equipment Used - Wireless Conducted Measurement Equipment

Equipment ID	Description Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Conducted Room 1				
SA0019	Spectrum Analyzer	Agilent Technologies	E4446A	2015-09-02	2016-09-30
SA0026	Spectrum Analyzer	Agilent	N9030A	2016-02-24	2017-02-28
PWM004	RF Power Meter	Keysight Technologies	N1911A	2015-06-08	2016-06-30
PWS004	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2015-06-05	2016-06-30
HI0079	Temp/Humid/Pressure Meter	Springfield	PreciseTemp	2015-07-01	2016-07-31
MM0167	True RMS Multimeter	Agilent	U1232A	2015-08-17	2016-08-31
	Conducted Room 2				
SA0020	Spectrum Analyzer	Agilent Technologies	E4446A	2016-03-22	2017-03-31
SA0026	Spectrum Analyzer	Agilent	N9030A	2016-02-24	2017-02-28
PWM003	RF Power Meter	Keysight Technologies	N1911A	2015-06-08	2016-06-30
PWS003	Peak and Avg Power Sensor, 50MHz to 6GHz	Keysight Technologies	E9323A	2015-06-05	2016-06-30
HI0080	Temp/Humid/Pressure Meter	Springfield	PreciseTemp	2015-07-01	2016-07-31
MM0168	True RMS Multimeter	Agilent	U1232A	2015-08-17	2016-08-31
T1024	EMPower USB RF Power Sensor, 10MHz to 6GHz	ETS Lindgren	7002-006	2015-10-01	2016-10-01

Test Equipment Used - Line-Conducted Emissions - Voltage (Morrisville - Conducted 1)

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
CBL077	Coax cable, RG223, N-male to BNC-male, 20-ft.	Pasternack	PE3476-240	2015-10-29	2016-10-31
HI0079	Temp/Humid/Pressure Meter	Springfield Precision	PreciseTemp	2015-07-01	2016-07-31
LISN003	LISN, 50-ohm/50-uH, 2- conductor, 25A	Fischer Custom Com.	FCC-LISN-50-25-2- 01-550V	2015-08-24	2016-08-31
LISN008	LISN, 50-ohm/50-uH, 2- conductor, 25A (For support gear only.)	Solar Electronics	8012-50-R-24-BNC	2015-09-03	2016-09-30
MM0167	Multi-meter	Agilent	U1232A	2015-08-17	2016-08-31
PRE0101521 (75141)	EMI Test Receiver 9kHz- 7GHz	Rohde & Schwarz	ESCI 7	2015-08-26	2016-08-31
ATA222	Transient Limiter, 0.009- 30MHz	Electrometrics	EM-7600	2015-08-30	2016-08-31
PS214	AC Power Source	Elgar	CW2501M (s/n 1523A02396)	NA	NA
PS215	AC Power Source	Elgar	CW2501M (s/n 1523A02397)	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5	NA	NA
	Miscellaneous (if needed)				
ATA220	ISN for Unshielded Balanced Pairs	Teseq, Inc.	ISN T8	2015-08-24	2016-08-31
TN0129	ISN for Shielded Balanced Pairs	Teseq, Inc.	ISN ST08	2015-08-24	2016-08-31
TN0145	ISN for Cat-6 Unshielded Balanced Pairs	Teseq, Inc.	ISN T8-Cat6	2015-08-25	2016-08-31
CDECABLE001	ANSI C63.4 1m extension cable.	UL	Per Annex B of ANSI C63.4	2016-06-04	2017-06-30

7. MEASUREMENT METHODS

Duty Cycle: KDB 558074 D01 v03r05 Section 6.0

6 dB BW: KDB 558074 D01 v03r05, Section 8.1.

99% Occupied Bandwidth: ANSI C63.10-2013, Section 6.9.3

Output Power: KDB 558074 D01 v03r05, Section 9.2.3.1.

Power Spectral Density: KDB 558074 D01 v03r05, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r05, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r05, Section 12.1.

General Radiated Emissions: ANSI C63.10:2013 Sections 6.3-6.6

Line Conducted Emissions: ANSI C63.10:2013 Sections 6.2

FORM NO: 03-EM-F00858

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

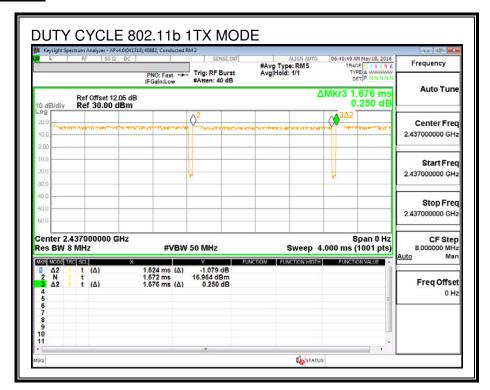
LIMITS

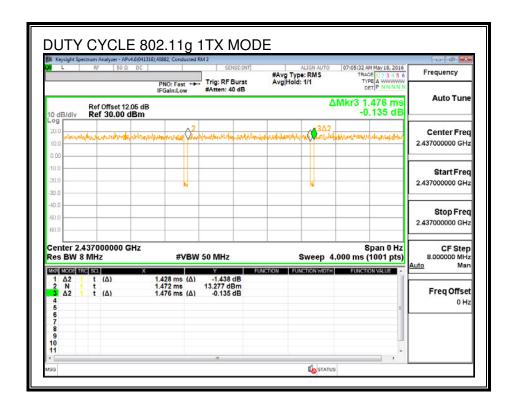
None; for reporting purposes only.

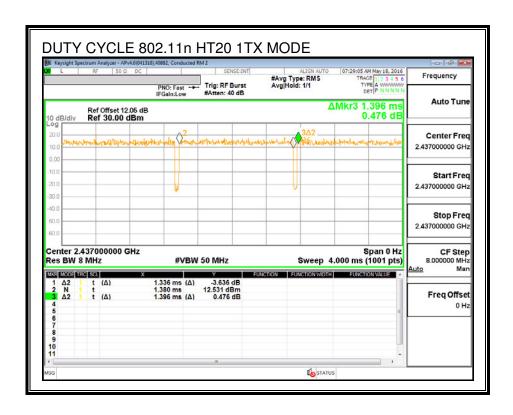
PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS


Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		х	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
802.11b 1TX	1.624	1.676	0.969	96.90%	0.14	0.616
802.11g 1TX	1.428	1.476	0.967	96.75%	0.14	0.700
802.11n HT20 1TX	1.336	1.396	0.957	95.70%	0.19	0.749


Test Performed: Jeff Cabrera


Test Date: 2016-05-18

DUTY CYCLE PLOTS

2.4 GHz BAND

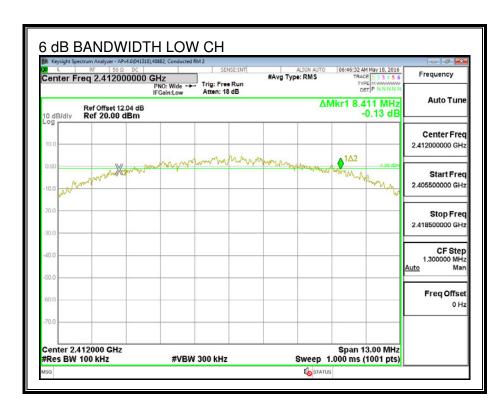
8.2. 802.11b MODE IN THE 2.4 GHz BAND

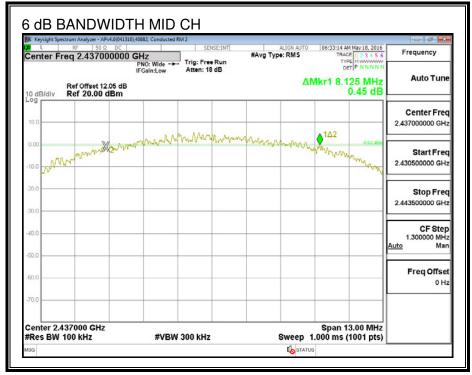
8.2.1. 6 dB BANDWIDTH

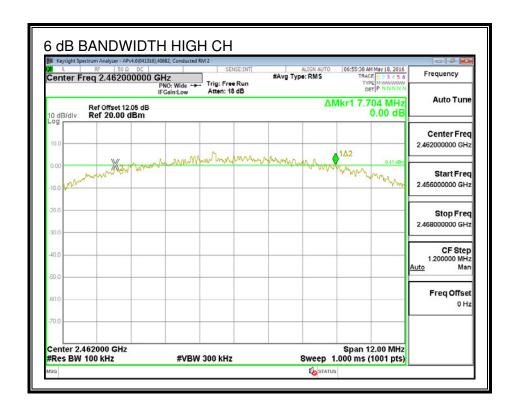
LIMITS

FCC §15.247 (a) (2)

IC RSS-247 5.2 (1)


The minimum 6 dB bandwidth shall be at least 500 kHz.


RESULTS


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	8.411	0.5
Mid	2437	8.125	0.5
High	2462	7.704	0.5

Test Performed: Jeff Cabrera Test Date: 2016-05-18

6 dB BANDWIDTH

DATE: 2016-08-11

8.2.2. 99% BANDWIDTH

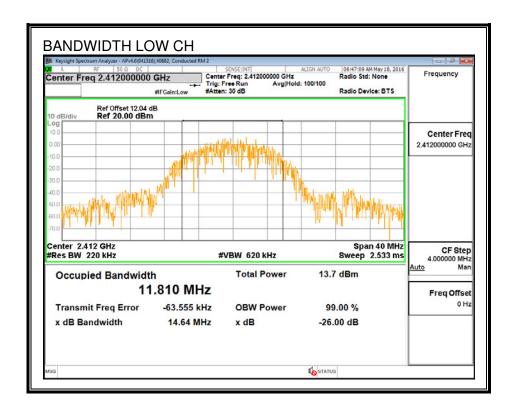
LIMITS

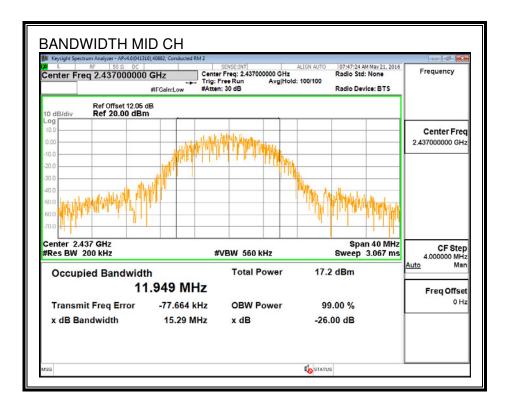
None; for reporting purposes only. Testing per RSS-Gen Clause 6.6.

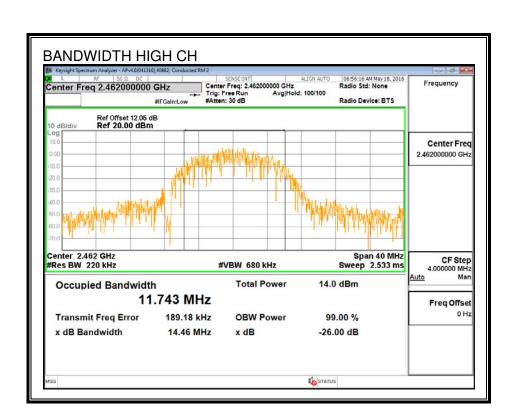
RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	11.8100
Mid	2437	11.9490
High	2462	11.7430

Test Performed: Jeff Cabrera


Test Date: 2016-05-18


TEL: (919) 549-1400


FORM NO: 03-EM-F00858

This report shall not be reproduced except in full, without the written approval of UL LLC.

99% BANDWIDTH

DATE: 2016-08-11

IC: 3919A-M1065LW

8.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

IC RSS-247 5.4 (4)

FCC - For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS - For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

FORM NO: 03-EM-F00858

RESULTS

Limits

Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	1.30	30.00	30	36	30.00
Mid	2437	1.30	30.00	30	36	30.00
High	2462	1.30	30.00	30	36	30.00

Duty Cycle CF (dB)	0.14	Included in Calculations of Corr'd Power

Results

Channel	Frequency	Chain 0	Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	16.33	16.47	30.00	-13.53
Mid	2437	16.29	16.43	30.00	-13.57
High	2462	16.23	16.37	30.00	-13.63

Test Performed: Jeff Cabrera

Test Date: 2016-05-18

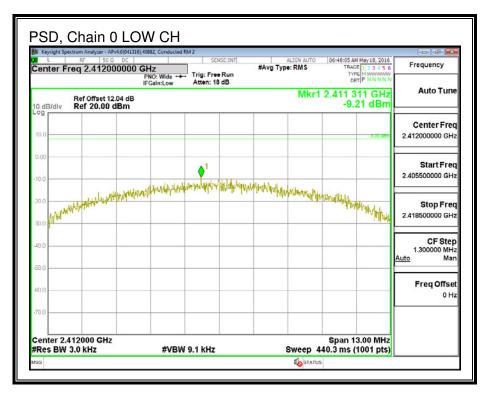
8.2.4. POWER SPECTRAL DENSITY

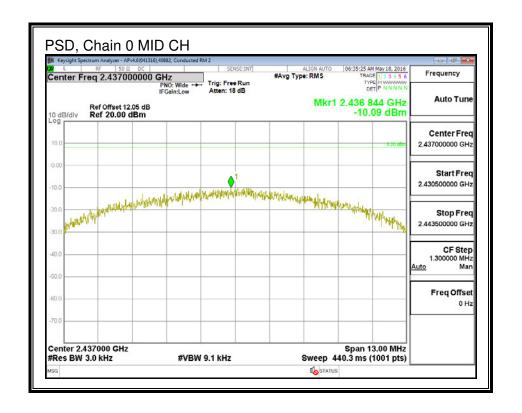
LIMITS

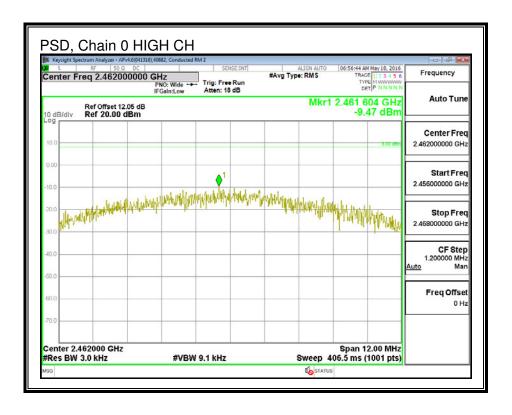
FCC §15.247 (e)

IC RSS-247 5.2 (2)

RESULTS


Duty C	ycle CF (dB)	0.14	Included in Calculations of Corr'd PSI			of Corr'd PSD
PSD Resu	ults		•			
Channel	Frequency	Chain 0	Total	Limit	Margin	
		Meas	Corr'd			
	/B/ILI_\	(dDm)	DCD			


Chamiler	(MHz)	Meas (dBm)	Corr'd PSD	Limit	iviargin
	(IVITIZ)	(авііі)	(dBm)	(dBm)	(dB)
Low	2412	-9.21	-9.07	8.0	-17.1
Mid	2437	-10.09	-9.95	8.0	-18.0
High	2462	-9.47	-9.33	8.0	-17.3


Test Performed: Jeff Cabrera

Test Date: 2016-05-18

PSD, Chain 0

8.2.5. OUT-OF-BAND EMISSIONS

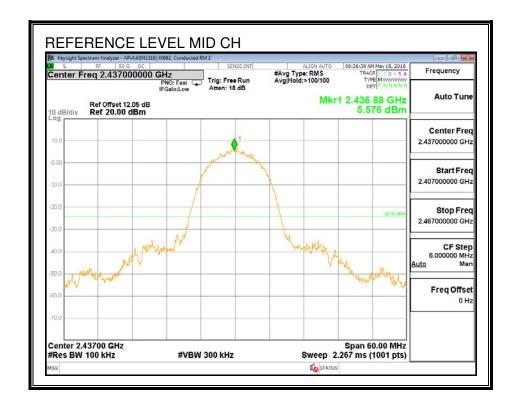
LIMITS

FCC §15.247 (d)

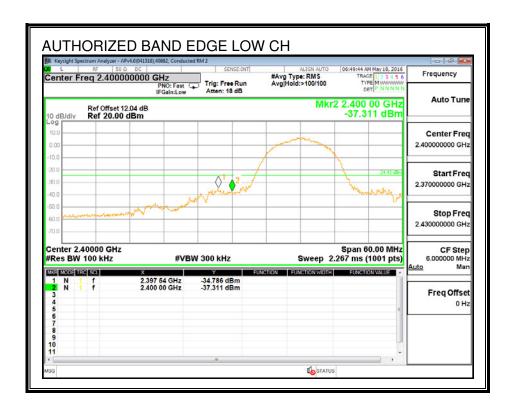
IC RSS-247 5.5

FCC - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

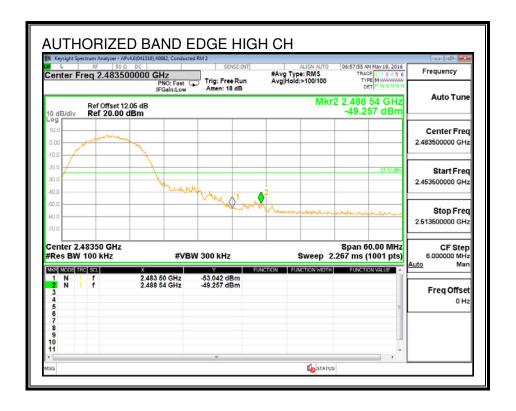
RSS - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


RESULTS

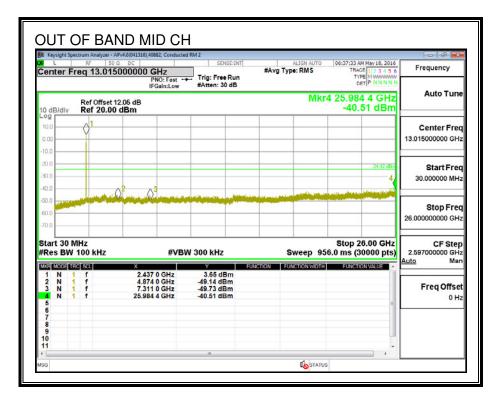
Test Performed: Jeff Cabrera


Test Date: 2016-05-18

FORM NO: 03-EM-F00858

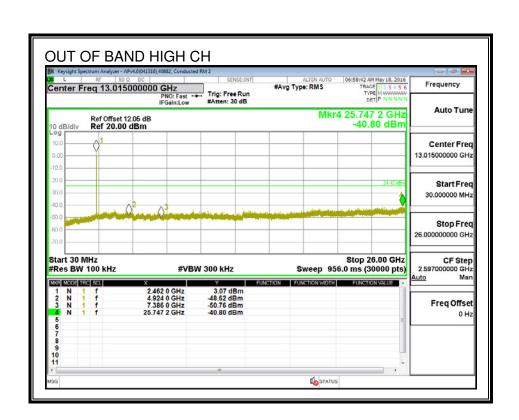

IN-BAND REFERENCE LEVEL

LOW CHANNEL BANDEDGE


HIGH CHANNEL BANDEDGE

Page 32 of 95

OUT-OF-BAND EMISSIONS



Page 33 of 95

DATE: 2016-08-11

IC: 3919A-M1065LW

DATE: 2016-08-11

IC: 3919A-M1065LW

8.3. 802.11g MODE IN THE 2.4 GHz BAND

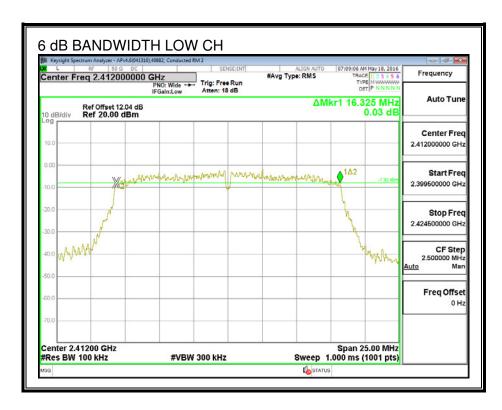
8.3.1. 6 dB BANDWIDTH

LIMITS

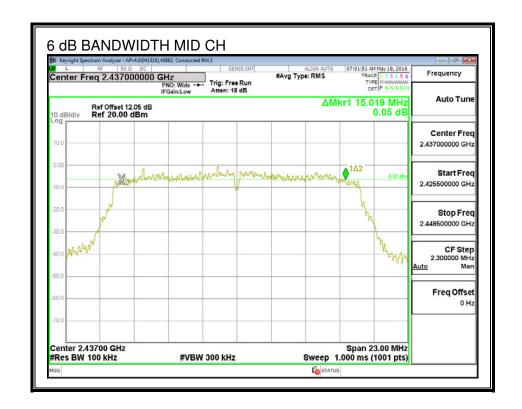
FCC §15.247 (a) (2)

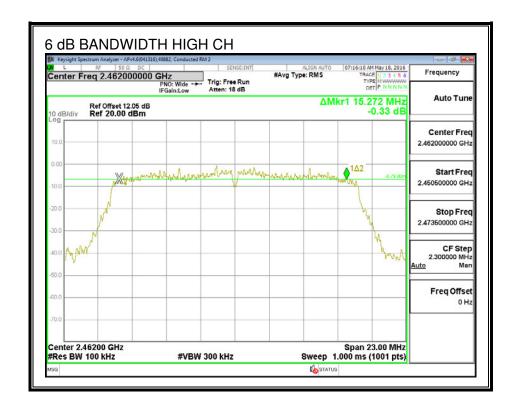
IC RSS-247 5.2 (1)

The minimum 6 dB bandwidth shall be at least 500 kHz.


RESULTS

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.325	0.5
Mid	2437	15.019	0.5
High	2462	15.272	0.5


Test Performed: Jeff Cabrera


Test Date: 2016-05-18

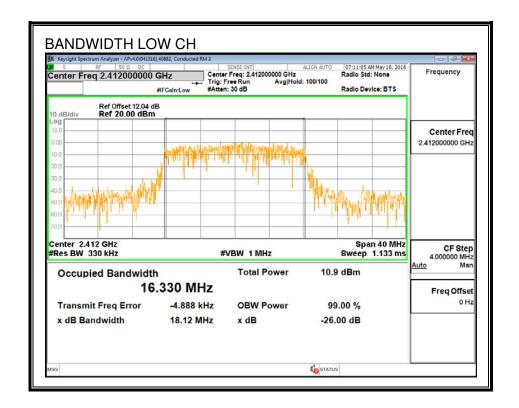
6 dB BANDWIDTH

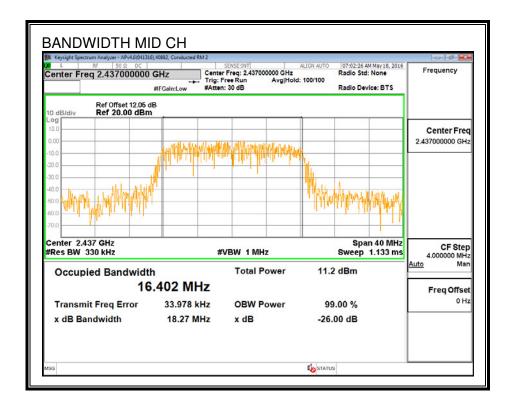
Page 35 of 95

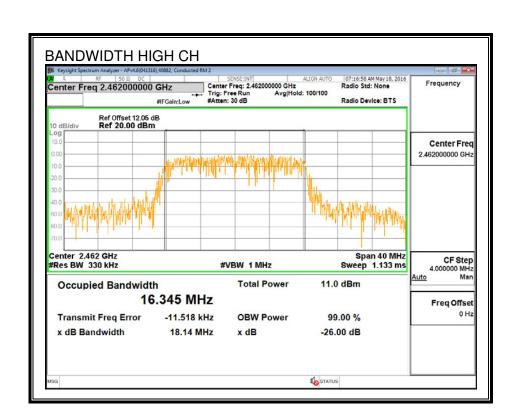
8.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only. Testing per RSS-Gen Clause 6.6.


RESULTS


Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	16.3300		
Mid	2437	16.4020		
High	2462	16.3450		


Test Performed: Jeff Cabrera

Test Date: 2016-05-18

99% BANDWIDTH

DATE: 2016-08-11

8.3.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

IC RSS-247 5.4 (4)

FCC - For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS - For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Test Performed: Jeff Cabrera

Test Date: 2016-05-18

FORM NO: 03-EM-F00858

RESULTS

Limits

Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	1.30	30.00	30	36	30.00
Mid	2437	1.30	30.00	30	36	30.00
High	2462	1.30	30.00	30	36	30.00

Duty Cycle CF (dB) 0.14	Included in Calculations of Corr'd Power
-------------------------	--

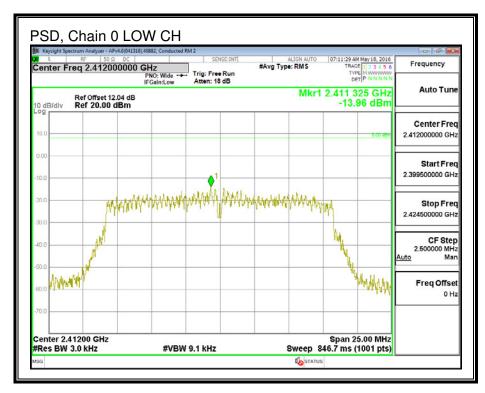
Results

Channel	Frequency	Chain 0	Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	12.91	13.05	30.00	-16.95
Mid	2437	12.97	13.11	30.00	-16.89
High	2462	12.93	13.07	30.00	-16.93

8.3.4. POWER SPECTRAL DENSITY

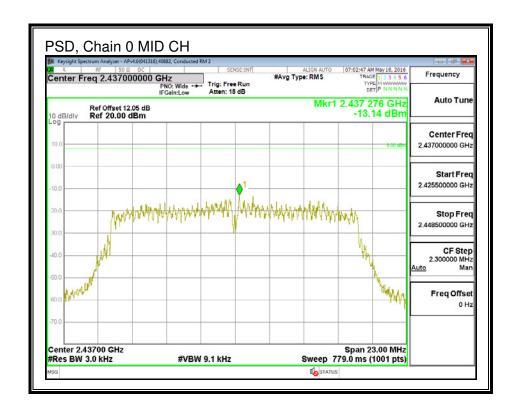
LIMITS

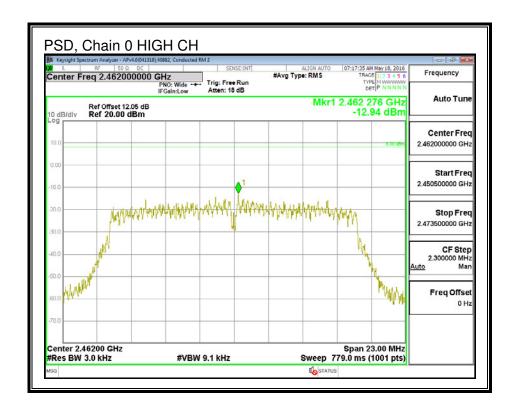
FCC §15.247 (e)


IC RSS-247 5.2 (2)

RESULTS

Duty C	Duty Cycle CF (dB) 0.14 Included in Calculations					
PSD Resu						
Channel	Frequency	Chain 0	Total	Limit	Margin	
		Meas	Corr'd			
	(MHz)	(dBm)	PSD			
			(dBm)	(dBm)	(dB)	
Low	2412	-13.96	-13.82	8.0	-21.8	
Mid	2437	-13.14	-13.00	8.0	-21.0	
High	2462	-12.94	-12.80	8.0	-20.8	


Test Performed: Jeff Cabrera Test Date: 2016-05-18


PSD, Chain 0

Page 42 of 95

DATE: 2016-08-11

8.3.5. OUT-OF-BAND EMISSIONS

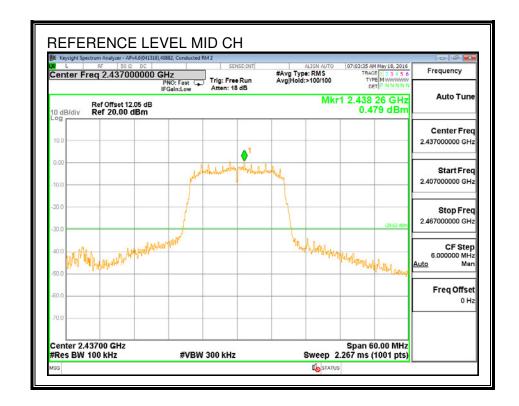
LIMITS

FCC §15.247 (d)

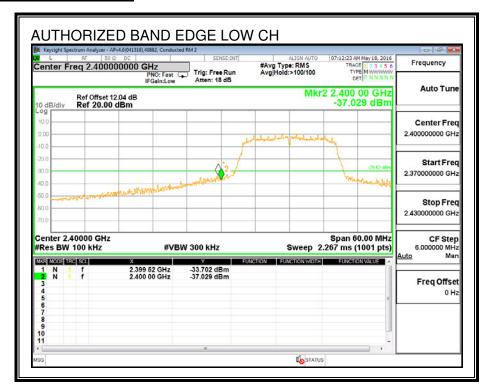
IC RSS-247 5.5

FCC - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

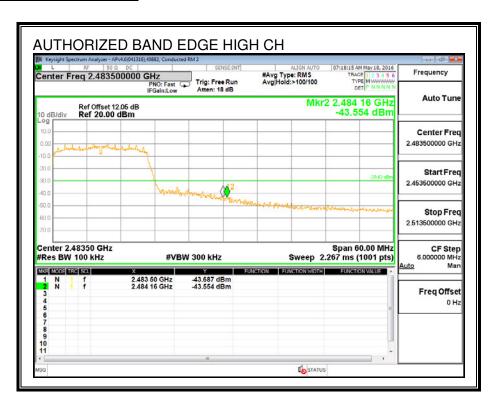
RSS - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

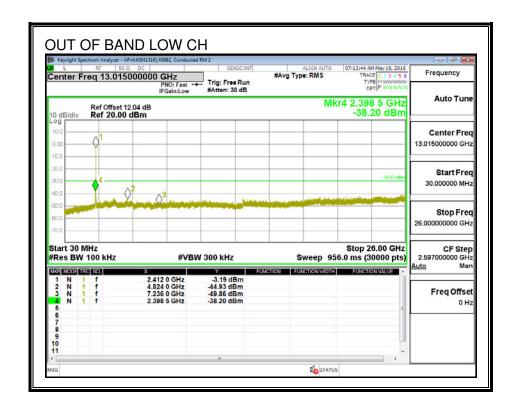

RESULTS

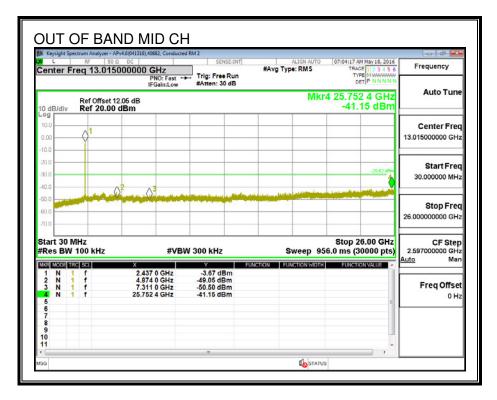
Test Performed: Jeff Cabrera

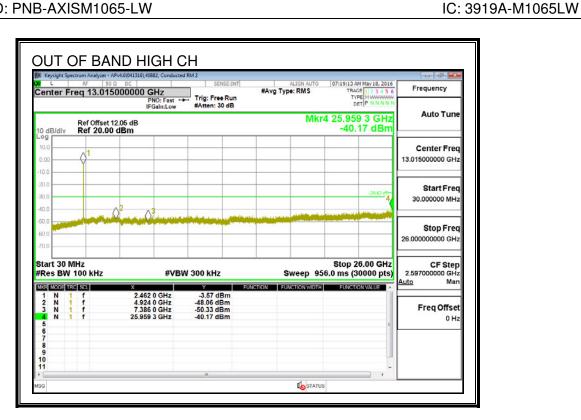

Test Date: 2016-05-18

FORM NO: 03-EM-F00858


IN-BAND REFERENCE LEVEL


LOW CHANNEL BANDEDGE




HIGH CHANNEL BANDEDGE

OUT-OF-BAND EMISSIONS

DATE: 2016-08-11

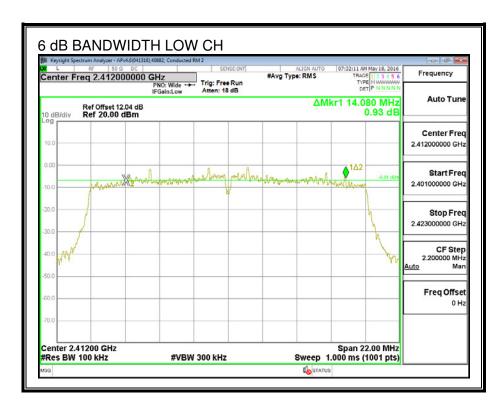
8.4. 802.11n HT20 MODE IN THE 2.4 GHz BAND

8.4.1. 6 dB BANDWIDTH

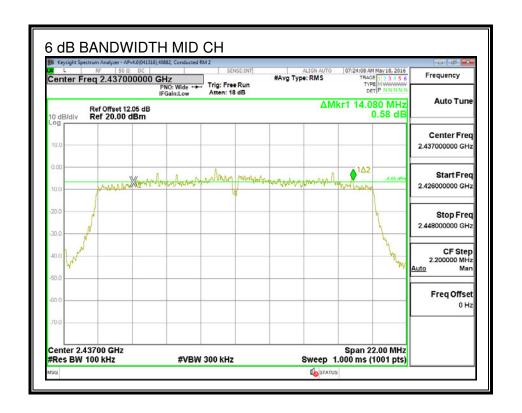
LIMITS

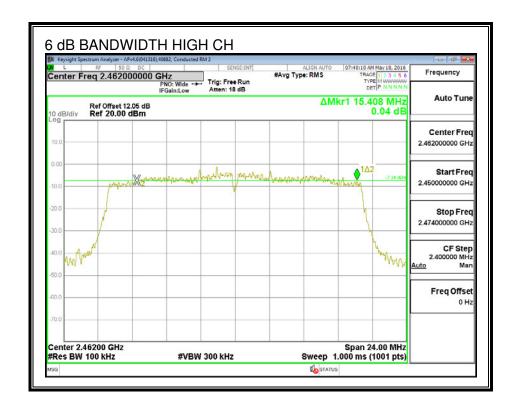
FCC §15.247 (a) (2)

IC RSS-247 5.2 (1)


The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS


Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	14.080	0.5
Mid	2437	14.080	0.5
High	2462	15.408	0.5


Test Performed: Jeff Cabrera Test Date: 2016-05-18

6 dB BANDWIDTH

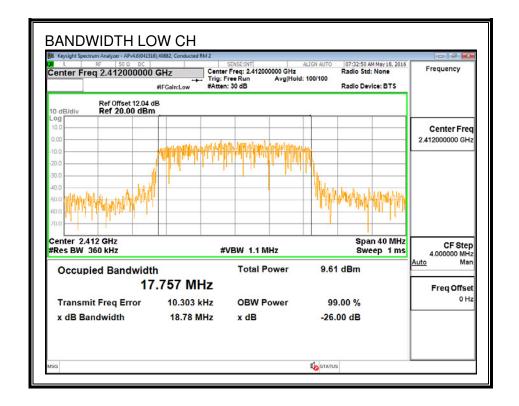
Page 49 of 95

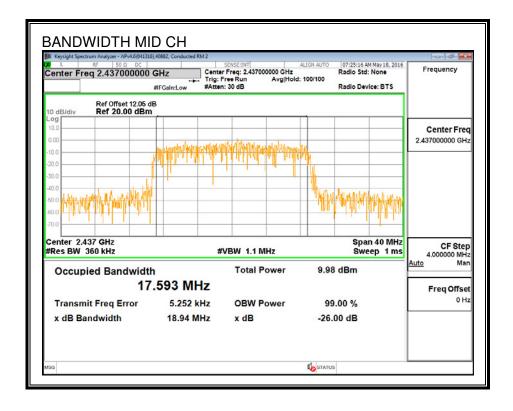
8.4.2. 99% BANDWIDTH

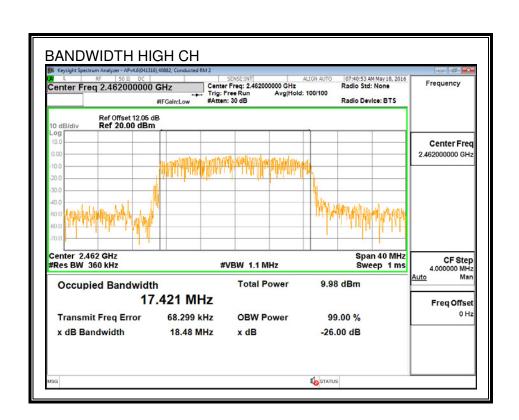
LIMITS

None; for reporting purposes only. Testing per RSS-Gen Clause 6.6.

RESULTS


Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	17.7570		
Mid	2437	17.5930		
High	2462	17.4210		


Test Performed: Jeff Cabrera


Test Date: 2016-05-18

FORM NO: 03-EM-F00858

99% BANDWIDTH

DATE: 2016-08-11

8.4.3. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

IC RSS-247 5.4 (4)

FCC - For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS - For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(5), the e.i.r.p. shall not exceed 4 W.

DIRECTIONAL ANTENNA GAIN

There is only one transmitter output therefore the directional gain is equal to the antenna gain.

Test Performed: Jeff Cabrera

Test Date: 2016-05-18

TEL: (919) 549-1400

FORM NO: 03-EM-F00858

RESULTS

Limits

Channel	Frequency	Directional	FCC	IC	IC	Max
		Gain	Power	Power	EIRP	Power
			Limit	Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
Low	2412	1.30	30.00	30	36	30.00
Mid	2437	1.30	30.00	30	36	30.00
High	2462	1.30	30.00	30	36	30.00

Duty Cycle CF (dB) 0.19	Included in Calculations of Corr'd Power
-------------------------	--

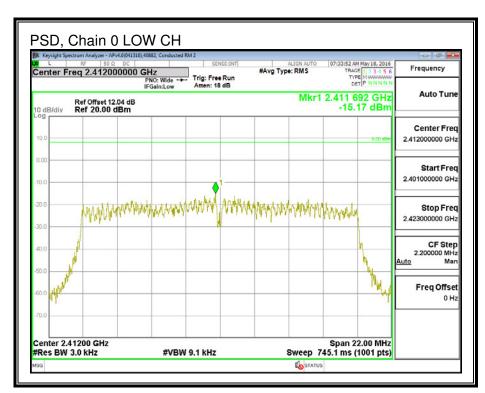
Results

Channel	Frequency	Chain 0	Total	Power	Margin
		Meas	Corr'd	Limit	
		Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	11.90	12.09	30.00	-17.91
Mid	2437	11.83	12.02	30.00	-17.98
High	2462	11.93	12.12	30.00	-17.88

8.4.4. POWER SPECTRAL DENSITY

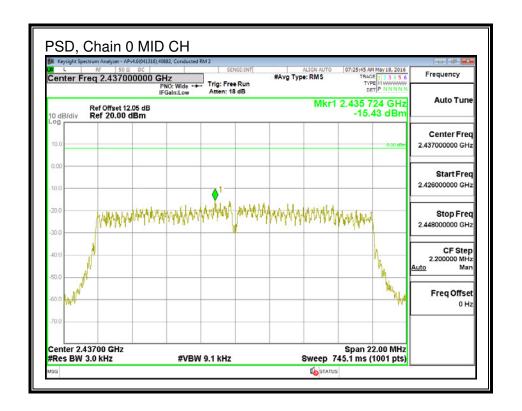
LIMITS

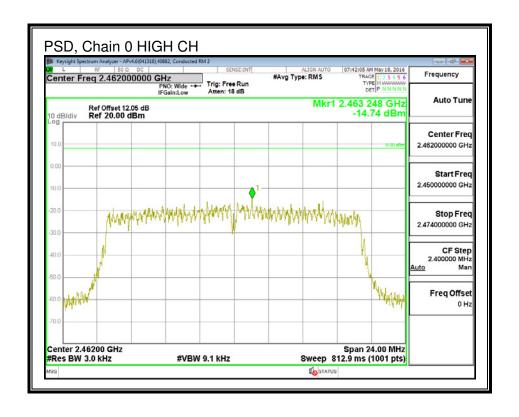
FCC §15.247 (e)


IC RSS-247 5.2 (2)

RESULTS

Duty C	ycle CF (dB)	0.19	Included	of Corr'd PSD		
PSD Resu						
Channel	Frequency	Chain 0	Total	Limit	Margin	
		Meas	Corr'd			
	(MHz)	(dBm)	PSD			
			(dBm)	(dBm)	(dB)	
Low	2412	-15.17	-14.98	8.0	-23.0	
Mid	2437	-15.43	-15.24	8.0	-23.2	
High	2462	-14.74	-14.55	8.0	-22.6	


Test Performed: Jeff Cabrera Test Date: 2016-05-18


PSD, Chain 0

Page 56 of 95

DATE: 2016-08-11

8.4.5. OUT-OF-BAND EMISSIONS

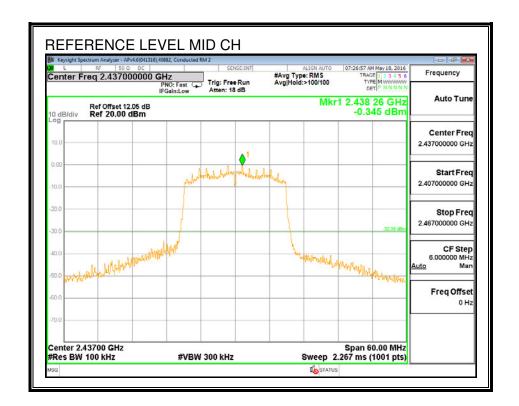
LIMITS

FCC §15.247 (d)

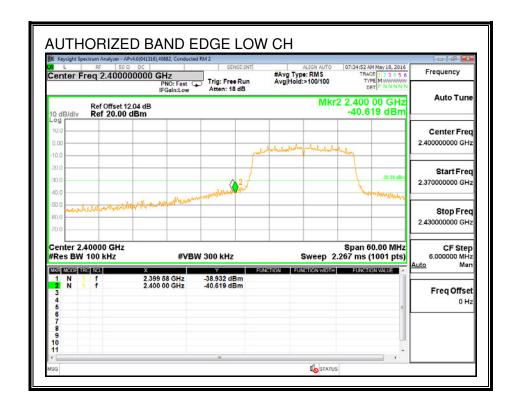
IC RSS-247 5.5

FCC - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

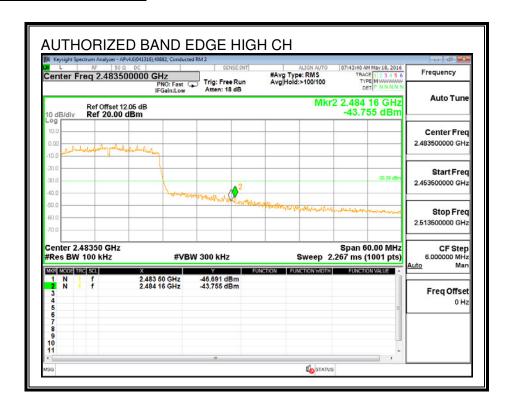
RSS - In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.


RESULTS

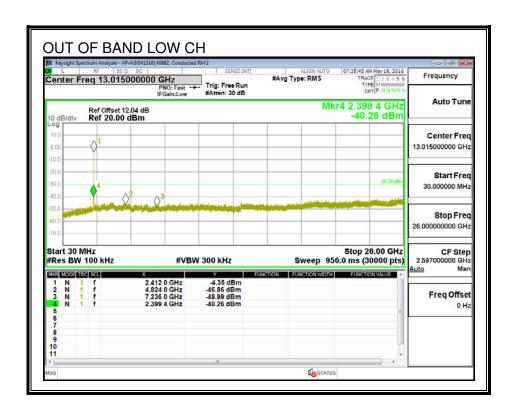
Test Performed: Jeff Cabrera

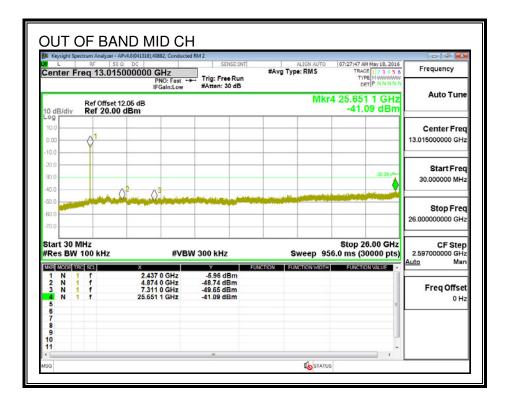

Test Date: 2016-05-18

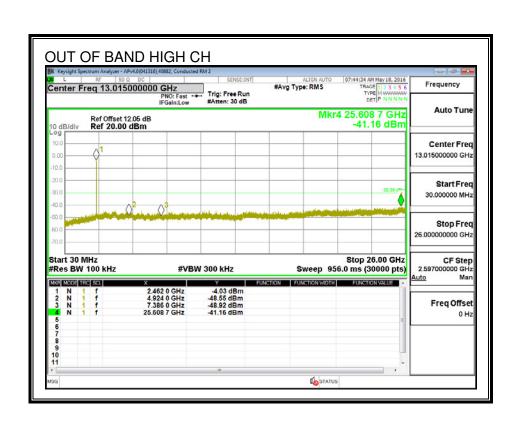
TEL: (919) 549-1400


IN-BAND REFERENCE LEVEL

LOW CHANNEL BANDEDGE




HIGH CHANNEL BANDEDGE



Page 60 of 95

OUT-OF-BAND EMISSIONS

DATE: 2016-08-11